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Transparent and Efficient Parallelization of Swarm Algorithms
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and CARLO MASTROIANNI, CNR Institute for High Performance Computing and Networks

This article presents an approach for the efficient and transparent parallelization of a large class of swarm
algorithms, specifically those where the multiagent paradigm is used to implement the functionalities of
bioinspired entities, such as ants and birds. Parallelization is achieved by partitioning the space on which
agents operate onto multiple regions and assigning each region to a different computing node. Data consis-
tency and conflict issues, which can arise when several agents concurrently access shared data, are handled
using a purposely developed notion of logical time. This approach enables a transparent porting onto paral-
lel/distributed architectures, as the developer is only in charge of defining the behavior of the agents, without
having to cope with issues related to parallel programming and performance optimization. The approach has
been evaluated for a very popular swarm algorithm, the ant-based spatial clustering and sorting of items,
and results show good performance and scalability.
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1. INTRODUCTION

Many biological and artificial systems exploit the swarm intelligence paradigm
[Bonabeau et al. 1999, 2000]: several small and autonomous entities perform very
simple operations driven by local information, and a complex and intelligent behavior
emerges from the combination of such operations. For example, the ant foraging behav-
ior investigated in Deneubourg et al. [1990a], which later inspired the ant colony opti-
mization algorithms [Dorigo and Stützle 2004], allows some species of ants to establish
the shortest path toward a food source. Such behavior emerges from the combination
of the individual operations of ants, which while searching for food follow a pheromone
substance deposited by other ants that have already discovered a food source. As an-
other example, the flocking behavior described in Reynolds [1987] allows birds to travel
in large flocks and rapidly adapt their movements to the changing characteristics of
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the environment. This behavior can be obtained by defining a set of simple rules that
are followed by individual birds. Other examples observed in nature are animal herd-
ing, bacterial growth, and fish schooling. As an example of artificial system, swarm
robotics is an approach to the coordination of multirobot systems that allows a desired
collective behavior to emerge from the interactions among a large number of physical
robots [Brambilla et al. 2013; Beni 2005; Dorigo et al. 2013].

Swarm intelligence algorithms, or briefly swarm algorithms, are heuristics that aim
to solve complex problems by imitating the swarm behaviors observed in biological
systems. Systems that rely on swarm intelligence exhibit several beneficial proper-
ties, such as the following: (1) self-organization, as decisions of individuals are based
on local information (i.e., without any central coordinator), and (2) adaptivity, as in-
dividuals can react flexibly to the ever-changing environment. The individuals of a
swarm can communicate with one another directly, or they can interact and cooperate
through the modifications of the environment, such as using a communication modal-
ity referred to as stigmergy [Grassé 1959]. Examples of swarm algorithms include
ant-based clustering and sorting [Deneubourg et al. 1990b], particle swarm optimiza-
tion (PSO) [Kennedy and Eberhart 1995], ant colony optimization (ACO) [Dorigo and
Stützle 2004], flock algorithms [Reynolds 1987], and bee algorithms [Karaboga and
Akay 2009]. Swarm algorithms proved capable of solving complex tasks, such as co-
ordinated decision making, task allocation, routing problems, and graph partitioning
[Bonabeau et al. 1999; Navlakha and Bar-Joseph 2015]. Swarm intelligence systems
can be modeled and implemented by exploiting the paradigm of agent-based computing
[Wooldridge 2002; Sycara 1998; Ferber 1999]: in such a case, the individuals of a swarm
are modeled by software agents.

The complexity and size of the problems tackled by swarm algorithms, and the large
amount of involved data, often require resorting to the parallel/distributed execution
of the algorithms. When porting an algorithm to a parallel/distributed architecture, it
is necessary to provide safe and correct management of shared data. In many cases,
the individuals operate in a territory. For example, in the case of ant-based clustering,
the goal of the individuals is to spatially cluster a set of items by moving them over
a bidimensional space, as better detailed in Section 2. In such cases, the territory
itself is a huge shared variable that requires data consistency issues to be addressed.
Concurrency issues are usually regulated through the use design and implementation
of synchronization primitives, for example, to let threads acquire and release locks on
shared data. However, the use of these primitives can lead to significant performance
degradation and poor scalability, especially when the access to territory information
is frequent and performed by a large number of entities [Pinciroli et al. 2012; Bueso
2015].

In this article, we present an approach and a software architecture aimed to the effi-
cient parallelization of the swarm algorithms for which individuals can be implemented
as agents embedded in a bidimensional territory. Our methodology exploits the space
partitioning approach, which consists of assigning different regions of the territory to
different computing servers. Data consistency issues are not tackled by resorting to
lock-based mechanisms and high-level synchronization primitives, which can impair
the execution performance and scalability. Conversely, our approach exploits a special-
purpose notion of logical time [Lamport 1978] to manage shared information properly.
Labels, such as natural numbers associated with logical time, are assigned to agents
to enforce an order to their operations and prevent any concurrent write-mode access
to shared data. Moreover, our approach offers an additional and significant benefit, in
that the management of the shared territory is transparent for the developer, who re-
mains in charge only of defining the behavior of the agents, without having to cope with
issues related to parallel/distributed programming and performance optimization.
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The remainder of the article is organized as follows. Section 2 discusses the ant-
based clustering and sorting algorithm chosen as a testbed to show the effectiveness of
the approach. Section 3 describes how the shared territory is partitioned to parallelize
swarm algorithms and fasten their execution. Section 4 describes the mechanism, based
on logical time, adopted to assign labels to agents and ensure a safe execution order
while also discussing the effect of the labeling assignment on execution performances.
Section 5 illustrates the software infrastructure that implements the approach, de-
scribes its benefits in terms of simplicity and transparency, and discusses how the
architecture can be used for different types of swarm algorithms. Section 6 shows the
performance of the parallel execution and reports a speedup analysis when varying
the problem size, the number of parallel nodes, and the labeling patterns. Section 7
illustrates related work, and Section 8 concludes the article and provides indications
about future research avenues.

2. THE ANT-BASED CLUSTERING AND SORTING ALGORITHM

The approach and the software architecture presented in this article can be used to
parallelize a large class of swarm algorithms, ranging from bird flocks to PSO to bee-
based algorithms, and so forth. For demonstration purposes, we focus on the ant-based
clustering and sorting algorithm, inspired by the behavior of some species of ants that
cluster corpses to form a “cemetery” or sort their larvae into separate piles. The basic
characteristic features of the clustering and sorting behavior of ants can be reproduced
by a simple model, first presented in Deneubourg et al. [1990b] and later extended in
Bonabeau et al. [1999], in which agents move over a territory and pick up and deposit
items on the base of local information.

If items are all of the same kind, the goal of ant-based clustering is to create regions
in which items are accumulated, leaving empty regions in between. If items belong
to several different types, or classes, the objective becomes to sort items spatially (i.e.,
separate items of different classes and cluster items of the same class). In the following,
we refer to the sorting model (i.e., to the case in which items belong to different classes),
since the clustering model can be considered as a special case of the sorting model.

The territory is modeled as a bidimensional space organized in a grid of cells. Each
agent has visibility over the items located in its own cell and in the cells distant no
more than RV cells. RV is the visibility radius, and the set of cells defined in this way
is referred to as the visibility area of the agent. Each agent contributes to the spatial
sorting of items by picking and dropping items from/to the cells. The agents perform
their operations by following a timestep advancement schema. At each timestep, every
agent moves randomly in the environment, toward an adjacent cell, and in the new cell
performs a drop or pick attempt, according to whether it already holds an item, picked
from another cell, or not. The pick and drop operations are driven by corresponding
probability functions.

Let C be the number of predefined classes, and let c = 1...C be the class of a given
item. The probability with which an agent picks an item of a given class c from the cell
where it is currently located, referred to as Ppick(c), is defined in formula (1):

Ppick(c) =
(

kp

kp + f (c)

)2

. (1)

In formula (1), f (c) gives the number of items of class c, accumulated in the cells
within the visibility area of the agent, divided by the overall number of items of all
classes that are located in the same area. As more items of a class c are accumulated
in the visibility area of the agent, f (c) increases and the value of the pick probability
for this class becomes lower, and vice versa. This has the effect of inducing agents to
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pick items that are uncommon in the visibility area and to ignore items of the class
that is being accumulated. The parameter kp is a nonnegative value used to tune the
clustering effort. In the tests performed in this work, it is set to 0.1, as in Deneubourg
et al. [1990b].

The probability that a loaded agent drops an item of class c, Pdrop(c), is defined in
formula (2):

Pdrop(c) =
(

f (c)
kd + f (c)

)2

. (2)

The drop probability increases as more items of class c are accumulated in the visibility
area of the agent. In this work, the parameter kd is set to 0.3, as in Deneubourg et al.
[1990b].

The effectiveness of the sorting algorithm can be evaluated through a spatial entropy
function, based on the well-known Shannon formula for the calculation of information
content. For each cell l, the local entropy E(l), defined in formula (3), gives an estimation
of the extent to which the items have been spatially sorted in the local area of the cell
l, defined as the area that includes the cell l and its adjacent cells. In formula (3), g(c, l)
is the fraction of items of class c that are located in the local area of the cell l with
respect to the overall number of items located in the same area:

E(l) =
∑

(c=1...C) g(c, l) · lg 1
g(c,l)

lg C
. (3)

The function E(l) is normalized so that its value is comprised between 0 and 1.
In particular, an entropy value equal to 1 corresponds to the presence of comparable
numbers of items of the different classes, whereas a low entropy is obtained when the
local area has accumulated a large number of items belonging to one specific class. The
overall entropy E is defined as the average of the entropy values E(l) computed at all
system cells. The overall entropy measures how well items are sorted in the territory.

3. PARTITIONING THE TERRITORY FOR PARALLELIZING SWARM
INTELLIGENCE ALGORITHMS

As the problem size increases, it is convenient to parallelize or distribute the execution
of swarm algorithms [Pedemonte et al. 2011; Yang et al. 2012; Twomey et al. 2010]. As
stated in Section 1, we focus on the cases that individuals can be modeled as agents
that own spatial coordinates and are embedded into the territory (spatial environment)
where they move and live [Wooldridge 2002; Ferber 1999]. We assume that the swarm
algorithm is implemented in a step-based fashion—that is, at each timestep, all agents
perform their tasks before passing to the next timestep—and that the territory is
managed as a bidimensional grid of cells. Cells can contain agents, which can move
from one cell to another, and objects. The notion of visibility radius RV , introduced in
Section 2, is exploited to delimit the visibility area within which an agent is able to
perceive the surrounding space. Analogously, the action radius RA is defined as the
distance, expressed in number of cells, between the cell where an agent resides and
the farthest cell on which that agent is able to perform modifications, and delimits the
action area.

In a parallel/distributed scenario, the territory is a huge shared variable of a concur-
rent system. A recurrent access of agents to the territory can easily become a bottleneck
that limits system performance and scalability. A solution is to partition the territory,
and its content (objects and agents), among multiple computing nodes. The territory
is split into equal-sized regions, as shown in Figure 1. Each region is allocated to a
different computing node [Cicirelli et al. 2007, 2015]. The agents located in a region
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Fig. 1. The territory is split into regions that are associated with parallel computing nodes.

Fig. 2. Border areas of two adjacent nodes.

are executed by the corresponding node. Each node operates sequentially—that is, a
nonpreemptive interleaved execution of agent actions is adopted. This partitioning re-
duces the amount of shared data and attenuates consistency and conflict resolution
issues. Indeed, two agents that are located in different regions in most cases access
different pieces of data. However, it can still happen that agents execute concurrently
and access the same data. This occurs when the visibility and/or the action area of an
agent extend beyond the boundary of the local region and include the border of an adja-
cent region. In such cases, the agent can operate on data that is concurrently accessed
by one or more agents of the adjacent region. This event generates a conflict situation
that can lead to data inconsistency.

Usually, conflict resolution and consistency are achieved by resorting to synchroniza-
tion primitives (e.g., locks), which, however, can present two main drawbacks: (1) they
can hinder the transparency of the parallelization procedure, as the developer is com-
pelled to cope with the management of such primitives, and (2) they can negatively
affect performance and scalability. Our approach allows the mentioned issues to be
tackled by using a methodology, based on logical time [Cicirelli et al. 2014], which
is able to transparently enforce a conflict-free and fair execution order on concurrent
actions. This methodology is detailed in Section 4.

To reduce internode communications and improve performance, our approach en-
sures that each agent operates only on objects hosted by the same computing node
where the agent resides. This is achieved by replicating the edge portion of a region in
adjacent nodes. This edge portion is referred to as a border of the region, as shown in
Figure 2. The border area of a given region is made up of two distinct parts: the local
border and the mirror border. The first is managed by the local node, and information
updates are replicated in the mirror border of the adjacent node. For example, infor-
mation about the updates occurred in the local border of Node 1 of Figure 2 are sent
to Node 2, which applies the updates in its mirror border. Analogously, information in
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Fig. 3. Scenario with agents conflicting on the borders of two nodes. In this example, RA = 1.

the mirror border of Node 1 is aligned with the updates occurring in the local border
of Node 2. Agents located in a border area are mirrored by means of phantom agents
(copies of the original agents that are not actually executed), whereas items are simply
duplicated. Information about the updates is exchanged by means of update messages:
at the end of each timestep, every computing node sends a single message to the ad-
jacent nodes containing information about all updates that have occurred in the local
border area during the last timestep. More details about the management of update
messages are given in Section 5.

4. USE OF LOGICAL TIME FOR CONFLICT-FREE PARALLEL EXECUTION

As mentioned in the previous section, splitting the territory and spreading the agents
over different computing nodes can raise data consistency issues. This is clarified in
Figure 3(a), which shows an example of a conflicting scenario where some agents
compete to pick the same items contained in the grey cells. As the agents operate
concurrently, two or more of them can try to pick the same item: if pick operations
are actually performed, this will lead to an inconsistent state of the algorithm. As
stated in the previous section, each node operates sequentially, and agents can execute
concurrently only if they are located on different regions. As shown in Figure 3(b), two
agents are potentially conflicting when they belong to different regions and their action
areas overlap—that is, they are separated by at most 2RA − 1 interposed cells. In the
example of Figure 3(b), RA = 1, so agents are potentially conflicting if the number of
interposed cells is equal to 1.

To prevent conflicts, we borrow the notion of logical time from the distributed systems
field. The logical time concept [Lamport 1978] is typically used to prevent causality-
constraint violations in distributed systems. In our case, logical time is used to establish
a partial order of agent executions during a given timestep such that potentially con-
flicting agents cannot execute concurrently. The logical time notion as a tie-breaking
mechanism for preventing conflicts was first used in Cicirelli et al. [2015] in the con-
text of event-driven distributed simulation. Here the approach is refined, exploited,
and evaluated for the distributed execution of swarm algorithms. More specifically, at
every timestep, labels (natural numbers) are assigned to agents so that potentially
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conflicting agents are assigned different labels. The labels are used as a logical time
that enforces a conflict-free execution order. At each timestep, every computing node
executes the agents located in its corresponding region, respecting the label ordering:
it executes all agents with label 1, then those with label 2, and so forth. To ensure
algorithm consistency during parallel execution, the nodes must synchronize among
themselves. When a node completes the execution of all agents with a given label, it
notifies this to its adjacent nodes by sending them a completion message1 and proceeds
to the next label after receiving analogous messages from them. This ensures that two
adjacent nodes cannot concurrently execute agent operations associated with different
labels.

Before providing details on the labeling mechanism, some definitions are needed.
Let us consider two cells, c1 and c2, belonging to two adjacent regions and separated by
at most 2RA − 1 interposed cells. Every two agents that are located, one in c1 and the
other in c2, are potentially conflicting, in accordance to the definition given previously.
Such two cells are called potentially conflicting cells. We then define a conflicting area
AC(i, j) of two adjacent regions Ri, Rj as the portion of the border region that includes
all couples of potentially conflicting cells (see the gray part of Figure 3(b)).

An easy fashion to perform a conflict-free labeling of agents is to first assign labels
to the cells belonging to the conflicting areas and then assign each agent the label of
the cell where it is located. Any mechanism for the assignment of labels to cells should
provide that conflicting agents are never executed concurrently. This property, referred
to as conflict-free property in the following, is guaranteed if every two potentially
conflicting cells are assigned different labels.

4.1. Labeling the Territory: Pattern and Schema

For the sake of clearness, we distinguish between a pattern and a schema: the former
determines how to assign labels to the cells of a conflicting area, whereas the latter
determines the assignment of labels to the whole territory. If the x and y coordinates
of the cells of a conflicting area are expressed starting from the left-top cell, a pattern
P(x, y) is defined as a function P : A→L that associates a set of spatial coordinates A
(where A = {(x, y) ∈ N

2 : 0 ≤ x < Dx ∧ 0 ≤ y < Dy} and Dx, Dy are respectively the
x and y sizes of the conflicting area) with a set of label L. The labeling generated by
a pattern must satisfy the conflict-free property. As an example, the pattern depicted
in Figure 4, referred to as Pattern PA, satisfies the property in the case in which the
action radius RA is equal to 2, because the number of cells interposed between two cells
located in different nodes and having the same label is always larger than 2RA − 1,
which is this case equals 3. Pattern PA assigns labels between 0 and 7 to cells, using
the following expression:

PA(x, y) =
∣∣∣∣
⌊

y%16
8

⌋
−

⌊
x
2

⌋∣∣∣∣ × 4 +
⌊

y%8
4

⌋
× 2 + (x + y)%2. (4)

More examples of pattern are discussed later.
A schema extends the pattern to the whole territory and is defined as a function

S : T →L, where T = {(x, y) ∈ N
2 : 0 ≤ x < Tx ∧ 0 ≤ y < Ty} and Tx and Ty are

respectively the x and y sizes of the territory.
The adoption of a given labeling affects the execution time and can introduce some

biasing execution constraints. Before discussing these aspects—in Sections 4.2 and
4.3, respectively—we first introduce two strategies that can be used to combine the
pattern and the schema. The first, referred to as naive strategy, consists of using a

1The update messages, used to update information on border regions (see Section 3), have the role of
completion messages as well.
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Fig. 4. Pattern PA adopted for assigning labels to cells in the conflicting area.

Fig. 5. Labeling the territory by adopting the naive strategy.

given pattern for all conflicting areas and assigning a fixed label to all other cells of
the territory (see Figure 5). This strategy ensures the conflict-free property over the
whole territory: indeed, the property is guaranteed by the pattern within the conflicting
areas, whereas a single label is sufficient in the rest of the territory, because outside
of the conflicting areas there cannot be potentially conflicting agents and therefore the
execution order is irrelevant. Given any specific pattern P̄, this strategy corresponds
to using the schema Snaive:

Snaive(P̄) =
{

P̄
((

x + Dx
2

)
%

(
Tx
NR

)
, y

)
if (x, y) ∈ A∗

C

l̂ ∈ L otherwise
, (5)

where NR is the number of regions, A∗
C is the union of all conflicting areas, and l̂ is the

fixed label assigned to the cells outside of the conflicting areas.
The second strategy, referred to as repetitive strategy, consists of replicating the

labeling defined by a pattern P̄ over the whole territory (see Figure 6). This is possible
when Tx, the horizontal size of the territory, is a multiple of Dx, the horizontal size of
a conflicting area. When adopting this strategy, the schema is defined as follows:

Srepetitive(P̄) = P̄
((

x + Dx

2

)
% (Dx) , y

)
. (6)
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Fig. 6. Labeling the territory by adopting the repetitive strategy.

4.2. Cost of Synchronization

The time needed for synchronization is an overhead time, most of which is spent by a
faster node to wait for an adjacent slower node before advancing the agents’ execution
to the next label. This overhead time increases both with the amount of load imbalance
between adjacent nodes and the number of synchronization points. These two aspects
are both affected by the labeling assignment, as illustrated in the following.

The load imbalance is minimized if the numbers of agents tagged with the same
label in adjacent nodes are made as comparable as possible. We define the label load
LLR(l, t) as the number of cells of the region R tagged with the label l at the timestep
t. Of course, the number of agents tagged with the label l is related to LLR(l, t). As a
particular case, the relationship is linear in the case in which the agents are uniformly
spread over the territory. For this reason, the minimization of the load imbalance is
related to minimizing |LLRx (l, t) − LLRy(l, t)| for any two adjacent regions Rx and Ry.
With both the basic and repetitive schemas described earlier, and depicted in Figures 5
and 6, the load imbalance is actually minimized. Indeed, the result is that the number
of cells having a given label is the same for all computing nodes, regardless of the
adopted pattern, and therefore |LLRx (l, t) − LLRy(l, t)| is equal to 0 for any two regions
Rx and Ry.

The number of synchronization points corresponds to the number of different labels
assigned to cells, as within each timestep there is one synchronization point per label.
Therefore, the cost of synchronization is affected by the labeling pattern. As an example,
the pattern PB, shown in Figure 7, uses a different label for each cell, thus generating a
large number of synchronization points. The corresponding pattern function is defined
in expression (7). Conversely, the pattern PC , shown in Figure 8, requires only two
synchronization points. The corresponding pattern function is reported in expression
(8). Unfortunately, using a low number of labels can also have negative consequences,
as described in the following section.

PB(x, y) = x + (y × Dx) (7)

PC(x, y) =
⌊

2x
Dx

⌋
(8)

4.3. Execution Constraints

The adoption of a mechanism for conflict avoidance can affect algorithm evolution.
The proposed labeling mechanism imposes a specific execution order not only among
conflicting agents but also among nonconflicting ones. As a consequence, some evolu-
tions of the algorithm, even correct and admissible, cannot occur. This can lead to two
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Fig. 7. Pattern PB adopting a different label for each cell.

Fig. 8. Pattern PC adopting only two labels.

phenomena that are illustrated in the following, referred to as biased execution and
coarse-grain execution.

The phenomenon of biased execution can have an effect when agents compete for
the acquisition of shared resources. This is due to the execution order imposed by the
labeling mechanism: the agents with a lower value of the label are executed earlier
than those with higher values and therefore have higher probabilities of gaining the
control of a shared resource. An effective approach to solve this problem is to keep the
same labeling schema along the whole algorithm execution but shuffle the label values,
and therefore modify the agents’ execution order, at every timestep.

Formally, let F = f0, . . . , fn be the set of all bijective functions fi : L → L, where
L is the set of adopted label values. A permutation of the label values is achieved by
applying the same function fi to each label. A shuffling of a schema S is obtained by
using expression (9) where, at each timestep, a different function fi is randomly chosen.
Within a timestep, the fi function must be the same for all executing nodes; the burden
of communicating the function among the nodes can be avoided by using, at each node,
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Fig. 9. Pattern PD in the case in which RV = 2.

the value of the timestep as a seed of the random generation process.

Sshuffled(x, y) = fi(S(x, y)) (9)

The second type of execution constraint is the coarse-grain execution, which is in-
duced by the fact that all agents labeled with the same value must be executed consec-
utively, with no chance of interleaving the execution of agents with a different label.
This introduces a granularity of agents’ execution that is not related to the semantics
of the application but is induced by the labeling mechanism itself. The effect of this
phenomenon can be attenuated by reducing the number of cells having the same label,
which corresponds to increasing the number of adopted label values. As an example,
in the case of pattern PC (see Figure 8), the coarse-grain execution phenomenon oc-
curs and can have a nonnegligible effect. Conversely, when using the pattern PB (see
Figure 7), the phenomenon does not occur, because all cells have different labels, but
the excessive number of labels can cause a remarkable cost of synchronization, as dis-
cussed in Section 4.2. The coarse-grain execution phenomenon can be avoided even
with a lower number of labels than the one used by PB. In practice, it is sufficient that
any two agents that potentially interfere with each other (i.e., such that their distance
is at most RV cells) are labeled differently. The pattern PD, depicted in Figure 9 and de-
fined by expression (10), satisfies this property and can be used in place of the pattern
PB, with the advantage of using only (RV + 1) · Dx different labels.

PD(x, y) = x + (y%(RV + 1) × Dx) (10)

As a conclusive remark, it is observed that the number of different labels used in the
assignment pattern has two opposite effects: a larger number of labels increases the
number of synchronization points, possibly deteriorating the execution performance,
but alleviates the problem of coarse-grain execution. Therefore, the assignment pattern
should be chosen depending on the relative importance of these two aspects, which must
be evaluated in any specific scenario. More specifically, execution constraints can be a
problem when the assignment of a shared resource on one (class of) agent or another is
important, such as when a score is assigned to each agent, or in pray-predator contexts.
In such cases, the domain expert can be asked to evaluate the proper trade-off between
the possible issues caused by execution constraints and the cost of synchronization. In
other domains, execution constraints are not a problem, as in the case of the ant-based
clustering and sorting algorithm, where all ants concur and cooperate to achieve the
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Fig. 10. Architecture in a sequential scenario.

same objective, with no regard on the partial performance of single agents or classes
of agents. In such contexts, the labeling pattern can be chosen focusing only on the
objective of minimizing the cost of synchronization.

5. IMPLEMENTATION

This section has three main goals: (1) to supply technical details to clarify the proposed
methodology; (2) to show how our approach ensures that swarm algorithms can be
transparently ported from a sequential to a parallel scenario, with no changes in the
implementation code; and (iii) to give hints on how some well-known swarm algorithms
can be implemented upon our infrastructure. In the following, we first describe the
sequential execution scenario to introduce the basic components of our architecture.
Then we analyze the parallel execution context and focus on the mechanisms involved
in the transparent parallelization.

Our infrastructure, written in Java,2 is composed of two coarse-grain architectural
layers: the Agent layer and the Middleware layer. The former contains the agents that
implement and execute the operations of swarm individuals. The latter implements
the mechanisms and protocols described in the previous section and contains two
main components: the Territory component, which copes with the management of the
territory, and the Control Machine, which executes the main control loop through which
the agent operations are executed step after step. Figure 10 focuses on the sequential
scenario. The figure shows the two layers of the software architecture and the main
involved components, and it suggests how the layers and the components interact with
each other.

The two layers interact through two software interfaces: the Territory interface and
the Agent interface. The Territory interface is used by agents to read/write the ter-
ritory space regardless from the specific implementation of the Territory component.
Analogously, the Agent interface is used by the Control Machine to execute the agent
operations regardless of the specific nature of the agents and the implementation of
their functionalities. This decoupled structure facilitates the transparent porting from

2The source code of the software is available at http://apswarm.icar.cnr.it.
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Fig. 11. The Territory and Agent interfaces.

the sequential to the parallel case. Indeed, the correct use of the Territory interface
is the only requirement that an agent must satisfy to execute the code independently
of the type of execution scenario, sequential or parallel. Once they respect this re-
quirement, agents are free to define and use any data structure and perform all of
the computation they need. All mechanisms and details related to the parallelization
process, as described in this article, are managed behind the scenes by the Territory
component and by the Control Machine, as will be better specified in the following.

The two mentioned interfaces are shown in Figure 11. The Agent interface only
contains the executeStep method that must be implemented by any agent to define its
behavior. The Territory interface consists of a set of methods that allow an agent to
pick/drop another agent/object from/to a specific cell of the territory, to move itself or
another agent from a cell to another, and to read data of objects/agents located in a
specific cell. This interface contains the minimal set of methods needed to support the
interactions between the agents and the territory in swarm algorithms. Obviously, the
specific subset of required methods depends on the specific swarm algorithm. Some
illustrative examples will be given at the end of this section.

Figure 12 shows the software architecture in the parallel execution context. The
entire system is composed of a set of interconnected computing nodes or servers, which
communicate among each other a through the exchange of messages. Each server has
the same architecture as in the sequential scenario, except it includes one more com-
ponent on the Application layer, the Node Actor, and one more interface, the Node
interface, which concern the management of operations not assigned to agents. These
two components will be described later. There is also one more component on the Mid-
dleware layer, the Agent Label Manager, which is in charge of dynamically managing
the relationship between agents and labels. The Agent Label Manager assigns the la-
bels to the cells at each timestep and ensures that the Control Machine executes the
agent operations respecting the labels ordering (see Section 4). More specifically, the
Control Machine iterates on labels and, for each label, asks the Agent Label Manager
the set of agents tagged with the current label so as to execute their operations. To
support this functionality, the Agent Label Manager is notified by the Territory about
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Fig. 12. Architecture in a parallel scenario with two servers.

any change in the locations of agents, as any agent movement induces a modification of
its label. Figure 12 also shows that the Control Machine, besides being in charge of ex-
ecuting the main control loop, manages the update messages and the synchronization
points. The update messages contain information about all of the changes occurring in
the local borders that need to be sent to neighbor nodes. Left and right update messages
respectively contain the update occurrences relative to the left and right local borders.

While in the sequential scenario the Territory component manages the entire ter-
ritory space, in the parallel scenario it only manages the region assigned to the local
server and the associated mirror borders. The Territory component is in charge of
collecting the modifications occurring in the local borders. More specifically, when an
agent uses one of the functionalities that modify the state of the environment (i.e.,
pickAgent, dropAgent, moveAgent, pickObject, dropObject), and the coordinates refer
to a cell contained in the left/right local border, the Territory component transmits
the relevant information to the Control Machine, which stores it respectively into the
left/right update message that will be sent to the left/right neighbor server.

The mechanisms described previously require no changes in the agent code, as they
are transparently managed by the Middleware layer. However, the agents still need
to notify the Control Machine about the modifications of their own state, as these
modifications are not detected by the Territory component. To preserve the main ob-
jective of the proposed architecture (i.e., the transparent porting from the sequential
to the parallel execution context), this operation must be tackled without modifying
the agent code. For this purpose, we adopt an aspect-oriented programming (AOP)
technique [Kiczales et al. 2001]. AOP provides mechanisms to transparently change
the source code in a dynamic fashion, at runtime, through the so-called Interceptor,
a software entity included in the Middleware layer. In our case, when a modification
occurs in the state of an agent located in the local border, the Interceptor captures the
modified data and transmits it to the Control Machine. Hence, the Interceptor relieves
the agent to cope with this aspect and allows the agent source code to not be altered.

Swarm algorithms can include the execution of operations not assigned to agents.
Such operations are executed on all parallel nodes (e.g., the pheromone update in the
case of ACO algorithms) and/or on a unique node, which takes the role of Coordina-
tor and performs centralized operations (e.g., the computation of global metrics). In
both cases, such operations are defined by the developer by supplying a Node Actor
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Fig. 13. The Node interface.

component, which implements the Node interface, as depicted in Figure 12. The Node
interface includes two methods, reported in Figure 13: the first, nodeStep, addresses
the operations related to the local region and can collect information and produce mod-
ification upon all cells of the region. For example, if the swarm algorithm needs to
manage pheromone trails (as in the ACO algorithms), the method can be used to exe-
cute the pheromone evaporation function on all cells of the region. The second method
of the interface, globalStep, addresses operations related to the whole territory. The
coordination of the two types of operations is ensured by the Control Machine that
invokes the nodeStep method at each server and the globalStep method only at the
Coordinator server. More precisely, the output of the nodeStep method of each server is
sent to the Coordinator server, which collects all received data and uses it as input for
the execution the globalStep method. As an example, let us consider the computation of
the overall entropy defined in Section 2. The nodeStep method, executed at each server,
computes the entropy value of the local region and returns it to the Control Machine,
which sends the value to the Coordinator. The globalStep method, executed at the Co-
ordinator server, analyzes the data received by the different servers and computes the
overall entropy.

The pseudocode of the Control Machine loop is presented in Algorithm 1. The loop
iterates on steps and, for each step, on labels. For a given step and label, the loop
iterates on the agents tagged with that label. Each agent is triggered for execution by
invoking its executeStep method (line 4). During the execution, the local border updates
are properly stored in the left and right update messages. When the Control Machine
terminates the execution of the agents associated with the current label, it executes the
sync function (line 6), where the update messages are exchanged with Control Machines
of the neighbors. To prevent deadlocks, first the Control Machine sends the messages
to its neighbors, then it waits for the neighbors’ messages (lines 12 through 15). After
receiving the left and right messages, the Control Machine triggers the territory to
update the information carried by these messages into the mirror borders of the local
node (line 16). At the end of each step, the labels are shuffled (line 8) to avoid or at
least reduce the biasing phenomenon described in Section 4.3. The doStepBehaviour
function is called at the end of each step (line 9). In this function, the nodeStep of
the Node Actor component is called and its output is sent to the Coordinator server
(lines 19 and 20). The subsequent piece of code (lines 22 and 23) is executed only in the
Coordinator server. Its objective is to wait for the data coming from the servers, collect
such data, and then perform the globalStep method of the Node Actor component with
that data as input. At this point, a new invocation of the sync function (line 25) ensures
that all territory modifications are finalized before advancing to the next step.

The approach and the architecture presented in this article can be used to parallelize
swarm intelligence algorithms transparently, specifically in the cases in which agents
are embedded and operate in a bidimensional territory.3 Any specific algorithm is
modeled by defining the components of the Application layer (i.e., the Agents and the
Node Actor) and the way in which these components interact with the territory through

3The architecture can be naturally extended to manage three or more dimensions. With the current version,
however, a multidimensional territory must first be reduced to a bidimensional space through a dimension
reduction technique.
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ALGORITHM 1: Control Machine Loop
1: for each step s do
2: for each label l do
3: for each agent A having label l do
4: A.executeStep();
5: end for
6: sync();
7: end for
8: shuffleLabels();
9: doStepBehavior(s);
10: end for

11: function SYNC

12: sendLeftUpdateMessage();
13: sendRightUpdateMessage();
14: msgL ← waitForLeftNeighborMessage();
15: msgR ← waitForRightNeighborMessage();
16: Territory.updateMirrorBorders(msgL, msgR);
17: end function

18: function DOSTEPBEHAVIOR(int step)
19: thisRegionData ← NodeActor.nodeStep(step);
20: sendToCoordinator(thisRegionData);
21: if (this is the Coordinator) then
22: regionData[] ← waitForRegionData();
23: NodeActor.globalStep(regionData[])
24: end if
25: sync();
26: end function

the Territory interface. In the following, we give some details on how some well-known
swarm algorithms can be implemented:

—Ant-based clustering and sorting: An agent of the ant-based algorithm described
in Section 2 uses the moveAgent method of the Territory interface (Figure 11) to
move itself across the territory and the dropObject/pickObject method to drop/pick
an item to/from a cell. In addition, an agent explores its neighbor cells by using
the readObjects method. Furthermore, the Node Actor implements the nodeStep and
globalStep methods of the Node interface (Figure 13) to compute the local and overall
entropy, as described previously.

—Flocking: The flocking behavior of birds, fish, or insects was modeled in Reynolds
[1987] through agents (also called boids) that “fly” across a data space (e.g., to
search interesting information). In our context, each agent moves to its next position
(through the moveAgent method) after inspecting (through the readAgents method)
the state of its neighbor agents, according to Reynolds’ rules [Reynolds 1987]. Once
in the new position, the agent uses the readObjects method to explore the local data
and verify whether it has some desired properties. The nodeStep and globalStep
methods of the Node Actor are used to collect and process the information discovered
by agents respectively within each region and on the whole territory.

—Particle swarm optimization: Agents move in a territory corresponding to the search
space of an optimization problem [Kennedy and Eberhart 1995]. In one of the most
typical versions of the algorithm, the movements of each agent (performed through
the moveAgent method) are influenced by the current best solution found by the
agent itself, as well as by the current global best solution found by all agents. The
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global best solution is stored and managed by the Node Actor and is updated each
time an agent finds a better solution.

—Ant colony optimization: ACO algorithms are used to solve a large class of combi-
natorial optimization problems by taking inspiration from the foraging behavior of
some species of ants [Dorigo and Di Caro 1999]. In this context, the paralleliza-
tion that can be enabled by our methodology is of the kind proposed in Lin et al.
[2007] (i.e., decompose the problem in subcomponents, with each subgraph assigned
to a different node). In the case of the traveling salesman problem (TSP), this cor-
responds to assigning a subset of cities to each node. The current version of our
infrastructure needs to be adapted, as ACO agents move across a graph structure
instead of a bidimensional territory. Specifically, the Territory interface, shown in
Figure 11, must be implemented so as to let a location identify a node of a graph
rather than a cell of a bidimensional territory. Centralized operations of the ACO
algorithm (i.e., pheromone update and local search) are performed through an ad hoc
implementation of the Node Actor methods.

6. EXPERIMENTAL RESULTS

Performance evaluation was carried out for the ant-based sorting algorithm, used
to spatially cluster items belonging to different classes, illustrated in Bonabeau et al.
[1999], and summarized in Section 2. Our goal is twofold: (1) show that our methodology,
while preventing data consistency issues, ensures a high degree of scalability in a wide
set of scenarios, and (2) show the effect of the pattern (i.e., the assignment of labels to
cells and agents in the conflicting areas (see Section 4)) on performance.

The adopted testbed is configured as follows. The number of items ranges between
60,000 and 600,000, and they are uniformly spread over a bidimensional grid of 240 ×
100 cells. Items belong to a number of classes C between 3 and 9. The number of ant-like
agents is proportional to the number of items and spans between 30,000 and 300,000.
Each cell can be empty or contain one or more items and agents. The experiments
were carried out on a cluster in which each computing node has and Intel Xeon E5-
2670 CPU with 2.60GHz and 128GB RAM. The nodes are interconnected with an Intel
Corporation I350 Gigabit Network.

To show how the ant algorithm clusters the items, Figure 14 reports three snapshots
of the system taken before starting the algorithm, in an intermediate state, and when
clustering has been achieved. The snapshots are taken for the scenario in which items
belong to three classes and the visibility radius RV is set to 10.

The value of the overall entropy, as defined at the end of Section 2, is computed every
1,000 steps and decreases as the algorithm proceeds, confirming its effectiveness. The
system is considered stable when 10 successive values of the entropy differ among
themselves no more than 1%: this is used as a stop criteria for the algorithm.

Before analyzing the parallel execution of the algorithm, we analyze its behavior
when it is executed on a single node in some of the use cases of interest. Figures 15
and 16 show the behavior when varying the number of classes and the visibility ra-
dius, respectively. Specifically, Figure 15 shows that the entropy decreases from values
close to 1 to values lower than 0.2, confirming that the items have been effectively
clustered. The curves stop when the algorithm terminates its execution. It is noticed
that as the number of classes C increases, the stable value of entropy decreases and
the convergence of the algorithm is slightly faster. In these tests, the visibility radius
RV was set to 5. The value of RV can be used to tune the size of the clusters, such as
those of the areas containing items of the same class: larger clusters are obtained with
larger values of RV . Figure 16 shows the results of experiments in which the number
of classes is set to 3 and the visibility radius ranges between 3 and 10. As the RV value

ACM Transactions on Autonomous and Adaptive Systems, Vol. 11, No. 2, Article 14, Publication date: May 2016.



14:18 F. Cicirelli et al.

Fig. 14. Evolution of the ant-based sorting algorithm. The items belong to three classes, which correspond
to the RGB colors. When a cell contains items of different classes, the color of the cell corresponds to the
dominant class, and the color intensity is proportional to the number of items of the dominant class.

Fig. 15. Entropy curves using different values of C, the number of classes, with the visibility radius RV set
to 5. The curves stop when the algorithm terminates its execution.

increases, the algorithm needs more steps to converge, and it converges to larger values
of entropy.

It should be remarked here that we obtained the same behavior as the one illustrated
in Figures 15 and 16 both in the case of parallel execution and when the algorithm is
executed outside our infrastructure. This mirrors the fact that the adopted approach
does not alter the algorithm evolution.

In Section 4, we discussed the effect of the cell labeling pattern, in a parallel exe-
cution context, on the cost of synchronization and on the possible presence of execu-
tion constraints. We recall here that a lower number of different labels reduces the
cost of synchronization but can induce some execution constraints (i.e., the coarse-
grain execution phenomenon). As discussed in Section 4.3, in the case of the ant-based
clustering and sorting algorithm, execution constraints are not a problem because all
of the ants cooperate to achieve the same objective. As a confirmation of this, we found
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Fig. 16. Entropy curves using different values of RV , the visibility radius, with the number of classes C set
to 3. The curves stop when the algorithm terminates its execution.

experimentally that the trend of entropy values remains the same regardless of the
adopted pattern. For this reason, we performed experiments adopting the pattern PC ,
depicted in Figure 8, as this pattern uses the minimum number of different labels and
ensures the best performance in terms of synchronization cost.

We performed two sets of experiments: in the first set, we investigated the per-
formance when the problem size (i.e., the number of items) varies, and we ran the
algorithm first on a single node and then on three parallel nodes of a cluster; in the
second set, we performed a strong scalability evaluation4 (i.e., for a fixed problem size,
we varied the number of parallel nodes up to 9). In the considered scenario, the problem
size increases with the number of items and the visibility radius. Indeed, the number
of pick/drop attempts is proportional to the number of items, whereas the computa-
tional load of a single pick/drop attempt is proportional to the visibility radius, as the
radius determines the number of cells involved in the computation of function f (c) (see
expressions (1) and (2) in Section 2). On the other hand, the computational load does
not depend on the number of classes.

Performance of parallel execution is assessed by measuring the speedup value, com-
puted as the ratio of the execution time experienced on a single node and the execution
time on multiple nodes. All of the following figures show the average speedup computed
on 20 runs, as well the 95% confidence intervals X ± λX, obtained with the student’s t-
distribution, where X is the mean speedup value of the runs. The value of λ was always
lower than 0.05, which is a good indication of the reliability of the results. Figure 17
reports the speedup on three parallel nodes versus the number of items when varying
the visibility radius. The algorithm scales very well: as the number of items increases
up to 600,000, the speedup value increases up to values between 2.65 (with RV = 3)
and 2.9 (with RV = 10).

We then analyzed the speedup when parallelizing the execution on up to nine nodes.
Figure 18 reports the values of speedup versus the number of computing nodes and for
different problem sizes when setting the visibility radius to 10. The good scalability
and performance of the approach are confirmed, since (1) the speedup increases with
the number of nodes, and (2) for a given number of nodes, the speedup increases with
the problem size.

4Strong scaling investigates, for a fixed problem size, how the time to solution varies with the number of
processors. Weak scaling, on the other hand, studies how the time to solution varies with processor count
with a fixed problem size per processor.
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Fig. 17. Speedup on three nodes versus the number of items for different values of RV . For all reported
values, 95% confidence intervals are shown.

Fig. 18. Speedup versus the number of computing nodes for different problem sizes. For all reported values,
95% confidence intervals are shown.

In Figures 19 and 20, we show the effect of the pattern on the speedup: the former
figure reports the speedup for parallel execution on three nodes versus the number of
items, whereas the latter shows the speedup versus the number of nodes when setting
the number of items to 600,000. In both cases, the visibility radius RV is set to 10. These
figures confirm that a pattern with a lower number of labels exhibits a better speedup
value, as it reduces the synchronization cost (see Section 4.2). As a consequence, the
Pattern PC is the most effective in this scenario.

7. RELATED WORK

This article presents a new methodology that allows a wide class of algorithms to be
ported transparently onto a parallel environment, particularly swarm algorithms in
which individuals are represented by agents that operate in a territory. This section
summarizes the state of the art regarding the parallelization of swarm algorithms,
with particular focus on the techniques adopted for space partitioning and for the
management of shared resources.

Ant-based clustering and sorting [Deneubourg et al. 1990b; Bonabeau et al. 1999],
which is used in this article as an illustrative example for our methodology, is inspired
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Fig. 19. Speedup on three nodes versus the number of items for different labeling patterns. For all reported
values, 95% confidence intervals are shown.

Fig. 20. Speedup versus the number of nodes for different labeling patterns. For all reported values, 95%
confidence intervals are shown.

by the clustering of corpses and larval sorting observed in real ant colonies, and it is one
of the best known example of swarm intelligence. The principles exploited by the basic
versions of these algorithms, as well as successive versions devised along the years,
such as ATTA [Handl et al. 2006] and So-Grid [Forestiero et al. 2008b], have been the
subject of a large amount of studies. Some of these studies focused on the analysis of
the performance of the algorithms [Handl et al. 2003] and on their ability to produce
high-quality solutions [Handl et al. 2006]. Others focused on practical applications,
such as data mining, graph partitioning, and reorganization/discovery of resources and
documents in distributed information systems [Handl and Meyer 2002; Forestiero et al.
2008a].

Several strategies have been adopted to parallelize algorithms for ant-based clus-
tering and sorting. In Yang et al. [2012], these algorithms are parallelized using the
MapReduce programming model: the objects are partitioned into several parallel nodes,
and partial results are collected by a central controller node. However, parallel nodes
are isolated, and mobile agents (ants) are not allowed to migrate from one node to
another, which limits their movements and hinders the faithful implementation of the
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ant paradigm. In Albuquerque and Dupuis [2002], parallelization of ant operations is
achieved through the use of cellular automata, and the space is partitioned into several
regions, one per processor. The management of conflicts is addressed through arbitrary
decisions that favor the ants on the basis of their positions.

ACO is a population-based metaheuristic that can be used to find approximate so-
lutions to optimization problems [Dorigo and Stützle 2004; Dorigo and Di Caro 1999].
ACO has been applied to many application domains where there is the need to solve
a problem that can be reduced to the well-known TSP, in which a salesman, starting
from his hometown, wants to find the shortest tour that takes him through a given
set of customer cities and then back home, visiting each customer city exactly once.
Several artificial ants incrementally build solutions by moving on the graph, driven
by pheromone traces. A systematic survey of the state of the art on parallel ACO im-
plementations is offered in Pedemonte et al. [2011], where a taxonomy for classifying
parallel ACO algorithms is proposed. In Cecilia et al. [2013] and Dawson and Stewart
[2013], solutions of the TSP are obtained by using a parallel implementation of the ACO
algorithm on GPU nodes. In these works, both the tour construction and pheromone
update stages of the algorithm are achieved by using a data parallel approach. In Lin
et al. [2007], ACO is parallelized by decomposing the problem in subcomponents, with
each subgraph assigned to a different node. Manfrin et al. [2006a, 2006b] study the
impact of communication when parallelizing a high-performing ACO algorithm for the
TSP using message passing libraries. In particular, they analyze how different inter-
connection topologies affect the overall performance when the objective is to increase
the quality of the solutions, given a fixed runtime. The adopted communication strategy
involves the exchange of best-so-far solutions, which means the transmission of much
less data than the exchange of information related to pheromone traces. In Craus and
Rudeanu [2004], a framework for running sequential algorithms in a parallel environ-
ment is presented. An ACO algorithm is implemented on the framework to assess its
performance in terms of speedup and communication cost. A configurable distributed
architecture was proposed in Ilie and Badica [2013a] to provide an intuitive and simple
mapping of ACO algorithms in a distributed environment. In this approach, the phys-
ical environment of ants is represented and implemented as a distributed multiagent
system, and the movements of ants are modeled through messages that are exchanged
asynchronously among the agents.

A general approach for the parallelization of swarm algorithms is described in
Rouhipoura et al. [2010], where a GPU-based implementation of the bioinspired com-
puting approach known as systemic computation (SC) is proposed. SC is a specific
model of computation purposely designed to exploit many natural properties observed
in biological systems including parallelism [Navlakha and Bar-Joseph 2015]. Another
general approach is presented in Ilie and Badica [2013b], where the purpose is to dis-
tribute swarm intelligence algorithms that solve graph search problems on a computer
network. This work proposes a novel distributed framework, for a class of swarm in-
telligence algorithms, which better exploits the inherently distributed nature of these
algorithms.

A large number of recent papers focus explicitly on the problem of territory repre-
sentation and handling. For example, in the field of swarm robotics [Brambilla et al.
2013], several works have employed spatial partitioning to achieve a wide set of goals.
Dantu et al. [2011] and Mottola et al. [2014] use spatial partitioning to coordinate and
parallelize distributed sensing in a swarm of mobile robots. The dispersion of the robots
throughout the target space is tackled by providing a space abstraction and dividing
the target area into regions. As in our approach, robot behaviors are assumed to be
written in a location-agnostic manner so that they can be applied to any region in the
target space. Pini et al. [2013] use spatial task partitioning to improve the performance
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of a set of robots in a foraging scenario. The partitioning algorithm uses border areas to
coordinate the robots: object transportation is performed by different robots, and each
robot transports the object for a limited distance and hands it over to another robot,
which continues transportation. This work uses ARGoS [Pinciroli et al. 2012], a robot
simulator that can simulate thousands of robots in real time and is highly customiz-
able. ARGoS divides the physical space in several regions to improve the performance
of the simulation. Neither the robot code nor any modules of the simulator are affected
by parallelization. ARGoS designers recognize that the use of mutexes or semaphores
to manage conflicts and avoid race conditions can entail significant performance costs.
The solution devised in ARGoS is to design the main loop as the composition of three
phases (sense and control, act, physics) and to ensure, also through an appropriate
space partitioning, that at each phase the robot components cannot be in conflict with
each other.

The management of a shared territory is also addressed by many works in the field
of situated multiagent systems—that is, systems in which the behavior of agents is
strongly influenced by their positions in the territory and by their interactions with
the surrounding environment [Bandini et al. 2002]. The management of the shared
state representing the territory can become a bottleneck, limiting the overall perfor-
mance when agent systems are executed in a parallel/distributed scenario [Logan 2007;
Pawlaszczyk and Strassburger 2009]. The concept of spheres of influence is introduced
in Logan and Theodoropoulos [2001] to manage a shared state in a distributed sce-
nario. The purpose is to favor locality by putting information close to the agent that
uses the information during execution. Spheres of influence are dynamically deter-
mined on the basis of the mutual interactions among agents and information. In the
approach presented in Lees et al. [2005], shared data is maintained in a tuple space.
The tuple space is partitioned by following a hierarchical schema based on the spheres
of influence so as to avoid any bottleneck in managing the shared data. In Weyns and
Holvoet [2004], the concept of synchronization regions is introduced to resolve conflicts
among concurrent actions and reduce synchronization cost in a distributed setting. A
region is a group of agents that act simultaneously and independently of other agents.
Regions are determined by a decentralized synchronization algorithm that is executed
when actions are performed.

All of the mentioned works that focus on the territory management show that the
access to shared resources is one of the main issues that need to be addressed. To
the best of our knowledge, the solutions proposed in the literature need an explicit
effort on the part of the developer either to avoid the conflicts through mechanisms
and protocols that exploit the characteristics of the specific domains (e.g., the presence
of physical boundaries in swarm robotics) or for the definition of general explicit high-
level synchronization mechanisms and primitives used to manage territory and shared
data. The novelty of our approach resides in the general methodology presented, based
on an original use of logical time, which ensures good performance while relieving the
developer from taking care of the issues related to the management of shared state,
territory handling, and performance optimization.

8. CONCLUSION AND FUTURE WORK

We presented and evaluated an approach that makes original use of the logical time
concept to automate the parallelization of a wide class of swarm algorithms, those based
on operations of mobile agents embedded in a territory. The article describes the mech-
anisms and policies used to partition the territory among parallel nodes and to manage
shared data avoiding conflicts and data inconsistency. This relieves the developer of the
burden of explicitly defining and managing high-level synchronization primitives (e.g.,
locks). The approach prevents potential conflict situations by assigning logical times
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(labels) to agents and defining a conflict-free partial order of execution. The work offers
a complete description of the software architecture, gives details about the different
strategies used for the assignment of labels, and explains how such strategies can re-
duce the synchronization burden and ensure a fair algorithm evolution. Performance
evaluation has been performed for a popular case, the ant-based spatial clustering and
sorting of items, showing that our methodology, while preventing data consistency is-
sues, ensures good scalability properties and can be adopted to speed up the algorithm
execution when the problem is complex and/or its size is large.

Ongoing work aims at evaluating the pros and cons of different strategies for par-
titioning the territory and for assigning regions to computing nodes, such as mono-
dimensional slicing as in this article versus bidimensional partitioning. Preliminary
results show that the best choice depends on the size of the border areas and the behav-
ior of the agents. Techniques for balancing the computational load of different regions
are also under examination.
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