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Abstract—This paper presents “Self-Chord,” a peer-to-peer
(P2P) system that inherits the ability of Chord-like structured sys-
tems for the construction and maintenance of an overlay of peers,
but features enhanced functionalities deriving from ant-inspired
algorithms, such as autonomous behavior, self-organization, and
capacity to adapt to a changing environment. As opposed to the
structured P2P systems deployed so far, resource indexing and
placement is uncorrelated with network structure and topology,
and resource keys are organized and managed by self-organizing
mobile agents through simple local operations driven by prob-
abilistic choices. Self-Chord has three main features that are
particularly advantageous in Grid and Cloud Computing: 1) it
is possible to give a semantic meaning to keys, which enables the
execution of range queries; 2) the keys are fairly distributed over
the peers, thus improving the balancing of storage responsibilities;
3) maintenance load is also limited because it is not necessary
to reassign keys when new peers or resources are added to the
system—the mobile agents will spontaneously reorganize the
keys. The efficiency and effectiveness of Self-Chord were assessed
both with a simulation framework and with an analytical model
inspired by fluid dynamics.

Index Terms—Bio-inspired algorithms, cloud computing,
grid computing, multiagent systems, peer-to-peer (P2P),
self-organization.

I. INTRODUCTION

T HE information service is an important component of dis-
tributed computing systems, such as computational Grids

and Clouds, since it provides information about the resources
that can be used to build and run complex applications and en-
ables their discovery. Grids [1] use the resources of many net-
worked computers to solve large-scale computation problems
in multiple and heterogeneous domains. The large-scale and
dynamic nature of Grids make human administrative interven-
tion difficult or even unfeasible, and centralized information
services are proving unsuitable to scale to hundreds or thou-
sands of nodes. To tackle these issues, the scientific community
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has proposed to design information services according to the
peer-to-peer (P2P) paradigm, which offers better scalability and
adaptivity features [2]. A similar trend can be envisioned for the
recently emerged Cloud paradigm [3], which is switching com-
putation and storage responsibilities from the client size to the
“clouds,” i.e., to unseen computers on the server side, possibly
scattered across continents. This paradigm is already adopted
by Amazon for the on-demand provisioning of computing ca-
pacity and storage facilities, through Web services like the EC2
(Elastic Cloud Computing) and the S3 (Simple Storage Service).
Grid and Cloud issues are similar in many aspects [4], espe-
cially in the need to assure scalability in a dynamic environ-
ment. Therefore, P2P techniques are very likely to be adopted
in Clouds as they are today in Grids.
P2P models are classified into unstructured and structured

based on the way nodes are linked to each other and data about
resources is placed on the nodes [5]. In unstructured systems,
resources are published by peers without any global planning.
This facilitates network management, but reduces the efficiency
of discovery procedures. In structured systems, resources are as-
sociated to specific hosts, often through Distributed Hash Ta-
bles. For example, in Chord [6], each peer is assigned a bi-
nary code, or “key,” by a hash function, and peers are orga-
nized in a ring and ordered following the values of their keys.
Resources are also indexed by keys, and each resource is con-
signed to the peer that has the same key as the resource or, if
such a peer is not present in the ring, on the first following peer,
also called “successor.” Other structured P2P systems use dif-
ferent structures to organize the peers, but the basic principle is
the same: Every resource is assigned to a well-specified peer on
the structure. Structured systems are generally more efficient in
terms of search time and network load, but, with respect to un-
structured systems, can limit the expressiveness of discovery re-
quests—users are only allowed to search for specific resources,
but cannot issue complex or “range” queries. Moreover, struc-
tured systems may be difficult to administer in the case of high
churn rate because new or modified resources must be immedi-
ately (re)assigned to the corresponding peers.
Along with the P2P approach, another interesting and recent

trend is the design of self-organizing Grids [7], often inspired
by biological systems such as ant colonies and insect swarms.
Complex functionalities are achieved by mobile agents that
perform simple operations at the local level, but at the global
level engender an advanced form of intelligence that would be
impossible to obtain with centralized or human-driven strate-
gies. Bio-inspired techniques have already been exploited to
solve a number of complex problems, such as task allocation,
routing problems, graph partitioning, etc. [8]. Recently, these
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techniques have been proposed to design “self-structured” P2P
systems, so called because the association of descriptors to
hosts is not predetermined, but adapts to the modification of
the environment [9]–[11].
This paper, which is an extended and enhanced version

of a paper presented at the IEEE International Symposium
CCGrid 2009 [12], introduces Self-Chord, a P2P system that
inherits from Chord the ability to construct and maintain a
structured ring of peers, but features enhanced functionalities
achieved through the activity of ant-inspired mobile agents.
As opposed to Chord, Self-Chord decouples the naming of re-
sources and peers, resulting in two sets of keys/indices that can
have different cardinalities. Keys can be assigned to resources
depending on the requirements of every specific application
domain and on the desired granularity of resource categoriza-
tion, with also the possibility to give them a semantic meaning.
Moreover, Self-Chord does not place resource keys to specified
hosts, as Chord does; this feature is actually unnecessary and
limits the system flexibility. Conversely, Self-Chord focuses on
the real objective, which is the reordering of keys over the ring
and their fair distribution to the peers. Self-Chord agents move
resource keys across the ring and sort them in a self-organizing
fashion. The sorting of keys allows discovery operations to be
executed in logarithmic time, exploiting the pointers (the finger
tables) provided by the Chord structure.
The presented approach aims at opening a new research av-

enue for P2P frameworks because it combines the beneficial
characteristics of structured P2P systems with methods from
mobile agent and swarm intelligence technologies that offer sig-
nificant self-organizing properties and so far have only been ap-
plied to unstructured systems. In particular, Self-Chord features
the following benefits with respect to Chord.
1) In Self-Chord, there is no obligation to assign a key to
a well-specified peer. This feature enables the definition
of “classes” of resources—a class being defined as a set
of resources that share common characteristics and are
mapped to the same key value. A user can issue “class”
queries, i.e., explore the network to find resources be-
longing to a specified class and then select the most ap-
propriate for his/her purpose.

2) Structured systems like Chord can produce imbalance
problems depending on the location of peers and the
statistical distribution of the values of resource keys. In
Self-Chord, the keys are fairly distributed over the peers,
irrespective of the location of peers and the distribution
of key values.

3) In Chord, appropriate operations are necessary when a
peer joins the ring or when new resources are published:
These resources must be immediately assigned to the
peers whose indexes match the resource keys. These op-
erations are not necessary in Self-Chord because the mo-
bile agents are always active and will spontaneously re-
organize the keys. This assures scalability (keys are con-
tinuously reordered as the network grows) and robust-
ness with respect to environmental changes.

The main objective of this work is to show how the most pop-
ular structured system, Chord, can be enriched with self-organi-
zation and adaptive properties. However, the approach is easily

generalizable, as discussed in Section VI: Similar bio-inspired
algorithms can be defined for any other structured system, such
as CAN [13] and Pastry [14].
The paper also aims to be a step toward the mathematical

analysis of bio-inspired systems and swarm intelligence phe-
nomena. The modeling of these systems through fluid-like dif-
ferential equations has proved to be a valid approach. Indeed,
the results obtained by solving these equations are comparable
to those obtained with an event-based simulator and with a Java
prototype available at the Web site http://self-chord.icar.cnr.it.
The rest of the paper is organized as follows. The following

section gives an overview of Self-Chord and compares the re-
sults obtained with simulation and with the analytical model.
Section III gives the details about the self-organizing technique
that allows resource keys to be reordered and fairly distributed
to the peers. Section IV shows the results of simulation experi-
ments that confirm the effectiveness of Self-Chord in large net-
works, with particular emphasis given to the performance of
discovery procedures and to important features such as scala-
bility, load balancing, and dynamic behavior. Section V summa-
rizes the benefits of the bio-inspired approach adopted by Self-
Chord with respect to classical structured systems like Chord.
Section VI discusses the state of the art in the fields of interest.
Section VII concludes the paper.

II. SELF-CHORD

A. Basic Model
In Self-Chord, peers are organized in a logical ring. Each peer

is given an index, having bits, which is obtained with a uni-
form hash function and can have values between 0 and .
The ring is constructed and maintained as in Chord (see [6]
for the details). Each resource is associated with a binary key,
having bits, which will be used to discover and access the
resource. The number of possible values of the resource key,

, can be viewed as the number of classes in which the
resources are categorized. A class is defined as a set of resources
having a specified set of characteristics and is therefore associ-
ated to the same value of the key. The values of resource keys
can be obtained in two ways. The first is through the use of a lo-
cality preserving hash function [15], which assures that similar
keys are associated to similar resources. Alternatively, resource
keys can be given a semantic meaning: For example, the value
of each bit may indicate the presence/absence of a specific topic
[16], if the resource is a document.
In Chord, and must be set to the same value because

there is a precise association between resources and peers.
Conversely, in Self-Chord, the values of and can be
set independently: The granularity of resource categorization
may be chosen depending on the specific application domain,
without any constraint related to the range of peer indexes.
Consequently, there is no obligation to assign a key to the
peer having the same index, or to its successor, as in Chord.
However, to inherit the efficiency of resource discovery oper-
ations offered by Chord, the resource keys must be ordered on
the ring. While in Chord, ordering is the outcome of a global
planning, in Self-Chord it is obtained by the operations of
ant-inspired agents that move the resource keys across the ring.
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Fig. 1. Distribution and ordering of resource keys in the Self-Chord peers.

Ordering is performed through the concept of peer centroid.
This is defined as a real value, between 0 and , which mini-
mizes the average distance between itself and all the keys stored
by the current peer and by the two adjacent peers on the ring.1
For example, with , a peer that stores three keys with
values {4,6,8} (assuming for simplicity that the two adjacent
peers do not store any key) has a centroid equal to 6. With an-
other example, a peer that stores two keys with values {63, 0}
has a centroid equal to 63.5. The value of the centroid is an in-
dication about the keys stored in the local region of the ring and
is used by agents to order keys. In fact, the agents tend to move
each key to the peer whose centroid is as close as possible to
that key.
Fig. 1 gives an example of the way resource keys are ordered

on the ring. The values of and are respectively equal to
6 and 3. At the interior of the ring, the figure specifies the in-
dexes of the peers, whereas at the exterior it reports, for each
peer, the keys stored by the peer (only the first three keys are
shown for simplicity) and the peer centroid . It can be noted
that the values of the centroids are ordered increasingly in clock-
wise direction as well as the keys stored in successive peers.
Moreover, there is no relation between the resource keys and
the peer indexes, owing to the self-organizing and “self-struc-
tured” approach used by Self-Chord. Indeed, the peer indexes
are ordered by the Chord management operations, whereas the
resource keys are ordered by agents in an independent fashion.
The agents do not operate forever, but are generated and die as

the ants to which they are inspired. Each peer of the ring, at time
of its connection to the network, generates a mobile agent with
a given probability . The lifetime of this agent is randomly
generated with a statistical distribution whose average is related
to the average connection time of the connecting peer, calcu-
lated on the past activity of this peer. Therefore, the turnover
rate and the average number of operating agents are related to
the dynamic characteristics of the network, i.e., to the frequency
1Key values are defined in a circular space, in which value 0 succeeds value

: The distance between two values is defined as the length of theminimum
circle segment that separates these values.

of peer joinings and departures. Specifically, if the average con-
nection time of all the peers is , and the average lifetime of
agents is , the average number of agents that circulate
in the network at a given instant of time is associated with the
average number of peers present in the network at a time, ,
in the following way:

(1)

This statistical relationship does not imply that any peer must be
aware of the values of and . However, it can be used to
tune the speed of the reordering process and the traffic load. For
example, if each agent is given a lifetime equal to the average
connection time of the peer that generates it, on average it results
that , therefore the average number of agents is

times the average number of peers connected to the ring.
After a transient phase, the keys will be ordered on the ring,

and the obtained order is robust with respect to successive mod-
ifications of the environment, for example to peers’ connections
and disconnections. This ordering allows Self-Chord to rapidly
serve discovery requests, as a query can move across the ring to-
ward the desired key. Discovery procedures exploit Chord-like
finger tables in order to assure logarithmic discovery times, as
will be explained in Section IV.

B. Operations of Self-Chord Agents
Each mobile agent gives its contribution to the reordering of

resource keys on the ring. Two different approaches are dis-
cussed in the following. They will be referred to as “linear”
and “logarithmic,” respectively. We start by presenting and dis-
cussing the first approach.
According to the linear ordering, resource keys are always

moved by agents between adjacent peers. Each agent periodi-
cally hops from a peer to its predecessor or successor, depending
on the agent being left-handed or right-handed. When an agent,
which currently does not carry any key, moves to a new peer,
it must decide whether or not to take a key out of the visited
peer. On the assumption that the centroid of the current peer
is and the agent is right-handed, the agent examines only the
keys whose value is higher than because these keys should
be moved to successor peers to improve the overall ordering.
These keys are identified by evaluating the condition

(2)

Conversely, a left-handed agent, which will move toward pre-
decessor peers, evaluates the keys that satisfy

(3)

All calculations must take into account the circular ordering
of peer and resource keys. To make the following discussion
more fluent, this assumption will be given for granted. For ex-
ample, conditions (2) and (3) can be simplified respectively to

and .
To foster the correct ordering of keys, it is convenient to pick

keys that are very different from the peer centroid, while keys
that are similar to it are probably already placed in the correct
place. Therefore, the probability of taking a key is defined
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to be inversely proportional to the similarity between and the
peer centroid . Accordingly, the similarity function and
the take probability of resource at time in peer are

(4)

with (5)

where is the distance between and the centroid of ,
computed on the circular space of the keys. For example, with

, the distance between 12 and 18.7 is equal to 6.7;
the distance between 3 and 63.5 is 3.5. The value of is
comprised between 0 (maximum diversity between and the
centroid of ) and 1 (maximum similarity).
With high probability, the agent picks a key whose value is

distant from the peer centroid. This key is carried by the agent
and moved toward successor or predecessor peers, depending
on the agent being right-handed or left-handed.
When, at time , an agent that is carrying key moves to a

new peer , it decides in a probabilistic fashion whether or not
to leave the key on this peer. The leave probability, , is
defined regardless the type of agent, left- or right-handed, and is

with (6)

where is the key carried by the agent and the similarity func-
tion is computed as in expression (4).
As opposed to the take probability, the leave probability is di-

rectly proportional to the similarity between and , therefore
the agent tends to leave a key if it is similar to the other keys
stored in the local region of the ring. Clearly, this behavior con-
tributes to the correct ordering of keys, which is also guaranteed
by the fact that the centroid of a peer is calculated not only on
the keys stored in the peer itself, but also on the keys stored by
the two adjacent peers.

C. Steady-State Distribution of Keys

In order to evaluate the steady-state distribution of keys and
centroids’ position, wemodel the system evolution through a set
of differential equations. The equations describe the dynamic
evolution of the number of keys in the peers and are based on
the assumption that the keys can be identified by continuous
variables in . Being typically large, this assumption
has a marginal impact on the results.
Let denote the probability density function (pdf) of

keys in peer at time . Also, let be the arrival rate of an
agent at a peer, and and denote the nor-
malized arrival rate of agents carrying key at time in peer
, where and indicate the right-handed (clockwise) or
left-handed (counterclockwise) rotation direction of the agent,
respectively. The take probability for key at time in peer
are denoted by and , again for right-handed
and left-handed rotating agents, while the leave probability is
indicated by and does not depend on the agent rotation
direction. Finally, is the centroid of peer at time .
The equations describe the evolution of the arrival process of

agents at the peers and of the distribution of keys in the peers.

Equations for and : For the clockwise agent direction,
we can write the following differential equation representing the
evolution of the agent arrival rate in time:

(7)
The first term in the equation describes the fact that an agent
may leave peer with key if it was carrying and was not
left in ; the second term represents the departure of an agent
that takes from . Similarly, for the counterclockwise agent
direction, we have

(8)
The keys distribution is the combination of the arrivals of agents
and take and leave probabilities according to the following
equation:

(9)

Computation of the Centroids: The value of peer centroid
depends on the distribution of the keys in this and in the two
adjacent peers. satisfies the following expression:

(10)

in which , as before, is the distance of from the cen-
troid of at time , and and denote, respectively, the
successor and the predecessor peer of .
The results obtained by solving the differential equations of

the described model were compared to those of an event-based
simulation. The simulator is derived from an object-oriented
framework already adopted to evaluate the performance of a
number of different distributed systems [9], [17]. In this ver-
sion, objects are used to model the peers and the mobile agents
that travel the network and perform the operations described in
Section II-B.
We start by comparing the model and simulation results for

a sample scenario in which (resources are distributed
among classes), (peer indexes are defined
over 12 bits), and the number of peers actually connected in the
ring is . The average number of resources published
by a peer, referred to as , is set to 10. Fig. 2 reports the
centroid value of each peer with the model and the simulation
in a steady situation. As expected, the centroid values are or-
dered and uniformly spaced, which proves the corresponding
ordering of keys over the ring. Observe also that the model is
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Fig. 2. Comparison between the analytical model and simulation results. Posi-
tion of the centroids, with and .

TABLE I
COMPARISON BETWEEN THE ANALYTICAL MODEL AND THE SIMULATION

RESULTS: MEAN AND STANDAND DEVIATION OF THE DISTANCE
BETWEEN KEYS AND CENTROID IN A PEER

very accurate, whereas simulation results show small fluctua-
tions with respect to model values. To explain this, it must be
considered that the model is a first-order approximation of the
system dynamics.
The mean and standard deviation of the distance between the

keys of a peer and the corresponding centroid were also eval-
uated. Table I reports the comparisons between simulation and
analytical model for some scenarios with different values of
and . Results are averaged over the peers. Again, the results
are similar and prove that the keys stored in a peer are always
very close to the value of the peer centroid, which is essential to
guarantee an effective resource discovery, as will be shown in
Section IV. Notice that the difference between simulation and
model results decreases as the size of the system increases. In
all the tested scenarios, with both model and simulation, the av-
erage distance between the centroid values of two consecutive
peers is , which confirms that the centroids are correctly
ordered.

III. LOGARITHMIC ORDERING OF KEYS

To speed up the ordering phase, we propose the following
modification to the agents movement. Agents move as described
above (namely “linearly”) only when they are not carrying any
key, and in the same way, they perform the take operation. How-
ever, once an agent has taken a key from a peer, it moves directly
to the region of the ring where this key should be deposited.
In other words, it jumps toward the peer whose centroid is as
close as possible to the carried key. To calculate the length of

the jump, the agent exploits the fact that the peers are already or-
dered (based on the results of a hash function, as done in Chord)
and the resource keys are also being ordered, even if these two
orderings are not dependent on each other.
In detail, the agent first calculates the difference in the

arithmetic modulo , where is the value of the carried key
and is the centroid of the current peer. Then, it makes a pro-
portion between this distance, calculated in the space of resource
keys, and the distance between the current peer and the “des-
tination” peer , calculated in the space of peer indexes2

(11)

Accordingly, the agent jumps to a peer whose index is as close
as possible to

(12)

To do this, the agent exploits the finger table of . In Chord,
the th finger of peer , denoted by contains the
index of the first peer, , that succeeds by at least along
the Chord ring clockwise, namely ,

. The finger table is used by Chord to speed up the
discovery requests and serve them in a logarithmic time since,
at every jump of the search message, the search space is actually
halved. Note that the cost of the finger-table creation is marginal
as compared to the cost of key distribution.
Self-Chord uses a bidirectional finger table, in which fin-

gers are also directed to the peers that precede the current peer
in the counterclockwise direction. A reverse finger, denoted as

, points to the peer
, . This reverse finger structure is symmet-

rical to that used by Chord and can be easily maintained at the
cost of doubling the storage memory. A similar structure has
been defined in [18] and analyzed to evaluate the performance
improvement that can be obtained for the discovery operations.
The agent selects the peer of the finger table whose index is

the closest to and exploits the corresponding finger pointer
to get to that peer. At this point, the agent evaluates the “leave”
operation, in the same fashion as with the linear approach. If the
key is actually deposited, the agent will start again to move in a
linear fashion and hop to the successor or predecessor peer until
it will take another key. If the leave operation is not performed,
the agent will make another “logarithmic” jump, trying to ap-
proach the region of the ring where the carried key should be
deposited.
The reason why the reverse finger table must be defined can

now be easily explained. While in Chord it is always possible to
choose a finger that points to a peer whose index is not greater
than the target peer, this cannot be assured in Self-Chord, as the
placement of keys over the ring is based on the statistical agent
operations instead of a well-defined assignment pattern. If only
the forward finger table were available, an agent that overcomes
the target peer in the clockwise direction could not move back-
ward, but would be obliged to perform another round trip in the
2In formula (11), is the number of potential index values that can be as-

signed to a peer, and is equal to .
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clockwise direction to return to the target peer. With a bidirec-
tional finger table, a key can be moved in both directions, so this
problem does not occur. Intuitively, the logarithmic approach is
much faster than the linear one, as a key is moved through much
longer and better directed hops. On the other hand, the linear ap-
proach allows a fairer load balance among peers to be achieved.
This issue is discussed in the following.

A. Comparison Between Linear and Logarithmic Approaches

The linear and logarithmic approaches were evaluated with
the event-based simulator for a scenario in which
(resources are distributed among classes),
(peer indexes are defined over 12 bits), and the number of
peers actually connected in the ring is . The average
number of resources published by a peer, referred to as ,
is set to 10. At the beginning, the resource keys are distributed
randomly, then they are ordered through the operations of
Self-Chord agents. In particular, each peer issues an agent,
left-handed or right-handed with the same probability. The
connection time of a single peer is distributed with a Gamma
probability function. Each peer has a different average connec-
tion time, and the global average for all the peers, , is set
to 5 h. The average lifetime of an agent is set to the average
connection time of the peer that generates the agent. After
receiving an agent, a peer forwards it to another peer, according
to one of the policies defined above, after a random interval

. Since the Self-Chord procedures can be accelerated or
decelerated by tuning the value of , this parameter will be
used as a time unit, and the performance results versus time
will be reported accordingly. The parameters and , used in
expressions (5) and (6), are respectively set to 0.3 and 0.9.
To evaluate the effectiveness of agent operations, we consider

the distance (in the space of resource keys) from the centroids
of every two consecutive peers and compute the mean and the
standard deviation. In fact, when the keys are correctly ordered
across the ring, the centroid values of the peers should be or-
dered and equally spaced, and the distance between any two
consecutive centroids should always be comparable to .
Therefore, the average of this distance should be about ,
and the standard deviation should go to zero.
Fig. 3 shows that, starting from a state with maximum dis-

order at time 0 and owing to agent operations, the mean of the
centroid distance decreases from very high values to values that
are almost equal to the theoretical value , confirming the
capacity of the Self-Chord algorithm to order the keys on the
ring. However, the velocity of the reordering process is very dif-
ferent when using the linear or the logarithmic approach. With
the latter, reordering is achieved after about 3000 time units. To
obtain the value in seconds, the number of time units must be
multiplied by the agent forwarding time . This result shows
that Self-Chord is able to reorder the keys in an acceptable time
even starting from a very unfortunate (and unrealistic) situation,
in which all the peers join the system at the same time and, since
resource keys are assigned with a uniform hash function, the
disorder is maximum. In a real system, the peers join the ring
gradually, and the new keys are positioned by agents among a
large number of keys that are already correctly sorted, which is
a much easier task. This gradual sorting process is much faster,

Fig. 3. Average distance between two consecutive centroids with linear and
logarithmic approaches.

and a new key can be moved to the correct peer in logarithmic
time. This issue will be better analyzed in Section IV-C. On the
other hand, with the linear approach, the process takes about
30 000 time units, a time interval 10 times longer. Of course, the
difference between the two approaches increases with the size
of the system, i.e., with the number of peers and/or the overall
number of keys that must be ordered.
The figure shows that the linear reordering process experi-

ences periods in which the average centroid distance is stable,
interleaved by abrupt changes. The reason for this behavior is
that in the transient phase the keys are only partially ordered
over the ring and the centroid values do not complete a single
circle over the whole ring, but instead two or more circles.
The reordering process progressively lowers the number of
circles until it is reduced to 1, which corresponds to a correct
and complete ordering. Each partial ordering with more than
one circle creates an equilibrium state that the agents take
some time to force, which explains the time intervals in which
the average distance between consecutive centroids is almost
constant. However, as the agents manage to achieve a transition
from circles to , an abrupt reduction in the average
centroid distance is experienced.
Unfortunately, the logarithmic approach has an important

drawback concerning the distribution of load among the peers.
With the linear approach, each peer receives agents exclusively
from the two adjacent peers, and therefore all the peers tend to
store the same number of keys. Conversely, with the logarithmic
approach, an agent that is carrying a key is obliged to use the
peer finger table in its movements on the ring. However, it is
known that the number of fingers that “point” to a given peer is
not a constant, but depends on the indexes of this peer and its
neighbors on the ring. In fact, peer indexes are not uniformly
distributed over the ring: If a range of admissible index values
is considered, the number of connected peers whose indexes
are comprised in this range has a logarithmic distribution [6]. A
peer is pointed by a large number of fingers if it is the successor
(or predecessor) of a large number of indexes—in other words,
if it is the first peer after a long range of indexes that are not
assigned to any peer in the network. This imbalance in the
number of inward fingers causes a corresponding imbalance in
the number of agents delivered to the peers through the fingers
and—since each of these agents carries a key that may be
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Fig. 4. Standard deviation of the number of keys stored by a peer with linear
and logarithmic approaches.

deposited with a leave operation—in the number of keys that
are stored by peers.
This is confirmed by the results in Fig. 4, which show the

standard deviation of the number of keys stored by a peer (the
mean of this variable is equal to 10, the average number of re-
sources published by a peer). In a steady situation, the value of
this index fluctuates around a value of 4.0 in the case of linear
ordering, whereas it approximately doubles with logarithmic
ordering. This confirms that the logarithmic ordering does not
guarantee a good load balance among the peers.

B. Switch Between Logarithmic and Linear Approach

The best solution seems to be an approach that combines the
rapidity of logarithmic ordering with the fair load distribution
assured by linear ordering. This can be achieved by starting the
ordering process in the “logarithmic mode” in order to rapidly
reorder the resource keys and, after the largest part of the re-
ordering process has been performed, switching it to the “linear
mode” to better distribute the keys among the peers.
The switch between the two modes must be performed by

every peer only on the base of local information. Each peer
knows the value of , but in general does not know the value
of , the number of peers of the network. Therefore, a peer
cannot base its decision on the average distance between con-
secutive centroids in a local sector of the ring and on its prox-
imity to the theoretical value . However, it is observed
that this value decreases with time, with a slope that is high at
the beginning and then lower and lower as the curve approaches
the mentioned value of , as shown in Fig. 3. Therefore,
the derivative of the centroid distance can be used to perform
the switch locally: The analysis of the derivative can be done
without any knowledge on the system global state.
To estimate this derivative, each peer maintains a variable

that is updated every time interval—in our tests every 5min—as
follows:

(13)

(14)
(15)

The term defined in expression (13) is the difference between
the current and the last value of the average distance between

Fig. 5. Average distance between two consecutive centroids with linear, loga-
rithmic, and combined approach.

consecutive centroids, evaluated in a local sector of the ring.
The considered centroids are the centroid of the peer itself and
those of a small number of neighbor peers in the two directions.
The difference is then normalized over the number of resource
classes . Since the derivative of this index is generally neg-
ative (the average distance between consecutive centroids de-
creases), the initial value of is set to a negative value, . For
successive calculations of , the contribution of the past values
is weighed through the evaporation factor . The switch from
the logarithmic mode to the linear mode is performed as the
value of exceeds a given threshold that is close to zero.
The fact that the threshold is exceeded is an indication that the
derivative is approaching a null value and that the average cen-
troid distance is getting stable. This means that the ordering
process is nearly completed and it is convenient to pass to the
linear mode in order to better distribute the keys among the peers
of the system.
The choice of the algorithm mode is performed as follows:

Each peer initially sets its mode to “logarithmic,” then it
switches to “linear” as soon as the mentioned threshold for
is exceeded. When an agent carries a key, it moves according
to the mode that is set on the current peer until it drops the key.
As the ordering process proceeds, the peers will gradually pass
to the linear mode, and so will the agents.
Figs. 5 and 6 compare the average centroid distance and the

standard deviation of the number of keys per peer over the whole
network and compare the results obtained with the logarithmic,
the linear, and the combined process described so far. It is no-
ticed that the switch mechanism accomplishes its purpose since
the reordering process is nearly as fast as with the logarithmic
mode and, as the peers switch from logarithmic to linear, the
load is balanced as if the linear mode were used from the be-
ginning. For this test, the parameters for the calculus of the
derivative were set as follows: , , and

. The local centroid distance was calculated over a
local sector of seven peers. It is worth noting that the setting of
these values is not very sensitive: The only effect that can de-
rive from a small variation of one or several of these is that the
switch of peers can be anticipated or delayed. This can reduce
or extend the transient phase, but has hardly any effect on the
behavior of the system in the steady situation.
To better illustrate the switch process, Fig. 7 shows the trend

of the parameter, averaged over all the peers, and in parallel
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Fig. 6. Standard deviation of the number of keys stored by a peer, with linear,
logarithmic, and combined approach.

Fig. 7. Analysis of the combined approach. Parallel trend of the number of
peers that have switched to the linear mode and of the value of the parameter,
averaged on all the peers.

the number of peers that have already switched to the linear
mode. It is noticed that the largest part of peers operates its
switch when the average value of is around the threshold
value, that is, 0.01.
An important issue to consider is how to manage new re-

source keys, for example those published by the peers that
join the network. To speed up the correct placement of new
keys, the agents that carry them use the logarithmic mode for a
limited amount of time, irrespective of the mode of the peers
that they traverse. This techniques will be better discussed in
Section IV-C.

IV. PERFORMANCE ANALYSIS OF SELF-CHORD
So far, all the tests were performed with a limited number of

peers because the linear approach is very slow with
a very large number of peers. In this section, however, the
combined approach is adopted for all the tests, with the mode
switch mechanism described in Section III-B. This allows re-
sults to be obtained with larger and more realistic networks.
In the tests, the number of resource classes is set to 1024,

which corresponds to a number of bits in resource keys, ,
equal to 10. The parameters , , and are set as in

Fig. 8. Average distance between two consecutive centroids with 1024
resource classes and variable number of peers.

Fig. 9. Convergence time for different network sizes.

Section III-A: Their respective values are 1.0, 10 resources per
peer, and 5 h. The parameters and are set to 0.3 and 0.9.
The average lifetime of an agent is set to the average connection
time of the peer that generates the agent: From formula (1), the
number of agents that travel the network is on average equal to
the number of connected peers. Note that these settings do not
influence the behavior of Self-Chord in the steady situation, but
can only affect the transient phase: For example, a larger number
of agents would reduce the duration of the transient phase.

A. Scalability Analysis

This section presents simulation results obtained with a vari-
able number of peers ranging from 256 to 4096. Fig. 8 shows
the trend of the average distance between consecutive centroids.
In all the experiments, reordering is performed correctly, which
is confirmed by the fact that this index tends to , the value
corresponding to an equally spaced ordering of centroids. Of
course, the time needed to reorder the keys increases with the
number of peers. This is better shown in Fig. 9, which reports the
trend of the convergence time, defined as the time at which the
average centroid distance falls within the range ,
with respect to the number of peers. The values in Fig. 9 are ob-
tained by taking the average from 20 simulation runs.
Fig. 10 reports the distribution of the relative distance be-

tween the keys and the centroids of the peers on which these
keys are located in a network with 4096 peers in a steady con-
dition. This figure shows that the value of the large majority of
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Fig. 10. Distribution of keys with respect to the peer centroid.

the keys is very close to the peer centroid: The number of pos-
sible key values is , but the difference between the
value of a key and that of the respective centroid is very rarely
larger than 5. This means that a discovery procedure, issued to
search the keys with a specific value, can be very effective if the
query message is directed to a peer in which the centroid value
is as close as possible to the target key value. In fact, almost all
the keys having the desired value can be found on this and in a
few adjacent peers.
Performance of Discovery Requests: The ordering of

keys over the Self-Chord ring is profitably exploited by the
discovery procedure: At each step, the query message is for-
warded through the finger tables to the peer whose centroid is
estimated to be the closest to the target key value. As with the
logarithmic ordering approach, the destination peer is selected
by making a proportion between the resource keys and the peer
indexes [see expressions (11) and (12)]. If the centroid of the
destination peer is found to be closer to the target key than to
the centroid of the current peer, the query message is forwarded
to the destination peer, and the discovery procedure continues.
Whenever this condition is not satisfied, or the destination
peer coincides with the current peer, the discovery procedure
terminates.
The number of steps needed to reach the target peer is loga-

rithmic with respect to the number of peers since each step al-
lows the search space to be approximately halved, as in Chord
[6]. Fig. 11 reports the average, the 1st and the 99th percentile of
the path length, defined as the number of steps/jumps performed
by a search message. Here, it is worth recalling that the average
number of steps experienced in Chord is equal to
[6], but it is reduced to in [18] in consequence
of the presence of the reverse finger table. Fig. 11 shows that,
also in Self-Chord, the average number of steps is always very
close to . Moreover, the 99th percentile is lower
than , meaning that the search process is very fast also in
the most unfortunate cases.
Fig. 12 shows the mean number of keys discovered by a

search request for different values of . The assumption is
that a search message, after completing its path, retrieves all
the keys having the desired value that are located on the current

Fig. 11. Path length of discovery requests: average, 1st, and 99th percentile.

Fig. 12. Average number of target descriptors discovered by a query versus
time, with variable number of peers.

peer and on four adjacent peers, two on the left and two on the
right. Indeed, owing to the statistical nature of the reordering
process, it is possible also that these neighbor peers store a sig-
nificant number of keys having the desired value. In Fig. 12, the
number of discovered keys is reported versus time: It can be ob-
served that this index gradually increases as the agents relocate
the keys. It is also noticed that the steady value is comparable to

. In fact, this is the average number of keys of a
specific class that are published in a network having peers, in
the case that is the average number of resources published
by a peer (10 in these experiments) and is the number of
resource classes (1024). In conclusion, the discovery procedure
successfully discovers nearly all the keys that have the desired
value.

B. Nonuniform Distribution of Keys
So far, the performance of Self-Chord has been analyzed

under the assumption that the values of the keys associated
with the resources are distributed uniformly. This assumption
is generally valid in the case that the keys are computed with a
hash function, but still there can be very popular resources that
map to the same key. Moreover, in Self-Chord, a resource key
can have a semantic meaning: For example, if the resource is a
document, a bit of the key can express the fact that a document
focuses or not on a given topic. In a case like this, some key
values can be more frequent than others. The self-organization
of keys performed by Self-Chord agents allows the load to be
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Fig. 13. Example of a nonuniform distribution of keys: the triangular distribu-
tion. With the number of resource classes set to , is the most frequent
key value.

fairly balanced among the peers, even in the case of nonuniform
distribution.
A set of experiments was performed assuming that the key

values are distributed with a triangular distribution. More
specifically, if the number of admissible key values is , it is
assumed that is the most frequent value, whereas values
0 and are the least frequent. Fig. 13 shows the pdf of the
triangular distribution that is obtained with these assumptions.
In classical structured P2P systems, a nonuniform distribution

of keys produces a nonuniform balance of load. In Chord, for ex-
ample, under the described triangular distribution, the peer with
index would store a large number of keys since it would
be assigned the keys of the most popular resources. Conversely,
Self-Chord distributes the keys to the peers in a fair fashion,
with every distribution of keys. In the case of nonuniform dis-
tribution, the most popular keys are placed by the agents on sev-
eral adjacent peers so that no peer is given the responsibility of
storing a large number of keys. The consequence is that the cen-
troids of the peers that store the most popular keys are close to
each other since the stored keys are similar. This phenomenon
is shown in Fig. 14, which reports the centroid values of all the
peers, in a network in which and are both equal to 1024.
The first peer on the x-axis is the one that has the lowest centroid
value, and the other peers are taken from the ring following the
clockwise direction. The trend of the figure confirms that many
peers have centroid values that are close to the most frequent
key, , in this case equal to 512, while fewer peers have
centroids with values close to infrequent keys.
The distribution of the number of keys stored in a peer con-

firms the fair balance of load. The average, the 1st, and the 99th
percentile of this index were found to have the same values with
both the uniform and the triangular distribution of keys and are
equal to 10, 2, and 22, respectively. The improvement versus
Chord is considerable. For example, the 99th percentile calcu-
lated in Chord under the uniform assumption and reported in
[6] is about 50, compared to the value of 22 experienced in
Self-Chord. With a nonuniform distribution, an acceptable load
balance can be maintained in Chord only by defining additional
structures, specifically with the use of a number of virtual nodes
on each real peer. Self-Chord does not need any superstructure
to achieve a fair load balance.

Fig. 14. Centroid values of peers. The first peer reported in the x-axis is the one
with the lowest centroid value. The others are taken from the ring following the
clockwise direction.

Fig. 15. Path length of discovery requests: average, 1st, and 99th percentile
calculated with uniform and triangular distributions of keys and a variable value
of .

In Section IV-A, it was mentioned that the resource discovery
algorithm estimates the index of the destination peer to which
a query message is forwarded. However, if the distribution of
keys is not uniform, the destination peer could have a different
centroid value than the estimated one. Therefore, a set of exper-
iments was run to assess the performance of the discovery pro-
cedure in the case that the key distribution is triangular. Fig. 15
reports the average, 1st, and 99th percentile of the number of
steps made by search messages and compares the values ob-
tained with the uniform and the triangular distributions of keys.
The comparison shows that an inaccurate estimation of the cen-
troid value of the destination peer, due to nonuniform distribu-
tion of keys, is rapidly compensated by a few more steps of the
search message: The path length of search messages is still log-
arithmic with respect to the number of peers.

C. Dynamic Behavior

Self-Chord has an important advantage versus Chord also in
terms of network and processing load. In a structured system
like Chord, the keys of new resources—for example, those
published by new or reconnecting peers—must be immediately
placed in specified hosts; this can originate a high load if
many resources are published in a short interval of time. In
Self-Chord, the load is invariant because a new peer does not
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need to perform any additional operation (besides the oper-
ations related to the overlay management, such as the finger
table creation). The keys of the new resources will be picked
by the agents that pass by this peer. The processing load
can be defined as the average number of agents per second
that arrive and are processed at a peer. can be calculated by
multiplying the average number of agents by the frequency
of their movements , so obtaining the number of times
per second that an agent arrives at any peer, and then dividing
the result by the average number of peers to get the number
of times per second that an agent arrives at a specific peer

(16)

The simplification is given by applying expression (1) in the
case that is approximately equal to .
For example, if the average value of is equal to 5 s, and
is set to 1.0, each peer receives and processes about one

agent every 5 s, which is an acceptable load since take and leave
operations are very simple. This result, obtained theoretically,
was confirmed by simulation. Note that the processing load does
not depend on the frequency of peer joinings and disconnec-
tions, the network size, nor the average number of resources
published by a node, which confirms the scalability properties
of Self-Chord.
To speed up the correct displacement of the keys of new re-

sources, they are moved by agents using the logarithmic ap-
proach. Specifically, an agent that picks a “new” key uses the
finger table to jump to the next peer, even if the current peer
has already switched to the “linear” mode (see Section III-B).
In fact, the linear mode would oblige the agent to carry the key
through all the intermediate peers before depositing it in the cor-
rect peer. This functionality is easily obtained: A counter is set
on every new key, and it is used to make the agents move the
key with the logarithmic mode for a fixed number of times. To
assure that the key is placed in the correct peer in logarithmic
time, it suffices to set the counter to a value equal or larger than

. Of course, if the value of is not known, which is
the general case, it can be overestimated by the peers in order
to set the counter to an appropriate value.
The results discussed so far showed that the Self-Chord

agents can reorder the keys starting from a completely disor-
dered network. Normal circumstances are much less stressful:
If the network grows gradually, the correct sorting of the keys
can be kept with a few agent operations that move the new
keys to the correct place of the ring. However, a set of specific
experiments was performed to evaluate the dynamic behavior
of Self-Chord in more disadvantageous situations: Once the re-
ordering process has reached a steady condition, a perturbation
is generated by simulating the simultaneous arrival of a large
number of new peers, each with 10 new resources on average.
The initial number of peers is set to 1024, but after 10 000
time units, a number of new peers, specified as a percentage

of , join the network.
Performance analysis focuses on the average distance be-

tween consecutive centroids since this index gives an immediate
indication about the effective reordering of keys over the net-
work. Fig. 16 shows the value of this index before and after the

Fig. 16. Average distance between two consecutive centroids. At the begin-
ning, the values of and are set to 1024. After 10 000 time units, a per-
centage of new peers join the network.

perturbation induced by the joining of a percentage of new
peers, with set to 25%, 50%, and 100%, corresponding re-
spectively to 256, 512, and 1024 peers. The index experiences
a sudden and prominent increase at the joining time: Since the
new keys are published randomly by the peers, the key ordering
is disturbed. However, the agents replace the new keys and re-
store the correct ordering very rapidly, in a time ranging from
40 to 200 time units. It can be noticed that the steady value of
the average centroid distance, after the perturbation, becomes
equal to the new value of . With always set to 1024,
the value of the ratio is equal, in the three examined cases, to 4/5,
2/3, and 1/2, respectively. The comparison between Figs. 16 and
8 is interesting. While the agents take about 5000 time units to
order the keys in a network with 1024 peers, if they start from
scratch, they take only 200 time units to order the keys pub-
lished by additional 1024 peers. This confirms that the insertion
of new keys in an ordered network is an easy task and proves
that Self-Chord is naturally scalable if peers join the network
gradually, which is the expected behavior in a real network. In
a steady condition, any perturbation, even very intense, such as
those considered in Fig. 16, is easily managed by Self-Chord
agents, and the key ordering is recovered rapidly.
The disconnection of a peer is very simple to manage. In

Chord, the keys are consigned to the successor peer because
this is the peer devoted to handle them. In Self-Chord, they are
passed half to the successor and half to the predecessor peer,
thus improving the load balance even in this respect.

V. DISCUSSION
This paper presents Self-Chord, a “self-structured” P2P

system built according to a bio-inspired algorithm. The reported
results allow for a comprehensive analysis of Self-Chord and
its comparison to Chord. The most important functionality of
Chord, logarithmic discovery time, is preserved. In addition,
due to the self-organizing activities of agents, Self-Chord
features several benefits, as illustrated in the following.
1) Better support of complex discovery requests. In Chord,
peer and resource keys are defined on the same number
of bits by hash functions. This forces users to search for
a specific resource, using its key as a search parameter,
and hinders the execution of more complex discovery
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requests. In Self-Chord, the definition of resource keys
is flexible and uncorrelated with peer indexes, and it is
also possible to give a semantic meaning to key values.
This enables the system to serve “class” queries, issued
to search for resources having common characteristics.
A user can explore the network to find a number of
resources belonging to the same class, and then select
the most appropriate for its purpose. This is a typical
problem in Grid and Cloud computing. For example, a
user might search for hosts for which the CPU speed and
the memory size are within a specified range, and choose
among the discovered results in a successive phase.

2) Better balance of storage load. Self-Chord improves the
balance of storage load among peers. In Chord, a peer is
responsible for all the keys whose values are between
its index and the index of the predecessor peer on the
ring. Therefore, a peer might store a large number of
keys if the distance between this peer and its predecessor
is large. Moreover, if some resources are more popular
than others, imbalance problems are even worse because
the peers that store popular keys may be overloaded. In
Self-Chord, the number of keys stored by a peer nei-
ther depends on the distance from its predecessor nor on
the popularity distribution of keys. The work of agents
in Self-Chord is capable of significantly improving the
load balance, with respect to Chord, even with a uniform
distribution of keys, and the advantage increases with a
nonuniform distribution.

3) Improved dynamic behavior. In Chord, appropriate op-
erations are necessary when a peer joins the ring or when
new resources are published. These resources must be
immediately assigned to the peers whose indexes match
the resource keys. Therefore, the computational load de-
pends on the dynamic behavior of the system, specif-
ically on the churn rate of peers. Conversely, in Self-
Chord the computational load is constant because the
mobile agents continuously reorganize the keys. Any
perturbation of the steady condition, even very intense,
is efficiently managed, and the key ordering is recovered
rapidly. Indeed, the placement of new/modified keys in
the correct position of the ring is done in a logarithmic
time, so it is as fast as a resource discovery operation.
The system is also robust with respect to modifications
of resource properties: If the value of a resource key
changes, due to a modification of the resource, the key
will soon be moved by the agents that, by recognizing
that the key has become an outlier in the current peer,
will assign a large take probability to it.

It should be remarked here that all these improvements are
obtained in a totally decentralized and self-organizing fashion,
while they would be very difficult to achieve with any central-
ized algorithm. This confirms the surprising efficacy of these
very simple nature-inspired mechanisms, especially when they
are adopted in a large distributed environment.

VI. RELATED WORK
In most distributed systems, information services are imple-

mented in accordance with centralized or hierarchical architec-

tures, mostly because the client/server approach is still used
today in the majority of distributed systems and in service-ori-
ented frameworks. However, these architectures are impractical
when a large number of resources, not all of which are under the
control of the same organization, must be coordinated, as in the
case of multi-institutional Grids or Clouds [1], [3]. Major draw-
backs are poor scalability, limited autonomy of organizations,
unfair balance of load, lack of fault-tolerance owing to the pres-
ence of single points of failure, or bottlenecks [17]. In the last
few years, the P2P paradigm has emerged as an alternative to
centralized and hierarchical architectures. Novel approaches for
the construction of scalable and efficient information systems
need to have the following properties [19], [20]: self-organiza-
tion (meaning that components are autonomous and do not rely
on any external supervisor), decentralization (decisions are to
be taken only on the basis of local information), and adaptivity
(mechanisms must be provided to cope with the dynamic char-
acteristics of hosts and resources).
Requirements and properties of “Self-Organizing Grids” are

sketched in [7]. In the architecture proposed in [21], Grid nodes
self-organize in groups on the basis of the similarity among the
resources that they offer to the network. Each group elects a
leader node that receives requests tailored to the discovery of
resources that are likely to bemaintained by the group. This is an
interesting approach, but it still has nonscalable characteristics.
For example, it is required that each node has a link to all the
leader nodes, which is problematic in a very large system. A
self-organizing mechanism is also exploited in [22] to build an
adaptive overlay structure for the execution of a large number
of tasks in a Grid.
The Self-Chord algorithm presented in this paper shares

several characteristics from mobile agent systems (MAS),
which are often adopted to emulate the behavior of biological
systems [23]. For example, insects and birds can be imitated
by mobile agents that travel through the hosts of a distributed
system and perform their simple operations. Agent-based
systems may inherit useful and beneficial properties from
biological counterparts, such as self-organization, decentral-
ization, and adaptivity. Coordination among agents is essential
to improve the effectiveness of their tasks, in particular for
resource discovery. Coordination is usually achieved through
a direct exchange of messages among agents. Conversely,
the Self-Chord system presented here exploits the stigmergy
paradigm [24]: Agents interact and cooperate through the
modifications of the environment that are induced by their
operations. In fact, the behavior of an agent is driven by the
state of the local region of the system, which in turn is modified
by the operations of other agents.
Self-Chord is specifically inspired by ant algorithms, a class

of agent systems that can solve very complex problems by im-
itating the behavior of different species of ants [8]. Ant algo-
rithms are one of the most popular examples of “swarm intelli-
gence” systems, in which a number of agents follow very simple
rules with no centralized control, and complex global behavior
emerges from their local interactions. Among such systems,
Anthill [25] is tailored to the design, implementation, and evalu-
ation of P2P applications based on multiagent and evolutionary
programming. It is composed of a collection of interconnected
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nests. Each nest is a peer entity that makes its storage and com-
putational resources available to swarms of ants, mobile agents
that travel the network to satisfy user requests. Recently, ant al-
gorithms have been proposed to design “self-structured” P2P
systems, in which the association of keys with hosts is not pre-
determined, but adapts to the modification of the environment.
In So-Grid [9], Grid resources are assumed to be precategorized
in classes, and their descriptors are spatially clustered by ant-in-
spired mobile agents, thus facilitating the discovery of a cluster
containing a large number of resources that belong to the desired
class. Antares [11] extends this concept by using a locality-pre-
serving hash function, which guarantees that similar resources
are assigned similar key values. Keys are spatially sorted bymo-
bile agents according to their key values. In this way, a search
message can be driven toward the desired descriptors by fol-
lowing the gradient of resource keys. At each step, the message
is forwarded to the neighbor peer that minimizes the distance
between the keys stored there and the target key.
Anthill, So-Grid, and Antares are all unstructured P2P sys-

tems. Indeed, structured P2P systems have always been consid-
ered incompatible with self-organizing properties and adaptive
behaviors. Self-Chord confutes this belief and proves to be both
scalable and robust with respect to environmental modifications
while retaining the benefits of structured P2P systems—in par-
ticular, logarithmic search time.
Another important objective of Self-Chord, as discussed in

Section V, is the execution of class and range queries. The effi-
cient execution of complex queries is indeed a very tough issue
for distributed systems [26]. Some types of structured P2P sys-
tems are capable of serving class queries, but often at the cost
of either maintaining complex tree-like structures [27] or in-
creasing the traffic load by issuing a number of subqueries [28].
The Self-Chord information system naturally supports class and
range queries. This feature derives from the flexibility provided
by Self-Chord in the definition of the resources keys and their
assignment to resources, and from the utilization of two sepa-
rate algorithms that are used to reorder the peers and the keys in
an independent fashion.
While the presented system is partly based on Chord, similar

algorithms can be defined for any other structured system. For
example, in CAN [13], resource keys are placed in a toroidal
multidimensional structure: The position of a key over each di-
mension is equal to the value of a corresponding numerical pa-
rameter. An ant-inspired algorithm can be devised also in this
case: A centroid can be defined to represent the keys stored in
a restricted region of the multidimensional space. The keys will
be moved by agents through adjacent peers by comparing their
values to the values of the peer centroids, with the objective
of sorting the keys over the multidimensional structure. The
sorting of keys will enable the efficient execution of queries
without requiring a rigid association among resource keys and
peer codes.
Though the use of nature-inspired and “swarm intelligence”

algorithms for distributed systems has notably increased in the
last few years, there is a significant need for rigorous method-
ologies both for the design and the analysis of such algorithms.
The difficulty of the design phase lies in the process of deriving
a distributed protocol from a natural phenomenon. Existing ap-

proaches often tend to be informal, and thus the relation between
phenomenon and protocol is often not quantifiable. In [10], the
authors present a methodology that helps to model natural phe-
nomena as difference equations and translate them into the so
called “sequence protocols.” The analysis issue is also non-
trivial: The dynamics of collective behaviors are intrinsically
stochastic and discrete, and so far they have been approximated
by nonlinear differential equations only in a few cases. In [29],
an analytical model is adopted to approximate the collective be-
havior of ants that, while searching for a path from their nest to
a food source, must face a choice between two bridges that lead
to the same food source. However, this very simple case is not
easily generalizable. Nonlinear differential equations are also
used in [30] to model the behavior of a swarm of robots that
need to collaborate to perform an activity that would be impos-
sible for a single robot—for example, pull and transport a heavy
stick. The analytical model presented in this paper aims to be a
step toward the mathematical analysis of nontrivial bio-inspired
systems and swarm intelligence phenomena.

VII. CONCLUSION
This paper aims to open a new research avenue for P2P frame-

works because it presents a P2P system that inherits the benefi-
cial characteristics of structured systems, but offers further prof-
itable characteristics inherited by biological systems, such as
self-organization, adaptivity, scalability, and fast recovery from
external perturbations. In Self-Chord, a set of ant-inspired mo-
bile agents move and reorder the resource keys in a ring of peers
in a self-organizing fashion without any predetermined associa-
tion between keys and peers. Self-Chord efficiency and efficacy
were confirmed by simulation results. In this paper, the pre-
sented ant-inspired approach is applied to Chord, but it could
similarly be applied to other structured P2P systems in which
peers are not organized in a ring, but in other structures such as
multidimensional grids or trees. The paper also introduces an
analytical framework that models the system evolution through
a set of differential equations, representing a significant step to-
ward the mathematical analysis of nontrivial bio-inspired sys-
tems and swarm intelligence phenomena. A Java prototype of
Self-Chord is available at the Web site http://self-chord.icar.
cnr.it.
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