Following Soccer Fans from Geotagged Tweets at FIFA World Cup 2014

Eugenio Cesario ¹, Chiara Congedo ², Fabrizio Marozzo ³, Gianni Riotta ⁴, Alessandra Spada ², Domenico Talia ³, **Paolo Trunfio** ³,*, Carlo Turri ²

¹ ICAR-CNR & DtoK Lab, Italy
² Alkemy Lab, Italy
³ University of Calabria & DtoK Lab, Italy
⁴ Princeton University, USA

* paolo.trunfio@unical.it

ICSDM 2015

IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services July 8-10, 2015 – Fuzhou, P.R. China

Motivations and goals (1/2)

- In the past, understanding people behavior in a large-scale event was extremely difficult to catch
- Today, using geo-localized services of social media, we can analyze the behavior of large groups of people attending popular events
- Example: geotagged tweets can be used to understand users' mobility behaviors that are useful in travel route discovery
- Goal of this work: monitoring the attendance of Twitter users during the FIFA World Cup 2014 matches to discover the most frequent movements of fans

Motivations and goal (2/2)

- Data source: more than half million geotagged tweets posted from inside the stadiums during the 64 matches of the World Cup from June 12 to July 13, 2014
- Trajectory pattern mining was carried out to identify the most frequent movement patterns of Twitter users attending the World Cup matches
- Original results:
 - O Number of matches attended by fans
 - O Most frequent sequences of matches attended by fans, either in the same stadium or to follow a given soccer team
 - O Most frequent movement patterns obtained by grouping matches based on the phase in which they were played

Outline

- Trajectory pattern mining
- Definitions
- Analysis process
 - O Data acquisition
 - O Data pre-processing
 - O Data mining
 - O Results visualization
- Results
 - O Number of Matches Attended
 - O Frequent Sequences
 - O Aggregate Analysis
- Conclusions

Trajectory pattern mining

Definitions

- $S=\{s_1,...,s_{12}\}$: set of **stadiums**, where for each stadium s_i are known the four corner coordinates of the rectangle containing it
- $TW = \{tw_1, ..., tw_N\}$: set of **geotagged tweets**, where each tweet tw_i is described by the following properties:
 - \bigcirc user who posted tw_i
 - O latitude and longitude (of the place from where tw, was sent)
 - \bigcirc source (device or application used to generate tw_i)
 - O date and text
- $M=\{m_1, ..., m_{64}\}$: the 64 matches, where each match m_i is described by the following properties:
 - O stadium
 - O date
 - O team, and team, (the two teams playing the match)

Analysis process

- The analysis process is composed of four steps:
 - O Data acquisition, collecting the geotagged Twitter data
 - O **Data pre-processing**, cleaning, selection and transformation of data to make it suitable for analysis
 - O **Data mining**, analyzing pre-processed data to infer trajectory patterns
 - O Results visualization, making results readable and usable

Data acquisition

- Twitter REST APIs used to collect all the geotagged tweets posted during the World Cup matches
- Only tweets whose coordinates fallen within the area of stadiums during the matches

• About **526,000 tweets** collected from June 12 to July 13, 2014

Data pre-processing

- A three-step task:
 - Cleaned data by removing tweets with unreliable positions (e.g., tweets with coordinates manually set by users or applications)
 - 2. **Selected** only tweets written by users present at the matches, by removing *re-tweets* and *favorites* posted by other users
 - 3. Transformed data by keeping one tweet per user per match, as we were interested to know only if a user attended a match or not
- Final dataset **D** with about 10,000 transactions, each one containing the list of matches attended by a single user:

$$D = \{T_1, T_2, \dots, T_n\}$$

where $T_i = \langle u_i, \{m_{i1}, m_{i2}, ..., m_{ik}\} \rangle$ and $m_{i1}, m_{i2}, ..., m_{ik}$ are the matches attended by a Twitter user u_i

Data mining (1/2)

- Trajectory pattern mining to extract the most frequent movements of fans starting from D
- Trajectory pattern: sequence of geographic regions that emerge as frequently visited in a given temporal order
- The support of a trajectory pattern p (# of transactions containing p) is a measure of its reliability
- In our case, a frequent pattern fp with support s:

$$fp = \langle m_i, m_j, ..., m_k \rangle (s)$$

is an ordered sequence of matches m_i , m_j ,..., m_k where s is the percentage of transactions in D containing fp

Data mining (2/2)

- Pattern extraction algorithm:
 - O Compute the support of each match in **D**
 - O Iteratively:
 - Generate new candidate **k-match-sets*** and compute their support, using the frequent (k-1)-match-sets found in the previous iteration
 - Delete all the candidate match-sets whose support is lower than a given minimum support
 - O Terminate when no more frequent match-sets are generated

^{*}k-match-set = set of matches of cardinality k

Results visualization

Creation of Infographics for presenting the mobility patterns

- Main design guidelines:
 - O Visual representation of quantitative information
 - O Minimising the efforts necessary to decoding symbols

 Result: a visualization model helping readers to easily catch the key meaning of extracted knowledge

Results

- Three main categories:
 - O Number of matches attended by fans during the competition
 - O Most frequent sequences of matches attended by fans, either in the same stadium or to follow a given soccer team
 - O Most frequent movement patterns obtained by grouping matches based on the phase in which they were played

Results: Number of matches attended

No. of matches	Spectators
1	71.3%
2	16.0%
3	6.0%
4	3.0%
5 or more	3.7%

- 3.7% of the spectators attended five or more matches during the whole World Cup
- Twitter profiles of those who attended several matches, show that many of them were journalists

Results: Frequent sequences (1/4)

 General classification of the paths followed by fans who attended at least two matches:

No. of matches	Same stadium	Same team
2	62.9%	22.2%
3	48.8%	11.8%
4	41.0%	7.2%
5	37.0%	8.4%
6	33.7%	4.8%

 Results show that most of who attended multiple matches did it staying in the same city

Results: Frequent sequences (2/4)

 Most frequent 2-match-sets observed during the group stage, from June 12 to June 26, 2014

Results: Frequent sequences (3/4)

 Most frequent paths of fans who attended two or three matches of the same team during the group stage

Results: Frequent sequences (4/4)

 Specific analysis on the spectators of the opening match <Brazil-Croatia> played on in São Paulo

• At the end of group stage:

50.4% did not attend other matches

- O 13.7% moved to Rio de Janeiro to attend other matches
- 9.5% attended other matches in the same stadium

Results: Aggregate analysis (1/2)

- Goal: studying the movements of fans during the different phases of the competition
- Matches were grouped into the following phases:
 - Opening match (match no. 1)
 - OGroup stage (matches no. 2-48)
 - ORound of 16 (matches no. 49-56)
 - OQuarter finals (matches no. 57-60)
 - O Semi-finals (matches no. 61-62)
 - OFinal (match no. 64)

Results: Aggregate analysis (2/2)

 Patterns of movements based on the grouping above, and the relative frequency (support) of these patterns

 The relative frequency of each pattern is represented by a circle: the larger the circle, the higher the frequency

Conclusions

- Analysis of fans' movements during the FIFA World Cup 2014:
 An example of how social data analysis can be used to know how people behave in big events
- Social data applications can help the organization of future events, e.g. monitoring and management of key services like transports, security, logistics, and others
- This methodology can be re-used in similar scenarios to understand collective behaviours that are very hard to discover with traditional social analysis techniques

Questions?

Thank you!

