
35
Bio-Inspired P2P Systems: The Case of Multidimensional Overlay

RAFFAELE GIORDANELLI and CARLO MASTROIANNI, ICAR-CNR and eco4cloud srl, Italy
MICHELA MEO, Politecnico di Torino, Italy

This article presents an ant-based approach that enhances the flexibility, robustness and load balancing
characteristics of structured P2P systems. Most notably, the approach allows peer indexes and resource
keys to be defined on different and independent spaces, so that it overcomes the main limitation of standard
structured P2P systems, that is, the need to assign each key to a peer having a specified index. This helps
to improve load balancing, especially when the popularity distribution of resource keys is nonuniform, and
enables the efficient execution of complex and range queries, which are essential in important types of dis-
tributed systems, for example, in Grids and Clouds. Beyond describing the general approach, this article
focuses on the specific case of Self-CAN, a self-organizing P2P system that, while relying on the multidi-
mensional structured organization of peers provided by CAN, exploits the operations of ant-based mobile
agents to sort the resource keys and distribute them to peers. This system is particularly useful for the
management and discovery of the resources that can be conveniently characterized by the values of several
independent attributes.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distributed Systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Bio-inspired, peer-to-peer, resource discovery, self-organizing

ACM Reference Format:
Giordanelli, R., Mastroianni, C., and Meo, M. 2012. Bio-inspired P2P systems: The case of multidimensional
overlay. ACM Trans. Auton. Adapt. Syst. 7, 4, Article 35 (December 2012), 28 pages.
DOI = 10.1145/2382570.2382571 http://doi.acm.org/10.1145/2382570.2382571

1. INTRODUCTION

In recent years, peer-to-peer systems have definitely overstepped their mere role of
middleware solution for traditional file-sharing applications and are now adopted in
all kinds of large-scale distributed computing systems, thanks to their advantages over
centralized and hierarchical solutions, among which their scalability and robustness
properties.

New fields of application for P2P systems are Grid and Cloud Computing. In Grids
[Foster and Kesselman 2003], different types of computing resources are shared among
the nodes of a community, ranging from storage and processing devices to data, pro-
grams, and software facilities. In this context, resources are not typically discovered

This article is an extended and enhanced version of the paper presented at the 8th IEEE/ACM International
Conference on Autonomic Computing (ICAC 2011).
This research work was partially funded from the MIUR project FRAME, PON01 02477.
Authors’ addresses: R. Giordanelli, eco4cloud srl, Piazza Vermicelli, Rende (CS), Italy; email:
giordanelli@eco4cloud.com; C. Mastroianni, ICAR-CNR, Via P. Bucci 41C, Rende (CS), Italy; email:
mastroianni@icar.cnr.it; M. Meo, Politecnico di Torino, Corso Duca degli Abruzzi, Torino, Italy;
email: michela.meo@polito.it.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permission may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 1556-4665/2012/12-ART35 $15.00

DOI 10.1145/2382570.2382571 http://doi.acm.org/10.1145/2382570.2382571

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:2 R. Giordanelli et al.

through their names, as in file sharing systems, but through a set of characteristics,
which are described by resource metadata documents. P2P solutions can also be ex-
ploited to manage the information systems of big companies, like Google, Amazon, and
Microsoft, which offer pay-as-you-go-services through their Cloud platforms [Armbrust
et al. 2010]. For example, Amazon Dynamo [De Candia et al. 2007], a key-value storage
system adopted by several Amazon’s core services, can be considered as a variant of
the Chord P2P system. Moreover, the research community is investigating the possible
benefits of using the P2P paradigm in Clouds composed of multi-owner data centers.
The so-called “federated Clouds” or “P2P Clouds” can be the most efficient solution for
the provisioning of a wide range of resources at low or zero cost, and for the execution
of applications where the physical location of nodes in important [Panzieri et al. 2011].

Most modern P2P architectures are “structured”, meaning that peers are organized
in a predefined structure, for example, a ring (as in Chord [Stoica et al. 2001]), a
multidimensional grid (adopted by CAN [Ratnasamy et al. 2001]), a tree (as in Pastry
[Rowstron and Druschel 2001]), or other structures that in most cases can be seen as
an evolution or a combination of these basic three. A hash function is used to give each
resource a key, and the key is assigned to a node whose code, also computed with a
hash function, is equal or as close as possible to the key.

The main reason why structured P2P systems win against unstructured
counterparts–for which the network evolves randomly and there is no predetermined
way of assigning resources to peers–is that they use “informed” algorithms to drive
user queries towards the desired keys in a short and bounded time [Androutsellis-
Theotokis and Spinellis 2004]. Unfortunately, structured systems also share a major
drawback, which stands in the fact that the discovery process is exclusively driven by
the key value, and cannot take advantage from the knowledge of specific characteris-
tics of the target resource [Rodrigues and Druschel 2010]. As a consequence, there is no
simple way of efficiently serving range queries that need to discover a set of resources
sharing common features, for example a set of machines with CPU speed and RAM
memory comprised in a given range, or a set of mathematical software tools with given
characteristics and whose cost does not exceed a specified value. The difficulty derives
from the fact that the keys of similar resources are spread over the P2P overlay by the
hash function. Range queries are particularly important both in Grid environments
and in large Cloud infrastructures: for example, the manager of a Cloud data center
often needs to rapidly individuate a set of physical machines whose CPU and RAM
match the requirements of a Virtual Machine. Other notable drawbacks of structured
P2P systems concern the load balance (the nodes that are assigned the most popular
keys may be significantly more loaded than the others) and the dynamic behavior (e.g.,
an immediate reassignment of keys is necessary every time a node joins or leaves the
system).

In recent years, there have been interesting attempts to reinforce the adaptive and
fault-tolerance characteristics of P2P networks by imitating the self-organizing be-
havior of biological systems, such as flocks of birds, insect swarms, and, above all, ant
colonies [Ko et al. 2008]. These algorithms exploit the properties of “swarm intelli-
gence” systems, in which an intelligent behavior at a high level is obtained by com-
bining simple low-level operations performed by bio-inspired mobile agents [Bonabeau
et al. 1999]. These P2P systems are sometimes referred to as “self-structured” [Brocco
et al. 2010; Forestiero and Mastroianni 2009], because their structure is constructed
with self-organizing techniques.

In Self-Chord [Forestiero et al. 2010], an ant-inspired algorithm is used to sort re-
source keys over a Chord-like ring structure. The algorithm decouples resource keys
from peer indexes, which allows key values to assume a semantic meaning, as they
are no longer the result of a hash function but may be associated with the value of the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:3

main resource attribute. This strategy facilitates the execution of range queries, as
the keys of similar resources are stored by neighbor peers, and helps to improve load
balancing and adaptivity. These advantages, though, are limited to the situations in
which a single attribute can be used to characterize the resources, which is often a too-
strict constraint. However, the ant-inspired technique can be generalized and applied
to any kind of structure. Depending on the application domain, the appropriate type
of overlay (ring, grid, tree, etc.) should be chosen to better match the nature of the
resources and efficiently serve user queries.

This article has a twofold goal. On the one hand, it describes the key characteristics
of the generalized ant-inspired strategy and gives hints on how it can be adapted to
any particular overlay, and specifically to a ring, a multidimensional grid, and a tree.
In this respect, this article follows the research avenue, discussed for example in Je-
lasity et al. [2009], which investigates how flexible and configurable protocols can be
developed to tackle the plethora of overlay networks that have been proposed so far.
On the other hand, this article focuses on the case of a multidimensional structure,
specifically the one offered by CAN, extending the work presented in Giordanelli et al.
[2011]. The analyzed system, Self-CAN, is particularly efficient for the execution of
complex and range queries in the case that resources are characterized and indexed
through a set of independent features, which is a very common situation. Performance
evaluation was carried with both a Java prototype1 and an event-based simulator, de-
pending on the size of the analyzed network.

This article is organized as follows: Section 2 describes the generalized ant-inspired
approach and gives details on how the approach can be adapted to three different
types of overlay; Section 3 describes the Self-CAN model, specifically the operations
performed by the ant-inspired agents and the discovery procedure; the performance of
Self-CAN, with regard to its capacity of sorting the keys and serving user queries, is
analyzed in Section 4; finally, after the related work section, Section 6 concludes the
article.

2. A GENERALIZED ANT-INSPIRED STRATEGY FOR STRUCTURED P2P SYSTEMS

In any kind of structured P2P system, starting from the pathfinders, for example,
Chord and CAN, to recent commercial systems, like Kademlia [Maymounkov and
Mazières 2002], the main objective is to provide clients a way to rapidly discover the de-
sired resources along the distributed overlay. This is done exploiting the “Distributed
Hash Table” paradigm: every resource is given a key using a hash function applied
to the resource name, and the key is assigned to a node of the structure whose code
is equal or very close to the resource key. The hash function is needed to fairly dis-
tribute the resources over the structure, but this is possible only if the popularity of
the resources is uniform. If this is not the case, some peers may be overloaded, since
resources with the same name are mapped to the same peer. Moreover, the keys of re-
sources having similar features are inevitably dispersed. This prevents the possibility
of executing a range query efficiently, since the target resources are most likely to be
located in different and remote regions of the network.

The use of swarm intelligence techniques can help to solve these issues. The basic
idea is to use resource attribute(s) directly as the key, without using any hash func-
tion, and adopt an ant-inspired algorithm to sort the keys over the structure and, at
the same time, distribute them to the peers in a fair fashion. This implies that re-
source keys are decoupled and independent from peer codes, while the two entities are
strictly correlated in classical P2P systems. The idea can be applied to any kind of
overlay. First, it is necessary to choose the overlay that best fits the type of attributes

1Available at http://self-can.icar.cnr.it.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:4 R. Giordanelli et al.

used for indexing and searching the resources. So, a ring overlay should be chosen
for resources indexed with the value of a single attribute, a multidimensional grid is
preferable when resources are characterized by a set of independent attributes, a tree
is indicated when resource attributes have a hierarchical structure, as in the case of
XML documents.

The second step is to define, for each peer, its centroid. The peer centroid must
represent, with a single quantity, the set of keys stored in a local region of the structure
that comprises the peer itself and a few close-by peers. Let the distance between any
two keys, say ka and kb , be denoted by d(ka, kb). Let also Sk be the space of the resource
keys, and K the set of keys stored in the considered peer and in a local region around
the peer. The peer centroid c ∈ Sk is defined as:

c ∈ Sk | ∀ci ∈ Sk,
∑

k∈K
d(ci, k) ≥

∑

k∈K
d(c, k) (1)

Therefore, c is the value in Sk that minimizes the sum of the distances between
c itself and the keys k stored in local region of the network. The value of c can be
computed with a dichotomic search up to a desired precision. The peer centroids are
essential to drive both the key sorting process and the resource discovery procedures.
In Sections 2.1 to 2.3, devoted to specific overlays, more details will be given on the
definition of distance and of the local region used for the centroid computation.

Finally, a set of mobile agents must be generated to perform the reorganization. The
agents use the underlying structure to travel the system, but do not alter the structure
and the way it is managed. This means, for example, that the agents can move the
keys and modify the centroid values but cannot modify the peer codes neither the way
peers are connected with each other, which is under the responsibility of the overlay
management procedures.

The generalized algorithm performed by every agent is summarized in the pseudo-
code shown in Figure 1, assuming that each peer maintains a set N of neighboring
peers, that is, peers that are connected to it in the P2P overlay structure, and a set
L of local keys. The management of N is under the responsibility of the specific P2P
overlay. Initially, L contains the keys of the resources published by the peer itself,
then the keys are moved by agents through pick and drop operations, and, at a generic
instant, L is the outcome of the process of agents moving keys.

The agent can either be loaded, when it is moving a key between peers, or unloaded.
When unloaded, the agent travels the P2P overlay structure performing a random
walk through neighboring peers. Whenever the agent visits a new peer, it attempts
to pick a key from the peer. If a pick operation succeeds, the agent becomes loaded
and starts a process aiming at dropping the key in a more appropriate peer. Thus, a
loaded agent carrying a key k moves towards a region of the overlay structure that is
likely populated with keys that are “similar” (or close) to k. The agent moves making
jumps towards the desired region. Finally, whenever a loaded agent visits a new peer,
it attempts to drop the key.

Some comments about these operations, valid for any overlay, are given in the fol-
lowing where, for the sake of clearness, four macro operations are identified: Random
Walk, Pick, Jump and Drop.

— Random Walk. While the agent is unloaded (does not carry any key), it travels the
network randomly, exploiting the links towards other peers that are provided by the
specific overlay. The operation is repeated until a key is picked by the agent at some
peer. A short time Tmov is waited by the agent between two consecutive steps of the
random walk.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:5

Fig. 1. The agent algorithm. The pseudocode is executed cyclically during the life time of the agent.

— Pick. The goal of this operation is to pick a key that, being far from the centroid (i.e.,
different from the keys typically stored in the peer), does not respect the order of the
keys over the structure. This operation is decided through a probabilistic process
that makes use of Bernoulli experiments. Keys are considered in an order defined
by a function, indicated as SelectKey() in the pseudocode. For each considered key
k, the agent first computes the distance d of the key from the centroid c through
the function KeyDistance(k, c); then, it derives the pick probability Ppick through
a proper function of distance d, and, finally, the agent performs the Bernoulli trial
with probability Ppick. The function giving the pick probability is monotonically
increasing with d, so that the larger the distance of the key from the centroid is, the
higher the probability that the agent picks the key.

— Jump. Once the agent has picked a key, it jumps to a region of the overlay where
the key is supposed to better respect the current sorting. To determine the target
peer to jump to, the agent computes the distance between the carried key k and
the centroid of the local peer c, again through the function KeyDistance(k, c). This
distance is used to estimate the correct position of the key in the overlay. Thus, the
agent selects, through the function GetClosest(N , d), the peer dest peer that, among
the neighboring peers in N , is the closest to the estimated correct position of the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:6 R. Giordanelli et al.

key. A jump to dest peer is then performed. For example, if the overlay is circular
like in Chord, the distance between a key and centroid is computed as the length
of the arc between the two values. If this arc is equal to 1/4 the length of the key
space, the agent should reach a peer whose code is approximately distant 1/4 the
circumference of the peer circle from the local peer. The agent jumps to the peer
belonging to the set N whose code is the closest to the desired one.

— Drop. The objective is to drop the carried key in a peer that holds “similar” keys.
As for the pick operation, a dropping is performed through a Bernoulli experiment
whose success probability depends on the distance of the key from the local centroid;
this time, the probability is monotonically decreasing with distance.

The described strategy is partially inspired by the basic ant algorithm introduced in
Bonabeau et al. [1999]. The collective operations of agents sort both the centroids and
the keys over the corresponding overlay. The sorting ensures that the basic feature
of structured systems, the efficiency of discovery operations, is guaranteed. Indeed,
the number of hops performed by a query message is practically the same as in the
corresponding non-self-organizing P2P system, usually it is logarithmic with the num-
ber of peers. A notable improvement of the new strategy is that resource keys can be
given a semantic meaning, which implies that similar resources are stored in neighbor
peers and range queries can be executed efficiently. Indeed, once a search message has
found a key included in the target range specified in the query, all the other keys can
be discovered very rapidly, exploring the neighbor peers. This efficiency is very hard
to obtain in classical P2P systems, because the keys of similar resources are spread
by the hash function. The ant-inspired strategy has further interesting properties,
among which: (i) it is self-organizing, as the assignment of keys is not predetermined
but emerges from the combined behavior of very simple agents; (ii) it is completely
decentralized, since agent operations are exclusively driven by local information; (iii)
it guarantees stability: once a correct sorting has been achieved, it is quickly recov-
ered after any perturbation – for example, peer connections and disconnections or the
publication of new resources; (iv) it ensures a fair load balance, even in the presence
of nonuniform key popularity.

Agents are generated and die like the real ants from which they are inspired. Each
peer, at the time that it connects to the network, generates an agent with a probability
Pgen. The agent lifetime is randomly generated with a statistical distribution whose
average is equal to the average connection time of the connecting peer, computed on the
past activity of the peer.2 In this way, the average number of agents Na that circulate
in the network at a given instant of time is associated with the average number of
peers connected in the network at the same time, Np,

Na
∼= Np · Pgen (2)

It follows that the average number of agents can be regulated by modifying the
value of Pgen. The agent load � can be defined as the average number of agents per
second that arrive and are processed at a peer. The arrival rate of agents to peers
is given by the product of the average number of agents Na by the frequency of their
movements 1/Tmov, where Tmov is the mean of the random interval from the instant
in which a peer receives an agent to the instant in which it forwards the agent to the
next peer. Thus, the load on a single peer can be computed as,

� =
Na

Np · Tmov

≈ Pgen

Tmov

(3)

2If the peer enters the network for the first time, it uses the average connection time of a neighbor peer.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:7

From the evaluation of Self-Chord [Forestiero et al. 2010] and Self-CAN [Giordanelli
et al. 2011], it was found that the sorting process converges quickly enough by setting
Tmov to 5 seconds and Pgen to 1.0. In such a scenario each peer receives and processes
about one agent every 5 seconds, which is an acceptable load, since pick and drop
operations are very simple. Moreover, it should be noticed that � does not depend on
the frequency of peer joinings and disconnections nor on the network size, therefore it
is stable even in the presence of abrupt environmental changes. For example, if several
resources are published in a short interval of time by a new peer, the resource keys will
be picked by the agents that pass by the new peer. Conversely, in a classical structured
system the new keys must be immediately placed in the corresponding peers, which
may cause a high load during the time interval necessary to complete this process.

In the following sections, we briefly describe how the ant-based strategy can be
adapted to three specific overlay: a ring, a multidimensional grid, and a tree.

2.1. Ring Overlay

If a resource can be characterized by the value of a single attribute, say an integer
between 0 and V-1, the most convenient structure is a ring, like that used in Chord,
in which peers connections are established both between adjacent peers and through
the shortcuts of the finger tables maintained by peers. The distance between two keys
is defined as the length of the shorter of the two arcs that separate the keys in the
circular space. For example, with V = 10, d(3, 7) = 4 and d(9, 1) = 2, because the key
value 0 is the successor of 9. The local region centered at a peer includes the peer itself,
a number of peers on the left, and the same number of peers on the right. The centroid
is computed using expression (1).

For this scenario, agent operations can be instantiated as follows.

— Random Walk. The unloaded agent travels from adjacent to adjacent peer. The di-
rection, clockwise or anticlockwise, is chosen randomly.

— Jump. The position of the target peer, that is, its code, is obtained with a simple
proportion between the distance between the key and the local centroid and the
distance between the local peer and the target peer. The agent examines the peers
of the finger table and jumps to the one that is the closest to the target peer.

— Pick and Drop. Pick and drop probability functions are, respectively, directly and
inversely proportional to the distance between the considered key and the local cen-
troid. More details are given in Forestiero et al. [2010].

Once the keys have been sorted, the resulting overlay appears as depicted in
Figure 2, in a very simplified scenario in which the key values are between 0 and
7, and the overlay contains 16 peers. For each peer, the figure shows some of the keys
stored locally and the centroid value. Notice that keys are sorted, and that their values
have no relationship with the peer codes, which are not reported. As a consequence,
also the centroids are sorted. This ensures that discovery procedures can be executed
in log time, since the shortcuts of the peer finger tables allow the search space to be
halved at each jump of the search message. This aspect is extensively discussed in
Forestiero et al. [2010].

2.2. Multidimensional Overlay

A multidimensional overlay is preferable when a resource is conveniently character-
ized by several independent attributes. Examples are an OLAP environment [Pedersen
and Jensen 2001], in which resources are characterized by attributes like time, space,
price, etc., or a Grid/Cloud infrastructure in which the hosts are characterized by CPU,
memory, and bandwidth.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:8 R. Giordanelli et al.

Fig. 2. Centroid ordering in a ring overlay.

Since the following sections of this article are devoted to this specific case, many
details about agent operations and probability functions are given later. The distance
between two keys is computed as a form of “Manhattan” distance and will be defined
in Section 3.2. The local region for the centroid computation includes the local peer
and the peers that are adjacent along the different dimensions, in both directions. As
an illustrative example, let us consider the case that the key space is bidimensional
and keys assume integer values in the range [0, 15] for each dimension, with a circular
ordering defined along each dimension. For an example of centroid computation, let
us assume that the keys stored in the local region are the following: (1, 15), (3, 14), (5,
0) and (3, 1). In this case, the centroid of the central peer is (3,15.5), since the value
of the centroid for each dimension minimizes the average distance between itself and
the values that the local keys assume on the same dimension. Agent operations are
specialized as follows.

— Random Walk. The agent travels from adjacent to adjacent peer, randomly choosing
both the dimension and the direction.

— Pick. As usual, a key should be picked when its distance from the local centroid
is high (in the example, with the centroid equal to (3,15.5), a key (11, 7) should be
picked with very high probability, whereas a key (3, 15) should be left on the peer).

— Jump. The agent moves along the dimension that allows to minimize the distance
between the carried key and the centroid of the target peer. A predecessor (succes-
sor) peer is the adjacent peer that, owing to the sorting process, is supposed to have
a lower (higher) value of the centroid for the dimension of interest (in the example,
key (0, 15) should be moved towards a “predecessor” peer along the first dimension,
whereas a key (3, 4) should be moved towards a “successor” peer along the second
dimension).

— Drop. An agent that arrives at a new peer should drop the carried key if its value
is similar to the peer centroid, and vice-versa (in the example, an agent that arrives
at the local peer carrying the key (3, 15), previously picked on another peer, should
drop the key).

Figure 3 shows the values of peer centroids obtained at the end of an experiment
executed with the Self-CAN prototype, in the case of a 2-dimensional overlay with 16
peers. It can be noticed that centroid values are sorted along both dimensions, which

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:9

Fig. 3. Centroid ordering in a 2-dimensional overlay with 16 peers.

Fig. 4. Pointers of the routing and leaf tables in a Pastry overlay.

means that the values of single keys (not reported) are also sorted. Yet, there is no
predetermined association between key values and peers. A discovery message, issued
to find a target key, is easily driven following the gradient of centroid values, towards
the peer whose centroid is equal or as close as possible to the target key. As Section 4
will discuss, the target key is most likely located in that peer.

2.3. Tree-Based Overlay

A tree-based overlay should be chosen when the resources are conveniently character-
ized by hierarchical indexes. This may be the case of distributed XML databases: an
XML document, or a section of a document, can be indexed and searched through a
hierarchical index built following the path from the root to the document or section
[Harder et al. 2007].

A convenient overlay for such a case is provided by Pastry [Rowstron and Druschel
2001] or a similar tree-based P2P system. In Pastry, a peer is characterized by a code
of B digits, each of which may assume one out of b possible values. The peers are orga-
nized making reference to a tree structure ordered according to the peer code. In the
example shown in Figure 4, the number of tree levels is B = 3. A vertex with value i at
level l has the lth digit equal to i; the vertex has b = 4 children. Peer codes corresponds
to leaves of the tree; thus, two peers whose closest ancestor is at level i share the first i
digits of the code. The peer routing table contains pointers to peers whose codes share
a common prefix, of every length, with its code. With reference to the example shown
in the figure, the peer with the marked border has code 112. For this peer, the first
row of the routing table contains pointers to at least one peer (a leaf of the tree) for
each of the big shaded rectangles; in other words, the row contains pointers to three
peers whose codes begin with digits 0, 2, and 3. Three peers of this kind–specifically,
peers 021, 203, and 331–are indicated by the continuous-lined arrows. Analogously, the

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:10 R. Giordanelli et al.

Fig. 5. Centroid ordering in a tree-based overlay.

second row of the routing table contains pointers to peers included in the small shaded
rectangles, whose codes start with digits 10, 12, and 13. Example of these peers–101,
122, and 133–are indicated by the dashed-lined arrows. In addition, the leaf table con-
tains direct pointers to some close-by peers, for example, those embraced by the curly
bracket in the figure.

Also in this kind of overlay, the ant-inspired algorithm can be used to distribute and
sort the XML document keys over the structure. The advantage is that key values
can be the digital representations of document positions in the XML hierarchy. This
may speed up the execution of range queries (e.g., all the papers published in a given
journal within a time interval), because the target resources are most likely located in
neighbor peers.

The distance between two keys may be defined as the difference between the key
values. The local region for the computation of a centroid may be defined as the set of
peers that share the same ancestor in the tree representation. In the Random Walk
phase, the agent randomly follows one of the pointers of the leaf table. To execute the
Jump operation, the peer carrying a key computes the distance from the key and the
local centroid, projects it to a corresponding distance in the space of peer codes, and
determines the target peer. Then, the agent exploits the leaf or the routing table to get
to the peer whose code is as close as possible to that of the target peer. Pick and Drop
operations are executed in the usual way. Figure 5 shows the ordering of centroids at
the end of an experiment executed on a Pastry overlay with 16 connected peers.

3. THE SELF-CAN P2P SYSTEM

After introducing the generalized ant-inspired approach, we focus on its application to
a multidimensional overlay, specifically to that defined by the CAN system [Ratnasamy
et al. 2001]. The resulting system is called Self-CAN. The basic guidelines have already
been introduced in Section 2.2 using an example of a 2-dimensional overlay. In this sec-
tion, we first recall some fundamental properties of the CAN system, and discuss the
mapping between resource attributes and overlay dimensions in Self-CAN. Then, we
define the Pick and Drop probability functions that drive the corresponding agent op-
erations, and give some interesting analytical insights into the behavior of successive
Pick attempts. Finally, we describe the Self-CAN discovery procedure, with specific
reference to the execution of range queries.

3.1. Basic Properties of CAN and Dimension Tuning in Self-CAN

In CAN, each peer that connects to the network is assigned an index whose value is
a point in a multidimensional space, randomly computed with a hash function. The

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:11

process starts by assigning the whole multidimensional space to a single peer, then
the network evolves and the space is fragmented into ever smaller regions, which are
assigned to the joining peers. Similarly, each resource published by a CAN participant
is assigned a key in the same multidimensional space, using another hash function,
and the key is delivered to the peer that is responsible for the region that includes the
key. A discovery request issued to find this key, or any other key that belongs to the
same region, is driven to this peer, exploiting the multidimensional overlay and the
ordering of peer indexes along the different dimensions.

Some relevant properties of a CAN overlay unfolded over D dimensions are the
following (see Ratnasamy et al. [2001] for more details).

— The multidimensional space is toroidal to avoid border effects; without loss of gener-
ality, the values assigned to peer indexes are in the range (0, 1) for each dimension.

— Each peer is connected to 2D neighbor peers, that is, to two adjacent peers per
dimension.

— The search path follows the connections among adjacent peers. If the D-dimensional
Space is equally partitioned among Np peers, the average path length is (1/4) · D ·
N1/D

p .
— If the value of D is approximately logarithmic with respect to the number of

peers Np, other important properties are also kept logarithmic. For example, if
D � (log2 Np)/2, the average length of the search path is of the order of (log2 Np)/2
and the number of a peer’s neighbors is of the order of log2 Np.

In Self-CAN, there is no need to use a hash function to compute the key of a re-
source: each resource is assigned a multidimensional key, letting the key represent
the main resource characteristics. The most convenient choice would be to associate
each significant attribute of the resource with a component of the key, and with a di-
mension of the multidimensional space: in this case, there would be a perfect matching
between the Self-CAN overlay and the resource key components. The drawback may
be that the number of dimensions D, when set in this way, may be too small to guaran-
tee logarithmic search time. In this case, some simple solutions are possible to reduce
search complexity. The first one is to map a single attribute to a few dimensions. For
example, an attribute with 256 possible values may be mapped to two subattributes
having 16 values each, by coding the value of the original attribute with two sets of
4 bits. This means that a monodimensional range query may need to be converted
in a two-dimensional one. Fortunately, though, multidimensional range queries are
managed efficiently in Self-CAN, as discussed in Section 4.4. A second solution is to
add a few long links between peers along a specific dimension. In Kleinberg [2000],
it is shown that the addition of a long link, in the case that its length is generated
with a harmonic probability distribution, ensures that the average path length be-
comes O(log2n), where n is the number of nodes in a circle. This result is generalized
in Symphony [Manku et al. 2003]: with k links, the path length is 1/k · O(log2n). It
should be noticed that, in practical scenarios, the addition of a few long links is much
more efficient in Self-CAN than in other systems like Chord, Pastry, and Mercury. In
these systems, long links are used to explore the whole network, while in Self-CAN
they are only used to traverse the peers that are aligned along a single dimension. For
example, if a Self-CAN network with 125,000 peers is structured in three dimensions,
long links can be used to drive discovery requests through only 50 peers per dimension
on average.

In the rest of the article, in order to simplify the discussion, we assume that the
number of dimensions is such that the logarithmic search time is guaranteed, or that
one of the strategies previously discussed is applied to achieve the same result.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:12 R. Giordanelli et al.

3.2. Pick and Drop Probability Functions in Self-CAN

As discussed in Section 2, Pick and Drop operations are executed by agents on the
basis of Bernoulli trials whose probabilities depend on the distance between the key
k under evaluation and the centroid c of the local peer. This distance, d(k, c), is
defined as:

d(k, c) =
1
D

D∑

i=1

�i

Li/2
, (4)

where �i is the distance between k and c evaluated along dimension i, and Li is the
length of the facet of the D-dimensional space of keys along dimension i, that is, the
number of values that a key may assume on the corresponding coordinate. In a toroidal
space, Li/2 is the maximum distance between two points along dimension i (it can be
seen as the length of the semi-circle in the space of keys along that dimension) and it is
used in the fraction denominator to normalize the distances over the different dimen-
sions. The value of d(k, c) is actually the normalized “Manhattan” distance between
k and c. The similarity between k and c, f (k, c), is defined as 1 − d(k, c), and ranges
between 0 (minimum similarity) and 1 (k and c have exactly the same value).

When an unloaded agent arrives at a new peer following its Random Walk, it eval-
uates the pick probability function, which for a local key k is defined as:

Ppick(k) =
αp

αp + f (k, c)
with 0 ≤ αp ≤ 1. (5)

The expression for Ppick(k) guarantees that the probability of picking a key k at a peer
with centroid c is inversely proportional to the similarity between k and c. Therefore,
the keys that are distant from the peer centroid are very likely to be picked, whereas
the keys that are close to the centroid are picked with low probability because they are
probably placed in the correct place. The parameter αp can be tuned to modulate the
pick probability. In fact, the probability is equal to 0.5 when the values of αp and f (k, c)
are comparable, whereas it approaches 1 when f (k, c) is much lower than αp (i.e., when
the key k is very different from the peer centroid) and 0 when f (k, c) is much larger
than αp (i.e., when the key k is similar to the centroid). In this work αp is set to 0.1,
unless otherwise stated, as in the base ant algorithm introduced in Bonabeau et al.
[1999].

While carrying a key,3 the agent performs the Jump operation. It selects the dimen-
sion along which the normalized distance between the key and the local centroid is the
largest. If the key is higher than the centroid on the selected dimension, the agent
moves to the successor peer (i.e., the adjacent peer having a higher code on that di-
mension in the underlying CAN structure), otherwise, it moves to the predecessor. In
this way, the key ordering always respects the same direction as the ordering of peers
established by the CAN structure.

At any new peer, the agent tries to drop the key with a Bernoulli trial with proba-
bility defined by the drop probability function:

Pdrop(k) =
f (k, c)

αd + f (k, c)
with 0 ≤ αd ≤ 1, (6)

where k is the value of the carried key, c is the centroid of the new peer, and f (k, c)
is the similarity between the two values. If the drop operation is not performed, the

3To keep the key available while it is carried by an agent, a simple redundancy mechanism is adopted: the
peer from which the key has been taken maintains a copy and discards it only when alerted by the peer
where the key is successively dropped.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:13

agent continues its travel towards a region of the network where the key should be
deposited, and retries the drop operation at every new peer. As opposed to Ppick(k),
Pdrop(k) grows with the similarity between k and c, therefore the agent tends to drop
a key if it is similar to the other keys stored in the local region. The parameter αd is
set to a higher value than αp, specifically to 0.5, in order to limit the frequency of drop
operations, and help the agent move to an appropriate region where to drop the key.4

Pick and Drop operations contribute to the correct reordering of keys, because the
agents tend to place every key in a peer that has a centroid value close to the key
value. The progressive sorting is guaranteed by the fact that the centroid of a peer is
calculated not only on the keys stored in the peer itself, but also on the keys stored by
the adjacent peers along the D dimensions.

3.3. Analysis of Pick Attempts

During the Pick phase, the agent associates a pick probability with each key held by
the local peer. Pick attempts are performed one at a time and the agent leaves the peer
as soon as a key is picked. The order in which such attempts are made is significant.
This aspect is examined here.

Denote by A(k) the actual pick probability of k, that is, the actual probability that
the agent leaving the peer has picked and, thus, carries key k. Assume that the peer
holds one key per class, with distance from the centroid equally spaced from 0 to DM
at intervals of length d. This means that there is no key with distance larger than
DM from the centroid: the farthest away key has distance DM, the farthest but one
key has distance DM − d, the following one has distance DM − 2d, and so on. The
agent considers the keys in their reverse order with respect to their distance from the
centroid, starting from the most distant key, and uses the pick probability defined in
(5) for each attempt. We also number the keys in reverse order, k0 being the farthest
one, ki being the one with distance DM − id.

The first key, k0, is actually picked with probability Ppick(k0), computed as in (5)
with the distance equal to the maximum distance DM.

A(k0) =
αp

αp + f (k0, c)
.

The following key, at distance equal to DM − d, is actually picked with probability

A(k1) = Ppick(k1)
(
1 − Ppick(k0)

)

and key ki is actually picked with probability

A(ki) = Ppick(ki)
i−1∏

j=0

(
1 − Ppick(kj)

)
.

The effectiveness of the agent action is much higher if keys are ordered. Figure 6
quantifies this comparison. Consider four cases with DM varying between 0.2 and 0.8;
in each case, Nc = 11 keys are equally spaced in [0, DM]; αp = 0.1. Besides the curves
of the actual pick probability obtained by ordering keys according to their distance
from the centroid, the figure shows the curves obtained from a random ordering. In
the latter case, the agent randomly chooses a key and decides whether to pick it; if the
key is not picked, the agent attempts with another key, randomly chosen among the
remaining keys. The figure shows that ordering keys remarkably differentiates the

4The values of αp and αd only affect the speed of the reordering process when starting from a chaotic con-
dition, but their setting have a very small effect on the operations in normal conditions, when the ordering
must be maintained and refined.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:14 R. Giordanelli et al.

Fig. 6. Actual pick probability versus distance between the key and the centroid for different values of DM,
with random or ordered pick attempts; αp = 0.1.

Fig. 7. Actual pick probability versus distance between the key and the centroid for various values of αp,
with random or ordered pick attempts, DM = 0.8.

actual pick probability of keys that are at different distances from the centroid, the
probability of choosing farther keys being much higher than the probability of choosing
keys that are close to the centroid. This differentiation ensures that the speed with
which the peer gets rid of the keys that are far from the centroid is very high.

Figure 7 shows, instead, the impact of the value of αp, which varies between 0.1
and 0.5, for DM = 0.8. The impact of αp is quite limited in the random order case.
With ordered pick attempts, the differentiation among the values of the actual pick
probability increases with the value of αp. It was observed that acting on the ordering
of pick attempts is far more effective than tuning αp. The setting of αp does not have
much impact on the key reordering process, it just marginally acts on the process
velocity.

3.4. Discovery Procedures in Self-CAN

Discovery procedures are defined to serve punctual and range queries. The purpose of
a punctual query is to find the resources belonging to a specific class, that is, which
have been associated with a specific value of the multidimensional key. This is a typ-
ical problem in many distributed environments (e.g., Grids and large Cloud or multi-
Cloud frameworks), where a user needs to locate a number of resources that address
his/her requirements, for example a set of hosts having specific CPU and memory
capabilities.

The discovery algorithm for the case of punctual queries is very simple. At every
step, the peer that receives the search message (or, at the first step, the peer that

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:15

Fig. 8. Path of range queries with the two defined strategies: sweep up (left), explosion (right).

generates the request) computes the normalized distances, along the different dimen-
sions, between the centroid of the local peer and the target key. The peer evaluates
the largest of these distances, and forwards the message along the corresponding di-
mension, to the successor or predecessor peer, depending on the value of the key being
larger or lower than the centroid on this dimension. This corresponds to following the
gradient of centroid values towards the peer whose centroid is the most similar to the
target key. Once the search path terminates–because it is no longer possible to de-
crease the distance between the target key and the peer centroid–the target keys are
collected in the local peer and in the 2D adjacent peers, and are delivered to the peer
that originated the request.

Self-CAN can also efficiently manage range queries, thanks to the sorting of keys
over the multidimensional space. The number of desired resources and the time and
cost that the user can afford for the research can be different in different contexts. Ac-
cordingly, two approaches were devised to serve range queries: the sweep up approach
and the explosion approach.

To illustrate the two techniques, let us consider the case in which the set of target
keys is defined by a closed interval over two dimensions. With the sweep-up approach,
illustrated in left part of Figure 8, the first objective is to drive the query message from
the generating peer (marked as P in the figure) towards the closest vertex of the two-
dimensional region defined by the range query. This region, highlighted in the figure,
includes the peers whose centroids are within the range intervals of the query. Then,
a message is forwarded along one of the borders of the region, in this case the lower
horizontal border. In turn, every border peer reached by the message forwards the
query along the vertical dimension, up to the upper horizontal border. The target keys
are collected by all these messages along their path; as a message reaches the border
of the target region, it is directly forwarded to the peer P. The generalization of this
technique to target regions defined on more than two dimensions is straightforward
and is not discussed further. The objective of this approach is to explore all the peers
that are located in the target region and retrieve as many desired keys as possible.
Conversely, the goal of the explosion approach is to collect a consistent number of target
keys by contacting a much lower number of peers. This time, the query message is
driven to a peer that is located in the core of the target region. Then, two query
messages are forwarded along each dimension of the range region, in the two opposite
directions, up to the border.5 The query path is depicted in right part of Figure 8. Of

5A number of target keys can be stored by the peers that are located just outside the target region, and are
adjacent to border peers. Since peers that are adjacent to each other can easily advertise their respective
keys, it is convenient to forward the search messages to these “external” peers if they are known to possess
target keys. This strategy is used in both the examined approaches.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:16 R. Giordanelli et al.

course, the number of messages is lower, as well as the number of contacted peers, but
it is no longer possible to collect all the target keys.

4. PERFORMANCE ANALYSIS OF SELF-CAN

To analyze the behavior of Self-CAN in large networks, a set of experiments were
performed with a Java event-based simulator. Java objects are used to model the
peers and the mobile agents that perform the operations described in Section 3. The
simulator, as well as the prototype, is available at http://self-can.icar.cnr.it.

In the experiments, the Pgen probability is set to 1.0, which means that each new or
reconnecting peer issues one mobile agent. When a peer connects, its connection time
is decided according to a Gamma distribution with the mean value that is typical of the
peer. When the connection time expires the peer disconnects, and after a time interval
generated in the same fashion, it reconnects to the network. The average connection
time for all the peers, Tpeer, is set to 5 hours. After receiving an agent, a peer forwards
it to the next peer after a random interval Tmov. Since the Self-CAN procedures can
be accelerated or decelerated by tuning the value of Tmov, this parameter is used as a
time unit and the performance results versus time are reported accordingly.

Experiments were performed to evaluate different aspects: the capacity of the algo-
rithm to fairly distribute and sort the resource keys over the multidimensional space,
the efficiency and effectiveness of resource discovery operations, for both punctual and
range queries, the traffic load, the dynamic behavior. All these aspects are described
in the rest of this section, starting with analyzing the balance of load among the peers
and the robustness of Self-CAN to the distribution of key popularity.

4.1. Load Balancing and Impact of Key Popularity

An important feature of Self-CAN is its capability of fairly distributing the load among
the peers. In this respect, Self-CAN has two important advantages when compared
to CAN.

(1) In CAN, the number of keys stored by a peer is proportional to the volume of the
zone assigned to the peer; for this reason, CAN introduces a “uniform partitioning”
technique to balance the zones assigned to peers. In Self-CAN, the multidimen-
sional structure is not used to assign keys to peers, but as a substrate that allows
ant agents to order the keys. Therefore, the volume of the zone assigned to a peer
has no effect on the number of keys that the peer stores, and there is no need to
devise a technique for uniform partitioning.

(2) Even with the use of improved partitioning strategies, CAN cannot guarantee a
true load balancing in the case that some keys are more popular than others:
these keys put a higher load on the peers that host them. Self-CAN adaptively
distributes the keys over the peers irrespective of the distribution of key popular-
ity, which is often nonuniform [Goh et al. 2005]. Furthermore, Self-CAN is also
robust to the fact that key popularity changes over time, since in P2P systems new
objects often become the most popular quite rapidly [Gummadi et al. 2003].

To illustrate the behavior of Self-CAN with nonuniform popularity, we set two sim-
ple experiments, for a network with D = 2 and Np = 64. In the first experiment, the
keys can have values from 0 to 7 for each dimension, the centroids are assumed to be
uniformly spaced, and all the keys are the same as the local centroid. All the peers
store 20 keys except the four central peers, which store 50 keys. This scenario is de-
scribed in the top part of Figure 9. The label N/M on each peer means that N keys are
stored by the peer, of which M belong to the four most “popular” classes, which are (3,
3), (3, 4), (4, 3) and (4.4). For example, the first peer of the first column has centroid

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:17

Fig. 9. Distribution of keys for the load balancing test, at the beginning of the process (top) and in steady
situation (bottom).

(0, 0), and stores 20 keys with the same value. The fourth peer of the fourth column
has centroid (3, 3) and stores 50 such keys.

The algorithm is started in this unbalanced situation and, after about 500 time
units, the system gets to a steady situation. A snapshot, taken at this point, and de-
picted in the bottom part of Figure 9, shows that popular keys have been diffused from
central peers to their neighbors, and load balance is much fairer than at the beginning.
This new equilibrium is the result of two phenomena: on the one hand, keys tend to
diffuse out of heavily loaded peers, because agents perform pick Bernoulli trials on
a larger number of keys; on the other hand, pick and drop operations tend to keep
similar keys close to each other. The first phenomenon improves load balancing, while
the second one facilitates resource discovery operations, because target keys are bet-
ter clustered. Interestingly, we found that this equilibrium can be biased towards one
behavior or the other by tuning the parameters αp and αd of pick and drop probability
functions.

To show this, we varied the values of either αp or αd, setting the other parameter to
the value αp = 0.2 or αd = 0.5. For each test, we computed the ratio Lh/Lm, where Lh is
the average load (number of keys) of the four central peers, and Lm is the average load
of all the peers. Figure 10 shows the values of the ratio in steady conditions, which
are much lower than at the beginning (when the ratio is about 2.5). Notice that the
trend is not monotonic and the values of αp and αd can be tuned to optimize the load
balancing.

For the second experiment, instead of using the ad-hoc distribution adopted for the
first experiment, we used a more realistic distribution of key popularity. A statistical
study on the resources shared by a P2P system is presented in Goh et al. [2005] and
is founded on real data provided by Gnutella and Napster. The study shows that the
popularity of songs, within a genre, follows a Zipf distribution. Indeed, this assumption
is shared by many works on P2P and Web systems. Accordingly, for the same scenario
as shown previously, with D = 2 and Np = 64, we assumed that each peer publishes 50

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:18 R. Giordanelli et al.

Fig. 10. Trend of the ratio Lh/Lm versus αp and αd.

Fig. 11. Distribution of keys for the test with Zipf popularity distribution. For each peer, the snapshot
shows the coordinates of the most popular key and, below, the number of such keys and the total number of
keys stored locally.

keys that can have values from 0 to 15 for each dimension, and that the frequency of
value i, for each dimension, follows the Zipf distribution: it is equal to c/(i + 1)(1−θ). In
this expression, c is a normalization constant to ensure that the sum of frequencies is
equal to 1, and the parameter θ , which in general can assume values between 0 and 1,
is here set to 0.5. Thus, the most popular value of each dimension is 0, and popularity
is monotonically decreasing so that 15 is the least popular value. This means, for
example, that about 2.2% of the keys have value (0, 0), while only 0.14% of the keys
have values (15, 15). A snapshot of the network, taken after the keys have been sorted
and redistributed, is shown in Figure 11. For each peer, we report the value of the
most popular key held in the peer, in the form (kx, ky), the number of such keys Nmax
and the total number of keys stored locally, Ntot: the last two quantities are separated
by the “/” character. Beyond confirming that the keys have been actually sorted,6 the
figure shows that the load is balanced, thanks to the fact that the most popular keys
are spread in a few adjacent peers. For example, the key (0, 0), that is the key with the
highest popularity, is also the most popular key in 6 peers (4 in the top left corner and
2 in the bottom left corner), and the value of Nmax is higher than the average in such

6Clearly, the centroids are sorted as well. The centroid of each peer either coincides or is very similar to the
most popular key stored in the peer.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:19

Fig. 12. Average, 10th and 90th percentile of the number of keys stored by peers, when using the Zipf and
the uniform popularity distribution, with different values of the number of resources published by a peer.

peers. In contrast, in none of the peers, the most popular key has value 15 in any of
the two dimensions.

To analyze the possible impact of the popularity distribution, the same experiment
was executed assuming a uniform popularity of keys. Then, the average, the 10th and
the 90th percentile of the number of keys stored by a peer were reported for the two
experiments. The comparison, reported in Figure 12, shows that the load distribution
is very similar: the 90th percentile is only moderately higher when using the Zipf
distribution.

It is also interesting to consider the different behaviors of Self-CAN and CAN in the
case of Zipf popularity. In CAN, the peers tend to equally share the space of keys, which
means–for the scenario previously described–that a peer may be required to manage
the keys with values (0, 0), (0, 1), (1, 0) and (1, 1), and another peer the keys (14, 14),
(14, 15), (15, 14) and (15, 15). Considering the Zipf popularity of keys, the former peer
would manage about 210 keys, while the latter less than 20 keys: clearly, the resulting
load balance would be much worse than the one shown in Figure 11.

4.2. Analysis of the Reordering Process

The reordering of keys can be considered successful if: (i) the peer centroids are sorted
and spaced along the different dimensions, so that the keys are also sorted among
peers, and (ii) the keys are clustered, that is, in each peer they are similar to each
other.

To valuate the first characteristics effectively, we focus now on uniformly distributed
popularity of the keys and assess whether the distance between peer centroids is also
uniform. We compute the average distance, in the space of resource keys, between two
“consecutive” centroids, that is, the centroids of two adjacent peers. As definition of
distance, we consider the Manhattan distance. In a perfectly ordered network, if Li is
the number of distinct values that can be assigned to the coordinate i of a key, and Ni
is the number of peers that cover the corresponding dimension of the peer space, the
average distance between the centroids of two peers that are adjacent along dimension
i must be comparable to Li/Ni.7

Let us consider the case in which the space of keys is a hyper-cube, that is, the
number of admissible key values is the same for each dimension, and the number of
peers Np is equal to the number of resource classes Nc, being each class associated
to a specific value of the multidimensional key. In this case, the expected Manhattan

7If two peers are adjacent along dimension i, the distance on the other dimensions is null or very small.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:20 R. Giordanelli et al.

Fig. 13. Average Manhattan distance between consecutive centroids in networks with different size.

distance between two consecutive centroids, regardless the dimension on which the
peers are adjacent, should be comparable to D

√
Nc/

D
√

Np = 1.
Figure 13 shows the trend of the centroid distance in four experiments in which

the values of Nc and Np are varied from 64 to 4096, and the number of dimensions D
is equal to (log2 Np)/2. In these experiments, it is assumed that the average number
of resources published by a peer is extracted from a Gamma probability distribution,
with average equal to 15. Each coordinate of the key is generated randomly in the
range between 0 and D

√
Nc − 1. At the beginning, key values are distributed randomly

in the network. At time 0, the sorting algorithm is started and the keys are sorted
through the operations of Self-CAN agents.

The figure shows that the average value of the centroid distance rapidly converges
to the expected value, confirming that the centroids are reordered correctly and effi-
ciently. The time to convergence increases with the number of peers, but convergence
is reached at between 300 and 500 time units in all the considered cases. If, for exam-
ple, the time Tmov is 5 s, this corresponds to a time between 25 and 40 minutes. Notice
that these experiments are performed starting from a chaotic situation, in which the
keys and the centroids are completely disordered. In a real situation, the peers join
and leave the network gradually, and the publishing/removal of resources is also grad-
ual: the correct and gradual placement of a relatively small number of new keys, in
a network that is already ordered, is a much easier and faster task. This issue is
discussed in Section 4.5.

The clustering property is assessed by verifying whether the keys placed on a peer
are similar to each other. To this aim, the homogeneity function of a peer, Hp, is
defined as:

Hp = 1 −
∑

(kx,ky) d(kx, ky)

nk
(7)

where d(kx, ky) is the normalized Manhattan distance between two keys, kx and ky,
which are stored by peer p, and nk is the number of such couples. The homogeneity
function of a peer can assume values between 0 and 1, and higher values correspond to
high degrees of clustering in the peer. The overall homogeneity function, H, is defined
as the value of Hp averaged over all the peers. In a disordered network, with randomly
distributed resources, the homogeneity function is equal to about 0.5. As the keys are
reordered and clustered, the value of H should become increasingly higher. This is
confirmed by Figure 14, that shows the overall homogeneity function computed during
the experiments described previously. The value of H, after a rapid increase in the
transient phase, stabilizes to a value higher than 0.90. It can be noticed that the index

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:21

Fig. 14. Overall homogeneity function in networks with different sizes.

Fig. 15. Average Manhattan distance between consecutive centroids in a network with fixed size and dif-
ferent settings for the key space vector Sk.

is hardly affected by the network size, which is a sign of the good scalability properties
of Self-CAN.

In Self-CAN, the keys can be defined in a flexible way, and the range and number
of admissible values can be different for each dimension. To test this aspect, let keys
range be 0...Li-1 for dimension i, with i = 1...D, and define the key space size through
the vector Sk = (L1, L2, .., LD). The overall number of classes Nc is, thus, equal to∏D

1 Li. In the case, that the Li values are not all equal, the space of keys is not a
hyper-cube, but a D-dimensional hyper-rectangle.

Figure 15 shows the average Manhattan distance between consecutive centroids in
a network with fixed size, 256 peers, and different settings for Sk. In the first three
experiments, the number of dimensions is set to 4, and the number of admissible at-
tribute values is set to 4, 8, and 16 for each dimension. The average centroid dis-
tance converges to values slightly higher than the minimum possible values, which
are, respectively, 1, 2, and 4. In the other two experiments, the space of keys is a
3-dimensional hyper-rectangle: also, in these cases, the ants sort the keys rapidly.

4.3. Performance of the Discovery Procedure

Before analyzing the performance of the discovery process, it must be verified that the
keys with a specified value can be retrieved in the peers whose centroids have equal or
similar values. If this is true, a search for a target key can be converted in a search for
a peer centroid. Figure 16 shows the histogram of the Manhattan distance between
a key and the local centroid, evaluated over all the keys of a Self-CAN network with

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:22 R. Giordanelli et al.

Fig. 16. Histogram of the Manhattan distance between a key and the local centroid: before the start of the
sorting process (left plot), and in a steady condition (right plot).

Fig. 17. Percentage of discovered keys in networks with different sizes.

256 peers, 256 resource classes, and key pattern Sk = (4, 4, 4, 4). The figure reports the
histogram observed before the start of the sorting process and in a steady condition.
Notice that whenever the centroid coordinates are integer values, as is usually the
case, the distance is integer also. Occasionally, the centroids have fractional values
over some dimension and, correspondingly, the keys have fractional distances from
them; since this occurs rarely, the histogram has low values for fractional distances.
Before the process starts, when the keys are placed randomly, the average Manhattan
distance between two keys is 4, since the average distance along each dimension is 1,
that is, one forth of the facet length measured in the key space. In fact, the distribution
of the distances between key and centroid (left plot of Figure 16) is centered on a value
slightly lower than 4, and has a typical Gaussian shape. In a steady condition (right
plot of the same figure), about 60% of the keys are exactly equal to the local centroid,
and almost all the remaining keys have a distance from the centroid equal to 1. This
means that the coordinates of the key and the centroid are equal on at least three
dimensions, and may only differ by 1 along a single dimension. The percentage of
Manhattan distances higher than 1 is negligible. Therefore, a search process can find
about 60% of the keys having a specified value in the peer whose centroid is equal or
very similar to the key, and the remaining keys in the 2D adjacent peers.

Figure 17 shows the average percentage of discovered keys with respect to the over-
all number of keys that have the target value; keys are searched for while they are
being ordered starting from a chaotic initial distribution. In these experiments, the
key space is a hypercube, and the number of admissible values of keys is 4 for each

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:23

Fig. 18. Average, 1st and 99th percentile of the path length of discovery procedures in networks with dif-
ferent size.

dimension. The figure confirms that discovery procedures find practically all the keys,
once they have been ordered by the ant-based process.

For the same experiments, the average path length is reported in Figure 18, along
with the 1st and 99th percentiles. The average number of hops of search messages is
comparable to (log2 Np)/2; as discussed in the introductory section, this is the same
value obtained using the basic CAN system. Therefore, Self-CAN preserves this fun-
damental property of CAN, despite not being obtained with a predefined association
between keys and hosts, but through the self-organizational behavior of the ant al-
gorithm. The 99th percentile is always comparable to log2 Np, which means that the
logarithmic behavior is ensured also in the most unfortunate cases. These experiments
were repeated assuming a Zipf distribution of key popularity for each dimension. The
statistics on path length are practically identical, so they are not reported.

4.4. Performance of Range Queries

In Section 3.4, two approaches were defined to serve range queries: sweep up and
explosion. To compare the two approaches, a set of experiments are performed in a
network with D = 5, key pattern Sk = (4, 4, 4, 4, 4), and 1024 peers. The range of tar-
get keys is defined by a vector Rk, whose ith element specifies the size of the range
of values that are searched for in dimension i. Two cases are considered. In the first
one, Rk = (3, 3, 1, 1, 1) specifies a range of size 3 (the key can have any of three con-
tiguous values) over the first two dimensions and a specific individual value over the
remaining dimensions. In the second case, Rk = (3, 3, 3, 1, 1) means that the target re-
gion is extended in the third dimension. Figure 19 shows the average percentage and
number of discovered keys, and the average number of contacted peers. The sweep-up
approach finds all the keys in the defined range, but the number of contacted peers is
considerably higher. Conversely, the explosion approach finds a fraction of the target
keys by examining a smaller number of peers. The difference between the two ap-
proaches increases with the volume of the target region. Indeed, with the sweep-up
approach, the number of contacted peers is of the order of the product of the elements
of Rk, while it is simply of the order of the sum of the elements of Rk with the explosion
approach. The appropriate approach should be chosen depending on the application
requirements: for example, in an OLAP analysis [Pedersen and Jensen 2001] the user
may want to find all the target keys, while s/he could accept finding several results
(but not all) if the goal is to find a set of Grid or Cloud hosts with given requirements.

As a conclusive remark, both strategies are feasible because the ordered keys are
allowed to have semantic values, associated to resource attributes. In classical struc-
tured P2P systems, the key values are spread by hash functions, therefore range

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:24 R. Giordanelli et al.

Fig. 19. Percentage of discovered keys (the absolute number is also indicated on top of the bars) and number
of contacted hosts with sweep-up and explosion approach, for two types of range queries. The network has
1024 peers and the key pattern is Sk = (4,4,4,4,4).

queries are usually served by issuing as many queries as the punctual key values
included in the target range, or by using additional structures. For more comments on
this issue, please see the related work section.

4.5. Network Load and Dynamic Behavior

Self-CAN improves CAN also in terms of network and processing load. In a structured
system like CAN, the keys of new resources, for example those published by new or
reconnecting peers, must be immediately placed in specified hosts: this can originate a
high network load if many resources are published in a short interval of time. In Self-
CAN, the network load is invariant because a new peer does not need to perform any
additional operation8: the keys of the new resources will be picked by the agents that
pass by this peer, what changes is the frequency of successful pick and drop operations
performed by the agents. Moreover, the agent load experienced by a single peer does
not depend on the network size (see the evaluation of load for the generalized ant-
inspired approach in Section 2), which confirms the scalability properties of Self-CAN.

The results discussed in Sections 4.2 and 4.3 show that the Self-CAN agents can re-
order the keys starting from a completely disordered network. Normal circumstances
are much less stressful: if the network grows gradually, the correct sorting of the keys
can be maintained with a few agent operations. In particular, the placement of a new
key in an ordered network can be performed in logarithmic time, since it corresponds
to the discovery of the peer centroid that is the closest to the key value. In a number
of experiments performed in the same scenarios as those considered in Sections 4.2
and 4.3, a new peer joined the network when ordering of keys can already be consid-
ered stable, and published 15 resources with randomly chosen keys. After the arrival
and the pick/drop operations of 20 to 25 agents, the centroid and the keys of the new
peer were perfectly ordered.

A set of specific experiments was performed to evaluate the dynamic behavior of
Self-CAN in the case of a very intense node churn: once the reordering process has
reached a steady condition, a perturbation is generated by simulating the simultane-
ous arrival of a large number of new peers, each with 15 new resources on average.
In these tests, the number of dimensions is 5, the key space is Sk = (4, 4, 4, 4, 4), and
the initial number of peers Np is 1000. After 830 time units, a number of new peers,
specified as a percentage Pjoin of Np, join the network. The value of Pjoin was set to 5%,

8Besides the operations related to the overlay management, such as the update of the list of neighbors.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:25

Fig. 20. Percentage of discovered keys after a node churn. In a network with 1000 peers, a percentage Pjoin
of new peers join the network simultaneously.

10%, and 20%, corresponding to the simultaneous arrival of 50, 100, and 200 peers.
Figure 20 reports the percentage of target keys discovered by punctual queries be-
fore and after the node churn. The figure shows that the system returns to the stable
condition very rapidly, just through the ordinary work of agents, that is, without any
increase either in the network traffic or in the processing load of peers.

The disconnection of a peer is also simple to manage: if the peer leaves the network
gracefully, the keys are passed to the adjacent peers, and moved by agents if necessary.
To handle the abrupt disconnection of a peer, a mechanism is necessary, based on
some redundancy and periodical soft-state updates among adjacent peers. Clearly, a
mechanism of this kind is needed in any P2P system, it is not a peculiar requirement
of Self-CAN.

Finally, Self-CAN is also robust with respect to changes of resource properties: if the
value of a key is modified, the key is quickly moved by the agents that, by recognizing
that the key has become an outlier in the current peer, assign a large pick probability
to it.

5. RELATED WORK

The P2P paradigm is increasingly adopted as a valuable alternative to centralized and
hierarchical architectures for the management of large-scale computing systems. The
fundamental characteristics that should be provided by efficient and versatile infor-
mation systems have been individuated by the ICT community [Iamnitchi and Foster
2004; Taylor 2004] as: self-organization (meaning that components are autonomous
and do not rely on any external supervisor), decentralization (decisions are to be taken
only on the basis of local information) and adaptivity (mechanisms must be provided
to cope with the dynamic characteristics of hosts and resources).

Self-organization algorithms are often inspired by the behavior of biological sys-
tems, such as insect swarms and ant colonies [Bonabeau et al. 1999]. The basic feature
of these algorithms is that they allow complex forms of swarm intelligence to emerge,
at a high level, from the combination of simple operations performed by a multitude
of agents at the low level. These algorithms are already exploited in a wide variety of
domains, ranging from robotics to power and telecommunication systems.

Recently, swarm and bio-inspired algorithms proved capable of considerably improv-
ing the performance of P2P computer systems [Guéret et al. 2007; Ko et al. 2008]. Two
interesting examples are Anthill and BlatAnt. The Anthill project [Babaoglu et al.
2002] is tailored to the design, implementation and evaluation of P2P applications
based on multiagent and evolutionary programming. The devised system is composed

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:26 R. Giordanelli et al.

of a collection of interconnected nests. Each nest is a peer entity that makes its storage
and computational resources available to swarms of ants, mobile agents that travel
the network to satisfy user requests. BlatAnt is an ant-inspired algorithm that cre-
ates P2P overlay networks with bounded diameters [Brocco et al. 2010]. Ant-inspired
agents are used to rewire connections among nodes, which helps to limit the path
length of search messages. Both Anthill and BlatAnt system are unstructured: this
implies that discovery procedures are fundamentally “blind”, and can be inefficient in
terms of traffic load and response time, even if caching mechanisms may help to in-
crease their performance. In Self-Chord [Forestiero et al. 2010], ant algorithms proved
capable of triggering a self-organization behavior also in ring-structured P2P overlays.

As opposed to the mentioned systems, Self-CAN efficiently supports complex and
range queries on multiple attributes. This is indeed a very tough issue in P2P sys-
tems [Cheema et al. 2005], and particularly in structured ones, because the use of
DHT techniques tends to disperse the keys of similar resources into distant places of
the structure. Some types of structured systems are capable of serving range queries,
but at the cost of either maintaining complex auxiliary structures, such as tree or trie
overlays [Albrecht et al. 2008; Datta et al. 2005], or increasing the traffic load by is-
suing a number of subqueries [Andrzejak and Xu 2002]. The Squid discovery protocol
[Schmidt and Parashar 2004] uses a dimension-reducing technique, the space-filling
curve (SFC), to map multiattribute keywords to a monodimensional space, that is, a
ring overly similar to that used by Chord. This enables Squid to support queries de-
fined through partial keywords, wildcards, and ranges. However, SFCs have an impor-
tant drawback, in that a region in the multiattribute space can be mapped to different
and distant segments on the ring. In the case of a range query, a system like Squid
must then forward separate query messages to all these segments, which of course
may notably increase the response time and the network load.

Mercury [Bharambe et al. 2004], like Self-CAN, avoids the use of hash functions to
compute key values, and supports multi-attribute range queries. Mercury maintains a
routing hub–a logical collection of nodes–for each attribute. Each node within a hub is
responsible for a range of values of the particular attribute. A range query is served by
first trying to determine the most selective attribute of the query, and then driving the
query through the corresponding logical hub. However, Mercury does not scale well
with the number of attributes, because (i) a key must be replicated and inserted in as
many hubs as the attributes for which the key is given a value, and (ii) in addition to
intra-hub links, inter-hub links are also necessary to forward the query to the desired
routing hub. As opposed to Mercury, Self-CAN does not need any additional structure,
like logical hubs, thus preserving the simplicity, efficiency and flexibility of the basic
CAN overlay.

In the introductory section, it was anticipated that our article follows the research
avenue, discussed in Jelasity et al. [2009], which tries to develop flexible and config-
urable protocols that are capable of addressing any kind of overlay network. The same
paper is related to our work in another way: it presents an algorithm, namely T-Man,
which can be used to create a large class of overlay networks from scratch, including
rings, trees and toruses. Therefore, T-Man can be to used to create the type of overlay
that better adapts to the specific application domain for which our ant-inspired ap-
proach is tailored: a ring for organizing single-attribute resources, a multidimensional
torus for multiattribute resources, etc.

The HyperCBR [Castelli et al. 2008] system adopts the content-based routing ap-
proach: routing is based on message content rather than destination address. Hyber-
CBR relies on a multidimensional space where subscriptions and published events are
routed along distinct partitions, for example, along different dimensions of the overlay.
A resource discovery procedure succeeds when subscriptions and events intersect in

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

Bio-Inspired P2P Systems: The Case of Multidimensional Overlay 35:27

at least one node. The main merit of this strategy is that it can exploit the power of
pattern-based search, for example, regular expressions.

6. CONCLUSION

This article has presented a generalized ant-inspired approach that can be used to sort
the resource keys over any kind of P2P overlay. The process sorting, performed through
the pick and drop operations of mobile agents, is statistically driven, self-organizing,
and decentralized. The distribution of keys over the peers is not constrained by the
values of peer codes, as in ordinary P2P systems. This enables the possibility of pre-
serving the values of significant resource attributes into the resource keys, instead of
generating the latter with hash functions. The advantages of this approach are numer-
ous, ranging from a more efficient execution of complex queries to improved behavior
in terms of adaptivity and load balancing. This article has described how the approach
can be applied to several types of overlays, and has focused on the specific case of Self-
CAN, a self-organizing P2P system based on a multidimensional structure. Thanks
to its properties, specifically to its capacity of serving multidimensional range queries,
Self-CAN is particularly well suited to large Grid and Cloud environments.

REFERENCES
ALBRECHT, J., OPPENHEIMER, D., VAHDAT, A., AND PATTERSON, D. A. 2008. Design and implementation

trade-offs for wide-area resource discovery. ACM Trans. Internet Tech. 8, 4, 1–44.
ANDROUTSELLIS-THEOTOKIS, S. AND SPINELLIS, D. 2004. A survey of peer-to-peer content distribution

technologies. ACM Comput. Surv. 36, 4, 335–371.
ANDRZEJAK, A. AND XU, Z. 2002. Scalable, efficient range queries for grid information services. In Pro-

ceedings of the 2nd IEEE International Conference on Peer-to-Peer Computing (P2P’02). IEEE Computer
Society, 33–40.

ARMBRUST, M., FOX, A., GRIFFITH, R., JOSEPH, A. D., KATZ, R., KONWINSKI, A., LEE, G., PATTERSON,
D., RABKIN, A., STOICA, I., AND ZAHARIA, M. 2010. A view of cloud computing. Comm. ACM 53, 4,
50–58.

BABAOGLU, O., MELING, H., AND MONTRESOR, A. 2002. Anthill: A framework for the development of
agent-based peer-to-peer systems. In Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS’02). IEEE Computer Society, 15–22.

BHARAMBE, A. R., AGRAWAL, M., AND SESHAN,. S. 2004. Mercury: Supporting scalable multi-attribute
range queries. SIGCOMM Comput. Commun. Rev. 34, 4, 353–366.

BONABEAU, E., DORIGO, M., AND THERAULAZ, G. 1999. Swarm Intelligence: From Natural to Artificial
Systems. Oxford University Press.

BROCCO, A., MALATRAS, A., AND HIRSBRUNNER, B. 2010. Enabling efficient information discovery in a
self-structured grid. Future Gen. Comput. Syst. 26, 838–846.

CASTELLI, S., COSTA, P., AND PICCO, G. P. 2008. HyperCBR: Large-scale content-based routing in a mul-
tidimensional space. In Proceedings of the 27th IEEE International Conference on Computer Communi-
cations (INFOCOM’08). 1714–1722.

CHEEMA, A. S., MUHAMMAD, M., AND GUPTA, I. 2005. Peer-to-peer discovery of computational resources
for grid applications. In Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing.
179–185.

DATTA, A., HAUSWIRTH, M., JOHN, R., SCHMIDT, R., AND ABERER, K. 2005. Range queries in trie-
structured overlays. In Proceedings of the 5th IEEE International Conference on Peer-to-Peer Computing
(P2P’05). IEEE Computer Society, 57–66.

DE CANDIA, G., HASTORUN, D., JAMPANI, M., KAKULAPATI, G., LAKSHMAN, A., PILCHIN, A., SIVASUB-
RAMANIAN, S., VOSSHALL, P., AND VOGELS, W. 2007. Dynamo: Amazon highly available key-value
store. Tech. rep. http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf, Amazon.

FORESTIERO, A. AND MASTROIANNI, C. 2009. A swarm algorithm for a self-structured P2P information
system. IEEE Trans Evol. Computat. 13, 4, 681–694.

FORESTIERO, A., LEONARDI, E., MASTROIANNI, C., AND MEO, M. 2010. Self-chord: A bio-inspired P2P
framework for self-organizing distributed systems. IEEE/ACM Trans. Netw. 18, 5, 1651–1664.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

35:28 R. Giordanelli et al.

FOSTER, I. AND KESSELMAN, C. 2003. The Grid 2: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann Publishers, Inc., San Francisco, CA.

GIORDANELLI, R., MASTROIANNI, C., AND MEO, M. 2011. A self-organizing P2P system with multi-
dimensional structure. In Proceedings of the 8th IEEE/ACM International Conference on Autonomic
Computing (ICAC’11).

GOH, S. T., KALNIS, P., BAKIRAS, S., AND TAN, K.-L. 2005. Real datasets for file-sharing peer-to-peer
systems. In Proceedings of the 10th International Conference on Database Systems for Advanced Appli-
cations (DASFAA’05). Springer, 201–213.

GUÉRET, C., MONMARCHÉ, N., AND SLIMANE, M. 2007. A biology-inspired model for the automatic dis-
semination of information in P2P networks. Multiag. Grid Syst. 3, 1, 87–104.

GUMMADI, K. P., DUNN, R. J., SAROIU, S., GRIBBLE, S. D., LEVY, H. M., AND ZAHORJAN, J. 2003.
Measurement, modeling, and analysis of a peer-to-peer file-sharing workload. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03). 314–329.

HARDER, T., HAUSTEIN, M. P., MATHIS, C., AND WAGNER, M. 2007. Node labeling schemes for dynamic
XML documents reconsidered. Data Knowl. Eng. 60, 1, 126–149.

IAMNITCHI, A. AND FOSTER, I. 2004. A Peer-to-Peer Approach to Resource Location in Grid Environments.
Kluwer Academic Publishers, Norwell, MA, 413–429.

JELASITY, M., MONTRESOR, A., AND BABAOGLU, O. 2009. T-man: Gossip-based fast overlay topology
construction. Comput. Netw. 53, 2321–2339.

KLEINBERG, J. 2000. The small-world phenomenon: An algorithmic perspective. In Proceedings of the 32nd
ACM Symposium on Theory of Computing (STOC’00). 163–170.

KO, S. Y., GUPTA, I., AND JO, Y. 2008. A new class of nature-inspired algorithms for self-adaptive peer-to-
peer computing. ACM Trans. Autonom. Adaptive Syst. 3, 3, 1–34.

MANKU, G. S., BAWA, M., AND RAGHAVAN, P. 2003. Symphony: Distributed hashing in a small world. In
Proceedings of the 4th 2001 Conference on USENIX Symposium on Internet Technologies and Systems
(USITS’03).

MAYMOUNKOV, P. AND MAZIÈRES, D. 2002. Kademlia: A peer-to-peer information system based on the
XOR metric. In Revised Papers from the 1st International Workshop on Peer-to-Peer Systems (IPTPS’01).
Springer-Verlag, 53–65.

PANZIERI, F., BABAOGLU, Ö., FERRETTI, S., GHINI, V., AND MARZOLLA, M. 2011. Distributed computing
in the 21st century: Some aspects of cloud computing. In Dependable and Historic Computing. Lecture
Notes in Computer Science, vol. 6875. Springer, 393–412.

PEDERSEN, T. B. AND JENSEN, C. S. 2001. Multidimensional database technology. IEEE Computer 34,
40–46.

RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. 2001. A scalable content-
addressable network. In Proceedings of the Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM’01). 161–172.

RODRIGUES, R. AND DRUSCHEL, P. 2010. Peer-to-peer systems. Comm. ACM 53, 72–82.
ROWSTRON, A. AND DRUSCHEL, P. 2001. Pastry: Scalable, decentralized object location, and routing for

large-scale peer-to-peer systems. Lecture Notes in Computer Science, vol. 2218, 329–350.
SCHMIDT, C. AND PARASHAR, M. 2004. Enabling flexible queries with guarantees in P2P systems. IEEE

Internet Comput. 8, 3, 19–26.
STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN, H. 2001. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM’01).

TAYLOR, I. J. 2004. From P2P to Web Services and Grids: Peers in a Client/Server World. Springer.

Received October 2011; revised March 2012, April 2012, May 2012; accepted June 2012

ACM Transactions on Autonomous and Adaptive Systems, Vol. 7, No. 4, Article 35, Publication date: December 2012.

