
Programming Knowledge
Discovery Workflows in
Service-Oriented Distributed
Systems

Eugenio Cesario1, Marco Lackovic2,
Domenico Talia1,2, Paolo Trunfio2,∗

1ICAR-CNR, Rende (CS), Italy
2DEIS, University of Calabria, Rende (CS), Italy

SUMMARY

In several scientific and business domains very large data repositories are generated.
To find interesting and useful information in those repositories, efficient data mining
techniques and knowledge discovery processes must be used. The exploitation of data
mining techniques in science help scientists in hypothesis formation and give them a
support on their scientific practices, whereas in industrial processes data mining can
exploit existing data sources as a real value for companies that can take advantage from
the knowledge that can be extracted from their large data sources. Data mining tasks
are often composed by multiple stages that may be linked each other to form various
execution flows. Moreover, data mining tasks are often distributed since they involve
data and tools located over geographically distributed environments. Therefore, it is
fundamental to exploit effective paradigms, such as services and workflows, to model
data mining tasks that are both multi-staged and distributed. This paper discusses
data mining services and workflows for analyzing scientific data in high performance
distributed environments such as Grids and Clouds. We discuss how it is possible to
define basic and complex services for supporting distributed data mining tasks in Grids.
We also presents a workflow formalism and a service-oriented programming framework,
named DIS3GNO, for designing and running distributed knowledge discovery processes
in the Knowledge Grid system. DIS3GNO supports all the phases of a knowledge
discovery process, including composition, execution, and results visualization. After
introducing DIS3GNO, some relevant use cases implemented by it and a performance
evaluation of the system are discussed.

key words: Distributed data mining; Workflows; Grid computing; Knowledge Grid

E-mail: cesario@icar.cnr.it (E. Cesario), mlackovic@deis.unical.it (M. Lackovic), talia@deis.unical.it (D. Talia),
trunfio@deis.unical.it (P. Trunfio)
∗Correspondence to: Paolo Trunfio, DEIS, University of Calabria, Via P. Bucci 41C, 87036 Rende (CS), Italy

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 1

1. INTRODUCTION

Data mining applications and knowledge discovery in databases (KDD) processes are often
composed of multiple stages (e.g., data extraction, data filtering, data analysis, results
evaluation) that may be linked each other by different dependencies to form various execution
flows. Moreover, data mining tasks are often distributed since they involve data and tools
located over geographically distributed environments, like computational Grids. Therefore,
it is fundamental to provide formalisms and environments to design and execute knowledge
discovery processes that are both multi-staged and distributed.

Workflows are commonly-used formalisms to represent data and execution flows associated
to complex data mining applications. A data mining workflow is a graph in which nodes
typically represent data sources, filtering tools, data mining algorithms, and visualizers, and
edges represent execution dependencies among nodes. An important benefit of workflows is
that, once defined, they can be stored and retrieved for modifications and/or re-execution:
this allows users to define typical data mining patterns and reuse them in different contexts.
We worked in this direction by defining a service-oriented workflow formalism and a visual
software environment, named DIS3GNO, to design and execute distributed data mining tasks
over the Knowledge Grid [1], a service-oriented framework for distributed data mining on the
Grid.

The goal of the workflow formalism discussed in this paper is to allow domain-expert users
to design a distributed data mining task without specific expertise about Grid programming.
The DIS3GNO system allows users to compose distributed data mining workflows, execute
the workflows onto the Knowledge Grid, and visualize the results of the data mining tasks
performed. DIS3GNO submits the user-defined workflow to the Knowledge Grid services, which
manage the distributed computation onto the Grid infrastructure in a way that is completely
transparent to the user.

The remainder of this paper is organized as follows. Section 2 focuses on knowledge discovery
in distributed and Grid computing environments. Section 3 outlines the main features of the
Knowledge Grid system. Section 4 describes the DIS3GNO system, its workflow formalism,
and how distributed data mining workflows are executed on the Knowledge Grid. Section 5
presents some uses cases and a performance evaluation of the system. Section 6 discusses
related work. Finally, Section 7 concludes the paper.

2. DISTRIBUTED AND GRID-BASED KNOWLEDGE DISCOVERY

As outlined earlier, scientific applications have to deal with a massive volume of data. Data
mining algorithms working on very large datasets take a very long time on conventional
computers to get results. In order to improve performances, some distributed approaches have
been proposed.

Distributed data mining (DDM) works by analyzing data in a distributed fashion and pays
particular attention to the trade-off between centralized collection and distributed analysis of
data. This approach is particularly suitable for applications that deal with a very large amount

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

2 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

of data (e.g., transaction data, scientific simulation and telecommunication data), which cannot
be analyzed in a single site on traditional machines in acceptable times.

In the last decade, Grid computing and Cloud computing systems integrated both
distributed and parallel computing, representing a privileged infrastructure for high-
performance data and knowledge management. In particular, Grid computing was conceived
as a paradigm for coordinated resource sharing and problem solving in advanced science
and engineering applications. For these reasons, Grids offer an effective support to the
implementation and use of knowledge discovery systems by exploiting Grid-based data mining
approaches.

In the following, distributed and Grid-based data mining models and systems are discussed.

2.1. Distributed Data Mining

Traditional warehouse-based architectures for data mining suppose to have a centralized data
repository. Such a centralized approach is inappropriate for most distributed and ubiquitous
data mining applications. In fact, the long response time, lack of proper use of distributed
resource, and the use of centralized data mining algorithms do not cope well with distributed
environments. A scalable solution for decentralized applications calls for distributed processing
of data, controlled by the available resources and human factors.

For example, let us consider an ad hoc wireless sensor network where the different sensor
nodes are monitoring some time-critical events. Central collection of data from every sensor
node may create traffic over the limited bandwidth wireless channels and this may also drain
a lot of power from the devices. As another example, let us consider the World Wide Web
as it contains distributed data and computing resources. An increasing number of databases
(e.g., weather databases, oceanographic data, etc.) and data streams (e.g., emerging disease
information, etc.) are currently made available on-line, and many of them change frequently.
It is easy to think of many applications that require regular monitoring of these diverse and
distributed sources of data.

A distributed approach to analyze this data is aimed at being more scalable, particularly
when the application involves a large number of data sites. Hence, in this case we need
data mining architectures that pay careful attention to the distribution of data, computing
and communication, in order to access and use them in a near optimal fashion. Most
DDM algorithms are designed upon the potential parallelism they can apply over the
given distributed data. Typically, the same algorithm operates on each distributed data site
concurrently, producing one local model per site. Subsequently, all local models are aggregated
to produce the final model. This schema is common to several distributed data mining
algorithms such as meta-learning, collective data mining and ensemble learning.

The meta-learning technique [2] aims at building a global classifier from a set of inherently
distributed data sources. Meta-learning is basically a two-step process: first, a number
of independent classifiers are generated by applying learning programs to a collection of
distributed and homogeneous datasets in parallel. Then, the classifiers computed by local
learning programs are collected in a single site and combined to obtain a global classifier.

Collective data mining [3] exploits a different strategy: instead of combining partial local
models, it builds the global model through the identification of significant sets of local

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 3

information. In other words, the local blocks are directly composed to form the global model.
This result is based on the fact that any mining function can be expressed in a distributed
fashion using a set of appropriate basis functions.

Ensemble learning [4] aims at improving classification accuracy by aggregating predictions
of multiple classifiers. An ensemble method constructs a set of base classifiers from training
data and performs classification by voting (in the case of classification) or by averaging (in the
case of regression) on the predictions made by each classifier. The final result is the ensemble
classifier, which tends to have higher classification quality than any single classifier composing
it.

2.2. Grid-based Data Mining

The Grid is a computing infrastructure to develop applications over geographically distributed
sites, providing for protocols and services enabling the integrated and seamless use of remote
computing power, storage, software, and data, managed and shared by different organizations.
Some significant examples of Grid applications include biomedicine [5], protein folding studies
[6], molecular simulation [7], high-energy physics experiments [8], climate/weather modelling
[9], and earthquake simulation [10].

Grid protocols and services are provided by environments such as Globus Toolkit†, gLite‡,
Unicore§, XtreemOS¶, and GridWay∥. In particular, Globus Toolkit is the most widely-
used middleware in scientific and data-intensive Grid applications, and represents a de-facto
standard for implementing Grid systems. It addresses security, information discovery, resource
and data management, communication, fault-detection, and portability issues.

Since Grid application areas range widely, specialized services have been implemented to
meet the needs of different application contexts. In particular, data Grids have been designed
to easily store, move, and manage large datasets in distributed data-intensive applications.
Besides core data management services, knowledge-based Grids, built on top of computational
and data Grid environments, offer higher-level services for data analysis, inference, and
discovery in scientific and business areas [11]. The availability of knowledge Grids is the
enabling condition for developing high-performance knowledge discovery processes and meeting
the challenges posed by the increasing demand of power and abstractness coming from complex
problem solving environments [12].

Several systems for distributed data mining exploiting the Grid infrastructure have been
designed and implemented [13]; among them, some popular systems are DataMiningGrid,
Discovery Net, GridMiner, and the Knowledge Grid framework.

DataMiningGrid [14] is a Grid environment for executing data analysis and knowledge
discovery tasks in a wide range of different application fields, including the automotive,

†http://www.globus.org/toolkit
‡http://glite.web.cern.ch/glite
§http://www.unicore.eu
¶http://www.xtreemos.eu
∥http://www.gridway.org

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

4 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

biological and medical, environmental and ICT sectors. It provides functionalities for data
manipulation, resource brokering, and application search according to different data mining
tasks and methodologies, and supports different types of parameter sweeps.

Discovery Net [15] allows users to integrate data analysis software and data sources made
available by third parties. The building blocks are the so-called Knowledge Discovery Services,
distinguished in Computation Services and Data Services. Discovery Net provides services,
mechanisms and tools for specifying knowledge discovery processes. The functionalities of
Discovery Net can be accessed through an interface exposed as Web service.

GridMiner [16] aims at covering the main aspects of knowledge discovery on Grids. Key
components in GridMiner are Mediation Service, Information Service, Resource Broker, and
Online Analytical Processing (OLAP) Cube Management. These are the so called GridMiner
Base services, because they provide basic services to GridMiner Core services. GridMiner Core
services include services for data integration, process management, data mining, and OLAP.

The Knowledge Grid [1] is a software system that we developed for providing services to
execute distributed data mining tasks in Grid environments. Workflows play a fundamental
role in the Knowledge Grid at different levels of abstraction. A client application submits
a distributed data mining application to the Knowledge Grid by describing it through an
XML workflow formalism named conceptual model. The conceptual model describes data and
algorithms to be used, without specifying information about their location or implementation.

The Knowledge Grid creates an execution plan for the workflow on the basis of the conceptual
model and executes each node of the workflow as a service by using the resources effectively
available. To this end, the Knowledge Grid follows a two-step approach: it initially models an
abstract execution plan that in a second step is resolved into a concrete execution plan. The
abstract execution plan may not contain specific information about the involved Grid resources
(e.g., the actual site where a data mining tool will be executed), while in the concrete execution
plan all the resources must be actually specified, by finding a mapping between requested
resources and available ones in the distributed computing infrastructure.

To the best of our knowledge, the Knowledge Grid was the first system for distributed
knowledge discovery in Grid environments. Since then, some other systems sharing a similar
service-oriented approach have been proposed, the most important ones are mentioned above.
One specific feature of the Knowledge Grid is the use of a unified metadata management model,
which represents both abstract and concrete resources using a common XML formalism. This
is the enabling mechanism for the abstract-to-concrete execution plan mapping, which allows
both the re-execution of the same abstract execution plan (i.e., workflow) at different times,
and the possible optimization of the execution flow by choosing the most suitable resources
among the available ones. Another key aspect in the Knowledge Grid is the possibility for a
user to reuse previously-generated models in subsequent analysis.

In the remainder of this paper we focus on the Knowledge Grid system and its programming
interface. In particular, Section 3 provides a short overview of the Knowledge Grid architecture
and implementation, while Section 4 presents the DIS3GNO system that we recently developed
to program distributed data mining applications as service-oriented workflows and for running
them over the Knowledge Grid.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 5

H
ig

h
-l
e
v
e
l
s
e
rv

ic
e
s

KDS

publishR

searchR

downloadR
KMR

C
o
re

-l
e
v
e
l
s
e
rv

ic
e
s

KBR

 DAS

 TAAS

RAEMS

EPMS

RPS

publishD

searchD

downloadD

publishT

searchT

downloadT

subKApp getRes

mngKEx

Data Access

Tools and

Algorithms Access

Execution Plan

Management
Results

Presentation

Knowledge

Directory

Resource Allocation

and Execution

Management

Knowledge

Metadata

Repository KEPR

Knowledge

Execution Plan

Repository

Knowledge

Base

Repository

Figure 1. Knowledge Grid layered services.

3. THE KNOWLEDGE GRID

The Knowledge Grid services are organized in two hierarchical layers [1]: the core layer
and the high-level layer, as shown in Figure 1. The design idea is that client applications
directly interact with high-level services that, in order to satisfy client requests, invoke
suitable operations exported by the core-level services. In turn, core-level services perform
their operations by invoking basic services provided by available Grid environments running
on the specific host, as well as by interacting with other core-level services.

The high-level layer includes the following services:

• Data Access Service (DAS), which provides operations for publishing, searching
and downloading data to be mined (publishData, searchData, and downloadData

operations);
• Tools and Algorithms Access Service (TAAS), which is responsible for publishing,
searching and downloading tools and algorithms for data extraction, pre-processing and
mining (publishTool, searchTool, and downloadTool operations);

• Execution Plan Management Service (EPMS), which receives a conceptual model of
the data mining task through the submitKApplication operation, translates it into an
abstract execution plan, and passes it to the RAEMS service (see below).

• Results Presentation Service (RPS), which allows to retrieve the results (i.e., the inferred
models) of previous data mining computations through the getResults operation.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

6 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

The core-level layer includes two services:

• Knowledge Directory Service (KDS), which is responsible for managing metadata about
the Knowledge Grid resources (data, tools and algorithms). It provides three operations
(publishResource, searchResource, and downloadResource) to publish, search and
download resource metadata, which are stored in a Knowledge Metadata Repository
(KMR).

• Resource Allocation and Execution Management Service (RAEMS), which starting
from an abstract execution plan (received through the manageKApplication operation)
generates a concrete execution plan and manages its execution. Generated execution
plans are stored in a Knowledge Execution Plan Repository (KEPR), while the results
are stored in a Knowledge Base Repository (KBR).

Metadata play a key role in the Knowledge Grid since they allow to describe the resources
of interest, for subsequently supporting their effective discovery and use in data mining
applications. The Knowledge Grid defines metadata models for describing two main types
of resources, namely data sources and data mining tools. Such models are expressed using an
XML formalism, and their high-level structure is briefly described in the following.

The data source metadata model is composed of two parts: a first section that contains
information for retrieving data (file system information, location, database details), and
another section providing information about the logical and/or physical structure of data
(file format, attribute list, etc.).

The tool metadata model allows to specify various details of a tool such as the type
of input data (arff, csv, etc.), the type of knowledge mined (association rules discovery,
data classification, clustering, etc.), the type of techniques exploited in the mining process
(hierarchical or partitional clustering, decision trees, etc.) and some technical details about its
usage and invocation syntax.

To add new capabilities, such as a new algorithm or dataset available on a certain machine,
it is required to submit the corresponding metadata description using the TAAS or DAS
publishing operations mentioned above, which results in storing such metadata information
into the KMR.

Figure 2 shows an extract of a metadata element that describes a data mining tool in the
Knowledge Grid. More details about structure and use of metadata can be found in [17].

All the Knowledge Grid services have been implemented as Web services that comply with
the Web Services Resource Framework (WSRF) family of standards, as described in a previous
work [18]. In particular, we used the WSRF library provided by Globus Toolkit 4 [19], as
well as some basic Grid services (e.g., reliable file transfer, authentication and authorization)
provided by the same toolkit. Despite the fact that WSRF and Globus Toolkit 4 are today
considered obsolete standards and technologies, both continue to be widely employed by Web
services-based Grid designers, especially in the area of stateful resource management due to
their effectiveness and reliability.

Within the Knowledge Grid project, a visual software environment named DIS3GNO has
recently been implemented to allow a user to:

• program distributed data mining workflows;

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 7

�����������	
����
�����������������	
����
�������
����
���
����������������	�

��������������
�������������
�������������������������
��������
����������������������	������
	��������������������
��������
����
���
��� ������
����!!!�
�����"�#
����
���������
��	�	��"�#
����
���
�����$
����
�����������������������������	
���	���$
����
���
�����������%
���
�������������%
���
�� �
�����&
����
�������&
���������	����'��������
����
��	
���	���������

'����������	���&
���
�������&
���������
�����	�
�
�������'��������
�������&
���
�������&
���������
�������������'��������
�������&
���
�������&
���������
�����������'��������
�������&
���
�������&
����������������������'��������
�������&
���
������!!!�
������&
����
�����(
��)���������	���������
��	������(
��)�����
����!!!�
���� ������
������������	
����
���

Figure 2. An example of metadata descriptor for a clustering tool.

• execute the workflow onto the Knowledge Grid;
• visualize the results of a data mining task.

DIS3GNO performs the mapping of the user-defined workflow to the conceptual model and
submits it to the Knowledge Grid services, managing the overall computation in a way that is
transparent to a user.

4. THE DIS3GNO SYSTEM

In supporting user to develop applications, DIS3GNO is the user interface for two main
Knowledge Grid functionalities:

• Metadata management. DIS3GNO provides an interface to publish and search metadata
about data and tools, through the interaction with the DAS and TAAS services.

• Design and Execution management. DIS3GNO provides an environment to program and
execute distributed data mining applications as service-oriented workflows, through the
interaction with the EPMS service.

The DIS3GNO Graphical User Interface (GUI), depicted in Figure 3, has been designed to
reflect this two-fold functionality. In particular, it provides a panel (on the left) devoted to
search resource metadata, and a panel (on the right) to compose and execute data mining
workflows.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

8 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

Figure 3. A screenshot of the DIS3GNO GUI.

In the top-left corner of the window there is a menu used for opening, saving and creating new
workflows, viewing and modifying some program settings and viewing the previously computed
results present in the local file system. Under the menu bar there is a toolbar containing some
buttons for the execution control (starting/stopping the execution and resetting the nodes
statuses) and other for the workflow editing (creation of nodes representing datasets, tools or
models, creation of edges, selection of multiple nodes and deletion of nodes or edges).

4.1. Workflow Representation

In DIS3GNO a workflow is represented as a directed acyclic graph whose nodes represent
resources and whose edges represent dependencies among the resources.

The types of resources that can be present in a data mining workflow (graphically depicted
by the icons in Figure 4) are:

• Dataset, representing a dataset;
• Tool, representing a tool to perform any kind of operation which may be applied to a
dataset (data mining, filtering, splitting, etc.) or to a model (e.g., voting operations);

• Model, represents a knowledge model (e.g., a decision tree, a set of association rules,
etc.), that is the result produced by a data mining tool.

Tools can be either implemented by the users or taken from third-party software. A reliable
source of tools is the Weka toolkit [20], from which we have taken most of the algorithms used
in our experiments with DIS3GNO. Besides data mining algorithms, Weka provides a wide set

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 9

Figure 4. Nodes types.

Figure 5. Nodes labels.

of useful filtering tools that can also be used to query remote datasets and to create a local
copy of them for subsequent processing.

Each node contains a description of a resource as a set of properties which provide
information about its features and actual use. This description may be full or partial: in
other words, it is both possible to specify a particular resource and its location in the Grid,
or just a few of its properties, leaving to the system the task of finding a resource matching
the specified characteristics and its location. In the former case we will refer to the resource
as concrete, in the latter one as abstract.

For example, in the case of a data mining tool, one could be interested in any algorithm,
located in any node of the Grid, provided it is a classification algorithm able to handle “arff”
files, or could want specifically the algorithm named NaiveBayes located in a specified host.
Once the workflow will be executed, the Knowledge Grid middleware will find a concrete
resource matching the metadata, whether they are completely or partially specified. Clearly
only dataset and tool nodes can be either concrete or abstract, the model node can’t be
abstract as it represents the result of a computation. The model node has only one property,
the location, which if left empty will be implicitly set to the same location of the tool node in
input.

When a particular resource property is entered, a label is attached below to the
corresponding icon, as shown in the example in Figure 5. The property chosen as the label is
the one considered most representative for the resource, i.e. the Name for the dataset and tool
nodes and the Location for the model node.

In order to ease the workflow composition and to allow a user to monitor its execution, each
resource icon bears a symbol representing the status in which the corresponding resource is at
a given time. When the resource status changes, as consequence of the occurrence of certain

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

10 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

Table I. Nodes composition-time statuses.

Symbol Meaning

No information provided

Abstract resource

Concrete resource

Location set

Table II. Nodes run-time statuses.

Symbol Meaning

Matching resource found

Running

Resource not found

Execution failed

Task completed successfully

events, its status symbol changes accordingly. The resource statuses can be divided in two
categories: the composition-time and the run-time statuses.

The composition-time statuses (shown in Table I) are useful during the workflow composition
phase. They are as follows:

1. No information provided = no parameter has been specified in the resource properties;
2. Abstract resource = the resource is defined through constraints about its features, but

it is not known a priori; the S in the icon stands for search, meaning that the resource
has to be searched in the Grid;

3. Concrete resource = the resource is specifically defined through its KDS URL; the K in
the icon stands for KDS URL;

4. Location set = a location for the model has been specifically set (this status is pertinent
to model nodes only).

The run-time statuses (shown in Table II), useful during the workflow execution phase, are:

1. Matching resource found = a concrete resource matching the metadata has been found;
2. Running = the resource is being executed/managed.
3. Resource not found = the system hasn’t found a resource matching the metadata;
4. Execution failed = some error has occurred during the management of the corresponding

resource;
5. Task completed successfully = the corresponding resource has successfully fulfilled its

task.

Each resource may be in one of these run-time statuses only in a specific phase of the
workflow execution: i.e. status 1 and 2 only during the execution, status 3 and 4 during or
after the execution, status 5 only after the execution.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 11

Table III. Nodes connections.

First
resource

Second
resource

Label Meaning
Graphical

representation

dataset dataset transfer Explicit file transfer

dataset tool
dataset,
train,
test

Type of input for a tool node

tool dataset dataset Dataset produced by a tool

tool model model
Model produced by a data mining
algorithm

model tool model Model received by a tool

model model transfer Explicit transfer of a model

The nodes may be connected with each other through edges, establishing dependency
relationships among them using specific patterns. The patterns currently supported in
DIS3GNO are: sequence (a task is started after the completion of the preceding task), parallel
split (in any node with multiple outgoing edges, the thread of control is split into multiple ones,
thus allowing parallel execution), synchronization (any node with multiple incoming edges is
implicitly a point of synchronization) [21]. All the possible connections are show in Table III;
those not present in Table III are not allowed and the graphical user interface prevents a user
to create them.

When an edge is being created between two nodes, a label is automatically attached to
it representing the kind of relationship between the two nodes. In most of the cases this
relationship is strict but in one case (dataset-tool connection) requires further input from a
user to be specified.

The possible edge labels are:

• dataset : indicates that the input or output of a tool node is a dataset;
• train: indicates that the input of a tool node has to be considered a training set;
• test : indicates that the input of a tool node has to be considered a test set;
• transfer : indicates an explicit transfer of a dataset, or a result of a computation, from
one Grid node to another;

• model : indicates a result of a computation of a data mining algorithm.

4.2. Workflow Composition

To outline the main functionalities of DIS3GNO, we briefly describe how it is used to compose
and run a data mining workflow. By exploiting the DIS3GNO GUI, a user can compose a

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

12 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

Dataset

Test Set

Training Set Partitioner

Classifier 1 Classifier N

Model 1

Voter

Classified Test Set

Model N

.
.
.

Figure 6. Logical schema of an ensemble learning application.

workflow by selecting from the toolbar the type of resource to be inserted in the workflow
(a dataset, a tool or a model node), and clicking on the workflow composition panel. Such
operation can be repeated as many times as needed to insert all the required application nodes.
Then, she/he has to insert suitable edges by setting, for each one, the specific dependency
relationship between the nodes (as described in Section 4.1 and summarized in Table III).
Typically, most nodes in a workflow represent abstract resources. In other terms, a user initially
concentrates on the application logic, without focusing on the actual datasets or data mining
tool to be used.

Let us suppose that a user wants to compose and execute the ensemble learning application
depicted in Figure 6. In contrast to ordinary machine learning approaches which try to learn
one model from training data, ensemble methods build a set of models and combine them
to obtain the final model [22]. In a classification scenario, an ensemble method constructs a
set of base classifiers from training data and performs classification by taking a vote on the
predictions made by each classifier.

As shown in Figure 6, the input dataset is split, using a partitioner tool, into two parts,
namely a training set and a test set. The training set is given in input to N classification
algorithms which run in parallel to build N independent classification models from it. Then,
a voter tool performs an ensemble classification by assigning to each instance of the test set
the class predicted by the majority of the N models generated at the previous step.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 13

Figure 7. Insertion of the input dataset icon with specification of its properties and search for matching
resources.

By using DIS3GNO, the ensemble learning application can be designed as follows. First,
a user chooses the input dataset (Figure 7). To do that, she/he selects from the toolbar the
dataset icon and drags it into the workflow composition panel. In order to associate such an
icon to a concrete resource, the user specifies name and format of the desired dataset into the
Search parameters panel. The search is started by pressing the Search button; on completion,
the system lists the set of datasets matching the search criteria (left-bottom part of the GUI).

After the selection of one dataset, the URL of such dataset is associated with the dataset
icon (Figure 8a). This operation changes the dataset icon mark from S (resource still to be
selected) to K (resource identified by a KDS URL). In the same way, the user inserts a tool
node, which is associated with the KDS URL of the desired partitioner (Figure 8b). Then,
the user must specify the relationship between the two nodes. To do that, an edge linking the
dataset and the tool icons is created and labelled appropriately (Figure 8c).

According to the ensemble learning scenario, two dataset icons representing the output of
the partitioner are added to the workflow (Figure 9a). Then, the user proceeds by adding
the classification algorithms that are required to build the base models. We assume that the
user wants to use four classification algorithms (ConjunctiveRule, NaiveBayes, RandomForest
and J48) specified as abstract resources (see Section 4.1). For example, Figure 9b shows the
insertion of the first classification algorithm (ConjunctiveRule) and the specification of its
properties (name of software and type of data supported). The algorithm icon is marked with
an S to remind that the corresponding resource will be searched and made concrete at runtime.
Similarly, the other three classification algorithms are added, and an edge between the training
set and the four algorithms is created (Figure 9c).

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

14 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

a)

b)

c)

Figure 8. a) Selection of the input dataset; b) Insertion and selection of a partitioner tool; c) Insertion
of a labelled edge between dataset and partitioner.

Figure 10 shows the complete workflow. It includes: (i) a model node connected to each
classification algorithm; (ii) a tool node representing a voter that takes in input the test set
and the four base models; (iii) the output dataset obtained as output of the voter tool.

The workflow can be submitted to the EPMS service by pressing the Run button in the
toolbar. As a first action, if user credentials are not available or have expired, a Grid Proxy
Initialization window is loaded. After that, the workflow execution actually starts and proceeds
as detailed in the next section.

4.3. Execution Management

Starting from the data mining workflow designed by a user, DIS3GNO generates an XML
representation of the data mining application referred to as conceptual model. DIS3GNO passes
the conceptual model to a given EPMS, which is in charge of transforming it into an abstract
execution plan for subsequent processing by the RAEMS. The RAEMS receives the abstract
execution plan and creates a concrete execution plan. To accomplish this task, the RAEMS
needs to evaluate and resolve a set of resources and services, by contacting the KDS and

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 15

a)

b)

c)

Figure 9. a) Insertion of two dataset icons representing the partitioner output; b) Insertion and
specification of an abstract tool resource; c) Workflow after insertion and specification of all the

classification algorithms and associated input edges.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

16 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

Figure 10. The complete workflow including the base models, a voter tool, and the output dataset.

choosing those matching the requirements specified by the abstract execution plan. In case
multiple resources match the requirements, the RAEMS adopts a round-robin strategy to
select one of them.

As soon as the RAEMS has built the concrete execution plan, it is in charge of coordinating
its execution by invoking the coordinated execution of services corresponding to the nodes of
the concrete execution plan. The status of the computation is notified to the EPMS, which in
turn forwards the notifications to the DIS3GNO system for visualization.

Figure 11 describes the interactions that occur when an invocation of the EPMS is
performed. In particular, the figure outlines the sequence of invocations of others services,
and the interchanges with them when a data mining workflow is submitted for allocation and
execution. To do this, the EPMS exposes the submitKApplication operation, through which
it receives a conceptual model of the application to be executed (step 1).

As an example, Figure 13 shows the conceptual model generated by DIS3GNO starting
from the simple workflow shown in Figure 12. Basically, the conceptual model is a textual
representation of the graph expressed by the visual workflow, which is suitable to be passed
to the EPMS for further processing. Conceptual models are expressed using the GraphML
formalism that is widely employed to represent graphs in XML. Note that the conceptual
model reflects the fact that the original workflow contains a concrete resource (the input dataset

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 17

Local interaction

Possibly remote interaction

RAEMS

mngKEx

EPMS

subKApp

KBR

 KDS
searchR

KMR

KEPR

1

2

4

7

6

publishR

3

7

4

5

8

Basic

Grid Services

OPs

DM

Services

OPs

5
DIS3GNO

KDSes
OPs

Figure 11. Execution management. The sequence of operation invocations is showed for all services
involved in the mapping and execution of a data mining workflow.

Figure 12. Simple workflow example.

CoverType) and an abstract one (the J48 algorithm). In fact, node n0 in the conceptual model
is fully specified by its KDS URL, which refers to the metadata descriptor of the CoverType
dataset. On the other hand, node n1 only specifies the name of the algorithm (J48) and the
kind of data to be processed (arff), thus keeping the resource abstract and giving to the system
the task of mapping it to a concrete resource.

The basic role of the EPMS is to transform the conceptual model into an abstract execution
plan for subsequent processing by the RAEMS. An abstract execution plan is a more formal
representation of the structure of the application. Generally, it does not contain information
on the physical Grid resources and services to be used, but rather constraints about them.
Figure 14 shows an example of abstract execution plan generated by the EPMS starting from
the conceptual model displayed in Figure 13.

The RAEMS exports the manageKExecution operation, which is invoked by the EPMS and
receives the abstract execution plan (step 2). First of all, the RAEMS queries the local KDS
(through the searchResource operation) to obtain information about the resources needed to
instantiate the abstract execution plan (step 3). The KDS performs the search both accessing
the local Knowledge Metadata Repository (KMR) and querying a set of remote KDSes (step
4).

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

18 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

��������	
����
�������������	
���������
���������	
��������	
��	
		������	��
���	�����������
�����������	
				�����	��
�����	
						�����	���
���������������������	
						�����	���
��������������	
								��������	����
��������
����������������
���������������������	
						�������	
						�����	���
��������� !��"���������	
						�����	���
��������� #��$"��������	
				�������	
				�����	��
�����	
						�����	���
��������
������	�������	
						�����	���
��������������	
								�������������������	����
�%&'��	
										�������������	
												����� ���������������� ������	
										��������������	
								���������������������	
						�������	
						!!!	
				�������	
				�����	��
��$��	
						�����	���
�������	���
�������	
						�����	���
�
���������
���
�����������	
						!!!	
				�������	
				�����	��
����	������
����	������
�����	
						�����	���
�������������������	
				�������	
				�����	��
����	������
����	������
��$��	
						�����	���
�������	���
�������	
				�������	
		��������	
����������	

Figure 13. GraphML representation of the simple workflow in Figure 12.

To reach as many remote KDSes as needed, an unstructured peer-to-peer overlay similar to
Gnutella [23] is built among the Knowledge Grid nodes. The peer-to-peer overlay is constructed
by assigning to each node a small set of neighboring nodes. Each node sends a KDS query to its
neighbors, which in turn can forward it to their neighbors to ensure a wider network coverage.
As in Gnutella, this query flooding is controlled in two ways: i) each time a query is forwarded,
an associated time-to-leave (TTL) counter is decremented by one; when the TTL values equals
zero, the query forwarding is stopped; ii) if a node receives the same query more than once,
as a consequence of looping paths that may be present in the overlay, the query is discarded
without further processing. In the current implementation, the list of neighbors is static and is
created at each node by editing a configuration file. This requires that the node administrator
has to know in advance a set of active nodes for the purpose. In dynamic scenarios nodes may
be added to or removed from the Grid over time. To cope with these scenarios, we planned,
for a future release of the system, to allow nodes to obtain their neighbors by querying some
index servers maintaining an updated list of active nodes.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 19

���������	
����
��������
������������������������
������������������	
�����
�������������
����
��������������������
�������
�����
���������������
�������������
�������������
���������� ����
�����
��������
���������!���"
�
� #���$���������� !"���
�����������!����
��
����
�������������%
��&�!������##��%
��&�!�����
������������!����
��
����
�����������'�� ���
��������������� ���
����������������� �������$��������������������������� ��
����������������� �������%�����&

����
���������� ��
���������������� ���
������������'�� ���
����������!���"
�
� #���$�����
����������� �����
�������&������
���
������������������	
����

����

������
��������������
����
����������
���������������'()����
�������(
������������������������	
������
�������(
�������������	
��������'()����
����������	
����
�������

Figure 14. Abstract execution plan generated after the conceptual model in Figure 13.

Figure 15 shows an example of concrete execution plan generated by the RAEMS starting
from the abstract execution plan in Figure 14. Note that, in the concrete execution plan, the
J48 algorithm is instantiated to a concrete resource that is fully specified by its KDS URL.
Moreover, compared with the abstract execution plan, the concrete one includes an additional
DataTransfer operation that consists in copying the input dataset to the node where the
selected J48 instance is located. In fact, while the data transfer operation is implicit in the
original workflow, it must be explicitly specified in the concrete execution plan.

After the concrete execution plan is obtained, the RAEMS coordinates the actual execution
of the overall computation. To this purpose, the RAEMS invokes the appropriate data mining
services (DM Services) and basic Grid services (e.g., file transfer services), as specified by
the concrete execution plan (step 5). The RAEMS stores the results of the computation into
the Knowledge Base Repository (KBR) (step 6), while the execution plan is stored into the
Knowledge Execution Plan Repository (KEPR) (step 7). To make available the results stored
in the KBR, it is necessary to publish results metadata into the KMR. To this end, the RAEMS
invokes the publishResource operation of the local KDS (steps 7 and 8).

Figure 16 shows the final screenshot of the DIS3GNO interface when the execution of the
data mining workflow has been completed and the final classification result has been created
and showed in an ad hoc window.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

20 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

���������	
�������
������
�����������������������
������������������	
����
������
��������
����������������������������	
����
������
��������
��������������������������
������������������������������
����������
��
���������
���� ���!"�����
��������������������
����������
������������������	
�����
������������������
��
���������
���� ���!"����
���������������
�������
����������������������������������
��������#$%�!"����
������������� �����!���"����������#$%���
�����������#���$�������������������
���������#���$�����
�������������� �����!���"�����
��������
��������
�������%����������������	
���"
����"
�������
�������������������
����������
��������������&'(������
�������&�������������������������	
����
������
���������
�������&��������������	
����
������
���������������	
������
�������&��������������	
��������&'(����
����������	
�������
����

Figure 15. Concrete execution plan generated starting from the abstract execution plan in Figure 14.

5. USE CASES AND PERFORMANCE

In this section we discuss two examples of distributed data mining workflows designed and
executed on a Grid using DIS3GNO. The first workflow is a parameter sweeping application
in which a dataset is processed using multiple instances of the same classification algorithm
with different parameters, with the goal of finding the best classifier based on some accuracy
parameters. The second workflow is the ensemble learning application already introduced in
the previous section.

Both workflows are representative, in terms of complexity and size, of most distributed data
mining applications that can be found in the literature. Indeed, DIS3GNO has been designed
for distributed data mining applications, not for general engineering workflows. Therefore, it
can manage tens of tasks that is typically a sufficient number for distributed data mining
applications both in science and business domain.

To evaluate the effectiveness of the system as well as its performance in terms of scalability,
both the workflows have been executed on a Grid including up to 11 nodes. The nodes were
equipped with different processors, having a computing power ranging from that of a Pentium
IV with 2.4 GHz to that of Xeon 5160 with 3.0 GHz, with RAM size ranging from 2 to 4 GB.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 21

Figure 16. The final visualization of DIS3GNO after completion of the application.

5.1. Parameter Sweeping Workflow

We used DIS3GNO to compose an application in which a given dataset is analyzed by running
multiple instances of the same classification algorithm, with the goal of obtaining multiple
classification models from the same data source.

The dataset covertype∗∗ from the UCI KDD archive, has been used as data source. The
dataset contains information about forest cover type for a large number of sites in the United
States. Each dataset instance, corresponding to a site observation, is described by 54 attributes
that give information about the main features of a site (e.g., elevation, aspect, slope, etc.).
The 55th attribute contains the cover type, represented as an integer in the range 1 to 7. The
original dataset is made of 581,012 instances and is stored in a file having a size of 72MB.
From this dataset we extracted three datasets with 72,500, 145,000 and 290,000 instances and
a file size of 9 MB, 18 MB and 36 MB respectively. Then we used DIS3GNO to perform a
classification analysis on each of those datasets.

∗∗http://kdd.ics.uci.edu/databases/covertype/covertype.html

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

22 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

Figure 17. Parameter sweeping workflow.

DIS3GNO has been used to run an application in which 8 independent instances of the J48
algorithm perform a different classification task on the covertype dataset. In particular, each
J48 instance has been asked to classify data using a different value of confidence, ranging from
0.15 to 0.50. The same application has been executed using a number of computing nodes
ranging from 1 to 8 to evaluate the system speedup.

The workflow corresponding to the application is shown in Figure 17. It includes a dataset
node (representing the covertype dataset) connected to 8 tool nodes, each one associated with
an instance of the J48 classification algorithm with a different value of confidence (ranging
from 0.15 to 0.50). These nodes are in turn connected to another tool node, associated with
a model chooser which selects the best classification model among those learnt by the J48
instances. Finally, the node associated with the model chooser is connected to a model node
having the location set to localhost; this enforces the model to be transferred to the client host
for its visualization.

The workflow has been executed using a number of computing nodes ranging from 1 to 8 for
each of the three datasets (9 MB, 18 MB and 36 MB) in order to evaluate the speedup of the
system. Table IV reports the execution times of the application when 1, 2, 4 and 8 computing
nodes are used. The 8 classification tasks that constitute the overall application are indicated

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 23

Table IV. Task assignments and execution times for the parameter sweeping workflow
(times expressed as hh:mm:ss).

No of Task assignments Exec. time Exec. time Exec. time
nodes (Node ← Tasks) 9 MB 18 MB 36 MB

1 N1 ← DM1, ..., DM8 2:43:47 7:03:46 20:36:23

2
N1 ← DM1, DM3, DM5, DM7 1:55:19 4:51:24 14:14:40
N2 ← DM2, DM4, DM6, DM8

4

N1 ← DM1, DM5

58:30 2:26:48 7:08:16
N2 ← DM2, DM6

N3 ← DM3, DM7

N4 ← DM4, DM8

8 Ni ← DMi for 1 ≤ i ≤ 8 32:35 1:21:32 3:52:32

as DM1..DM8, corresponding to the tasks of running J48 with a confidence value of 0.15, 0.20,
0.25, 0.30, 0.35, 0.40, 0.45, and 0.50, respectively. The table shows how the classification tasks
are assigned to the computing nodes (denoted as N1..N8), as well as the execution times for
each dataset size.

When the workflow is executed on more than one node, the execution time includes the
overhead due to file transfers. For example, in our network scenario, the transfer of a 36 MB
dataset from the user node to a computing node takes on average 15 seconds. This value is
small as compared to the amount of time required to run a classification algorithm on the same
dataset, which takes between 2.5 and 3.9 hours depending on the computing node. The overall
execution time also includes the amount of time needed to invoke all the involved services
(i.e., EPMS, RAEMS, KDS) as required by the workflow. However, such an amount of time
(approximatively 2 minutes) is negligible as compared to the total execution time.

For the 36 MB dataset, the total execution time decreases from more than 20 hours obtained
using 1 computing node, to less than 4 hours obtained with 8 nodes. The achieved execution
speedup ranged from 1.45 using 2 nodes, to 5.32 using 8 nodes. Similar trends have been
registered with the other two datasets. The execution times and speedup values for different
number of nodes and dataset sizes are shown in Figure 18.

5.2. Ensemble Learning Workflow

As mentioned earlier, ensemble learning is a machine learning paradigm where multiple learners
are trained to solve the same problem. In the following we consider the ensemble learning
scenario already introduced in Section 4.2, whose corresponding workflow is shown in Figure 10.

As input dataset we used kddcup99 ††. This dataset, used for the KDD’99 Competition,
contains a wide set of data produced during seven weeks of monitoring in a military network

††http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

24 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

8421

E
xe

cu
tio

n
tim

e
(s

ec
.)

Number of nodes

9 MB
18 MB
36 MB

 1

 2

 3

 4

 5

 6

8421

E
xe

cu
tio

n
sp

ee
du

p

Number of nodes

9 MB
18 MB
36 MB

Figure 18. Execution times and speedup values for different numbers of nodes and dataset sizes, for
the parameter sweeping workflow.

Table V. Task assignments and execution times for the ensemble learning workflow.

No of Task assignments Exec. time Exec. time Exec. time
nodes (Node ← Tasks) 100 MB 140 MB 180 MB

1 N1 ← DM1, ..., DM4 1:30:50 2:31:14 3:34:27

2
N1 ← DM1, DM3 1:03:47 1:37:05 2:07:05
N2 ← DM2, DM4

4 N1 ← DMi for 1 ≤ i ≤ 4 46:16 1:13:47 1:37:23

environment subject to simulated intrusions. We extracted three datasets from it, with 940,000,
1,315,000 and 1,692,000 instances and a size of 100 MB, 140 MB and 180 MB.

As shown in Figure 10, DIS3GNO has been used to split the dataset into two parts: a test set
(1/3 of the original dataset) and a training set (2/3 of the original dataset). The latter has been
processed using four classification algorithms: ConjuctiveRule, NaiveBayes, RandomForest and
J48. The models generated by the four classification algorithms are then collected to a node
where they are given to a voter component; the classification is performed and evaluated on
the test set by taking a vote, for each instance, on the predictions made by each classifier.

The same workflow has been executed, for each of the three datasets, using a number
of computing nodes ranging from 1 to 4 (excluding the node where we performed the
voting operation) to evaluate the speedup of the system. Table V reports the execution
times of the application when 1, 2 and 4 computing nodes are used. The four tasks are
indicated as DM1..DM4, corresponding to ConjuctiveRule, NaiveBayes, RandomForest and
J48 respectively. The table shows how the tasks are assigned to the computing nodes, as well
as the execution times for each dataset size.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 25

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

421

E
xe

cu
tio

n
tim

e
(s

ec
.)

Number of nodes

100 MB
140 MB
180 MB

 1

 1.5

 2

 2.5

421

E
xe

cu
tio

n
sp

ee
du

p

Number of nodes

100 MB
140 MB
180 MB

Figure 19. Execution times and speedup values for different numbers of nodes and dataset sizes, for
the ensemble learning workflow.

The execution times and speedup values for different number of nodes and dataset sizes
are reported in Figure 19. In this case, the speedup is lower than that obtained with the
parameter sweeping workflow. This is due to the fact that the four algorithms used require
very different amounts of time to complete their execution on a given dataset. In fact, the
overall execution time is bound to the execution time of the slowest algorithm, thus limiting
the speedup. However, the absolute amount of time saved by running the application on
a distributed environment is still significant, particularly for the largest dataset when four
computing nodes are used.

6. RELATED WORK

Other workflow systems have been proposed for Grid environments. However, most of them
are not specifically designed for distributed data mining applications. Among them the most
popular ones are Askalon [24], Kepler [25], Pegasus [26], Taverna [27], Triana [28], and
Weka4WS [29].

Askalon [24] is an application development and runtime environment for the Grid. Developed
at the University of Innsbruck, Austria, it uses a custom language called Abstract Grid
Workflow Language (AGWL) for describing Grid workflow applications at a high level of
abstraction. It has a Service Oriented Architecture (SOA)-based runtime environment with
stateful services and uses the Globus Toolkit as Grid platform.

Kepler [25] provides a graphical user interface and a run-time engine that can execute
workflows (with an emphasis on ecology and geology) either from within the graphical interface
or from a command line. It is developed and maintained by a team consisting of several key
institutions at the University of California. Kepler works based on the concept of directors,
which dictate the models of execution used within a workflow. It is a java-based application

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

26 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

that is maintained for the Windows, OS X, and Linux operating systems and freely available
under the BSD License.

The Pegasus [26] project, developed at the University of Southern California, encompasses
a set of technologies to execute workflow-based applications in a number of different
environments, i.e., desktops, campus clusters, Grids, and Clouds. The worfklow management
system of Pegasus can manage the execution of complex workflows on distributed resources
and it is provided with a sophisticated error recovery system.

Taverna [27] is an open source tool for designing and executing workflows, developed at the
University of Manchester. Its own workflow definition language is characterized by an implicit
iteration mechanism (single node implicit parallelism). The Taverna team has primarily focused
on supporting the Life Sciences community (biology, chemistry and medical imaging) although
it does not provide any analytical or data services itself. It supports different types of Web
services, including WSDL-based, Soaplab, BioMoby and BioMart services.

Triana [28] is a problem solving environment, developed at the Cardiff University, which
combines a visual interface with data analysis tools. It can connect heterogeneous tools
(e.g. Web services, Java units, JXTA services) on one workflow. Triana uses its own custom
workflow language, although it can use other external workflow language representations such
as BPEL4WS‡‡ which are available through pluggable language readers and writers. Triana
comes with a wide variety of built-in tools for signal-analysis, image-manipulation, desktop
publishing, etc.

Weka4WS [29] is a framework developed at the University of Calabria, to extend the
widely-used Weka toolkit [20] for supporting distributed data mining on Grid environments.
In particular, Weka4WS includes a Grid-enabled version of the Weka Knowledge Flow
environment, which allows the parallel and distributed execution of data mining workflows [30].
Weka4WS has been implemented by using WSRF and Globus Toolkit 4.

Differently from all the systems described above (except Weka4WS) that are designed
to support generic workflows with particular emphasis on e-science applications, DIS3GNO
has been specifically designed to support distributed data mining workflows. For this reason,
DIS3GNO provides features that are specific for modelling KDD applications, which facilitate
the domain-expert users. This includes specific metadata formalisms for representing and
searching data mining resources, and a KDD-oriented workflow checking that ensures the
design of consistent data mining applications.

Finally, DIS3GNO differs from the Weka4WS system, which is also KDD-oriented, because
it is more general and extendible. In fact, Weka4WS is specifically designed to support the
Weka data mining algorithms. DIS3GNO, on the contrary, can use every data mining algorithm
(including the Weka ones) provided that it has been previously published in the Knowledge
Grid system.

‡‡http://www.ibm.com/developerworks/library/specification/ws-bpel

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

KNOWLEDGE DISCOVERY WORKFLOWS IN DISTRIBUTED SYSTEMS 27

7. CONCLUSIONS

Workflows are effective formalisms to represent data and execution flows associated with
complex knowledge discovery processes and data mining tasks. The DIS3GNO system
described in this paper provides a set of visual facilities to design, program, and execute
distributed service-oriented data mining workflows in Grids.

The DIS3GNO GUI operates as an intermediary between the final user and the Knowledge
Grid, a service-oriented system for high-performance distributed KDD. All the Knowledge Grid
services for metadata and execution management are accessed transparently by DIS3GNO,
thus allowing the domain experts to compose and run complex data mining application without
worrying about the underlying infrastructure details.

The experimental evaluation carried out by executing some typical data mining patterns
has demonstrated the effectiveness of the DIS3GNO system to support knowledge discovery
workflows design and execution in distributed service-oriented environments. The DIS3GNO
system and the Knowledge Grid framework are available as open-source software from
http://grid.deis.unical.it/kgrid.

REFERENCES

1. Cannataro M. and Talia D. The Knowledge Grid. Communitations of the ACM, 46(1), 2003; 89–93.
2. Prodromidis A. L, Chan P. K, Stolfo S. J. Meta-learning in Distributed Data Mining Systems: Issues and

Approaches. In: Advances in Distributed and Parallel Knowledge Discovery, Kargupta H. and Chan P.
(Eds.). AAAI/MIT Press, 2000; 81–87.

3. Kargupta H, Park B, Hershberger D, Johnson E. A New Perspective toward Distributed Data Mining. In:
Advances in Distributed and Parallel Knowledge Discovery, Kargupta H. and Chan P. (Eds.). AAAI/MIT
Press, 2000; 133–184.

4. Tan P. N, Steinbach M, Kumar V. Introduction to Data Mining. Addison-Wesley, 2006.
5. Chen H.-Y, Hsiung M, Lee H.-C, Yen E, Lin S. C, Wu Y.-T. GVSS: A High Throughput Drug Discovery

Service of Avian Flu and Dengue Fever for EGEE and EUAsiaGrid. Journal of Grid Computing, 8(4),
2010; 529–541.

6. Natrajan A, Crowley M, Wilkins-Diehr N, Humphrey M. A, Fox A. D, Grimshaw A. S, Books III C. L..
Studying protein folding on the Grid: experiences using CHARMM on NPACI resources under Legion.
Concurrency and Computation: Practice & Experience, 16(4), 2004; 385–397.

7. Laganà A, Costantini A, Gervasi O, Faginas Lago N, Manuali C, Rampino S. COMPCHEM: Progress
Towards GEMS a Grid Empowered Molecular Simulator and Beyond. Journal of Grid Computing, 8(4),
2010; 571–586.

8. Andreeva J, Campana S, Fanzago F, Herrala J. High-Energy Physics on the Grid: the ATLAS and CMS
Experience. Journal of Grid Computing, 6(1), 2008; 3–13.

9. Lagouvardos K, Floros E, Kotroni V. A Grid-Enabled Regional-Scale Ensemble Forecasting System in
the Mediterranean Area. Journal of Grid Computing, 8(2), 2010; 181–197.

10. Faerman M, Moore R, Cui Y, Hu Y, Zhu J, Minster B, Maechling P. Managing Large Scale Data for
Earthquake Simulations. Journal of Grid Computing, 5(3), 2007; 295–302.

11. Moore R. Knowledge-based Grids. Proc. 18th IEEE Symposium on Mass Storage Systems and 9th
Goddard Conference on Mass Storage Systems and Technologies, 2001.

12. Congiusta A, Talia D, Trunfio P. Using Grids for Distributed Knowledge Discovery. In: Mathematical
Methods for Knowledge Discovery and Data Mining, Felici G. and Vercellis C. (Eds.). IGI Global, 2007;
284–298.

13. Talia D, Trunfio P. How Distributed Data Mining Tasks can Thrive as Knowledge Services.
Communications of the ACM, 53(7), 2010; 132–137.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

28 E. CESARIO, M. LACKOVIC, D. TALIA, P. TRUNFIO

14. Stankovski V, Swain M. T, Kravtsov V, Niessen T, Wegener D, Kindermann J, Dubitzky W. Grid-
enabling data mining applications with DataMiningGrid: An architectural perspective. Future Generation
Computer Systems, 24(4), 2008; 259–279.

15. AlSairafi S, Emmanouil F.-S, Ghanem M, Giannadakis N, Guo Y, Kalaitzopoulos D, Osmond M, Rowe
A, Syed J, Wendel P. The Design of Discovery Net: Towards Open Grid Services for Knowledge Discovery.
Int. Journal of High Performance Computing Applications, 17(3), 2003; 297–315.

16. Brezany P, Hofer J, Tjoa A. M, WoehrerA. GridMiner: An Infrastructure for Data Mining
on Computational Grids. Proc. APAC Conference and Exhibition on Advanced Computing, Grid
Applications and eResearch, 2003.

17. Mastroianni C, Talia D, Trunfio P. Metadata for Managing Grid Resources in Data Mining Applications.
Journal of Grid Computing, 2(1), 2004; 85–102.

18. Congiusta A, Talia D, Trunfio P. Distributed data mining services leveraging WSRF. Future Generation
Computer Systems, 23(1), 2007; 34–41.

19. Foster I. Globus Toolkit Version 4: Software for service-oriented systems. Proc. Conf. on Network and
Parallel Computing, 2005; 2–13.

20. Witten H, Frank E. Data Mining: Practical machine learning tools with Java implementations. Morgan
Kaufmann, 2000.

21. Van Der Aalst W. M. P, Ter Hofstede A. H. M, Kiepuszewski B, and Barros A. P. Workflow Patterns.
Distrib. Parallel Databases 14(1), 2003; 5–51.

22. Zhoud Z. H, Li M. Semi-supervised learning by disagreement. Knowledge and Information Systems 24(3),
2010; 415–439.

23. Ripeanu M, Iamnitchi A, Foster I. Mapping the Gnutella Network. IEEE Internet Computing, 6(1), 2002;
50–57.

24. Fahringer T, Jugravu A, Pllana S, Prodan R, Seragiotto Junior C, Truong H. L. ASKALON: A Tool Set
for Cluster and Grid Computing. Concurrency and Computation: Practice & Experience, 17(2–4), 2005;
143–169.

25. Altintas I, Berkley C, Jaeger E, Jones M, Ludascher B, Mock S. Kepler: an extensible system for design
and execution of scientific workflows. Proc. 16th International Conference on Scientific and Statistical
Database Management, 2004.

26. Deelman E, Blythe J, Gil Y, Kesselman C, Mehta G, Patil S, Su M.-H, Vahi K, Livny M. Pegasus:
Mapping Scientific Workflows onto the Grid. Proc. Across Grids Conference, 2004.

27. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock M, Li P, Oinn T. Taverna: a tool for building and
running workflows of services. Nucleic Acids Research, 34, 2006; 729–732.

28. Shields M, Taylor I. Programming Scientific and Distributed Workflow with Triana Services. Proc. GGF10
Workshop on Workflow in Grid Systems, 2004.

29. Talia D, Trunfio P, Verta O. The Weka4WS framework for distributed data mining in service-oriented
Grids. Concurrency and Computation: Practice & Experience, 20(16), 2008; 1933–1951.

30. Lackovic M, Talia D, Trunfio P. A Framework for Composing Knowledge Discovery Workflows in Grids. In:
Foundations of Computational Intelligence Vol 6: Data Mining Theoretical Foundations and Applications,
Studies in Computational Intelligence, Abraham A, Hassanien A, Carvalho A, Snel V. (Eds.). Springer,
2009.

Copyright c⃝ 2012 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2012; 00:0–0
Prepared using cpeauth.cls

