
Trajectory Pattern Mining over a Cloud-based
Framework for Urban Computing

Albino Altomare∗, Eugenio Cesario∗, Carmela Comito∗†, Fabrizio Marozzo† and Domenico Talia∗†
∗ICAR-CNR, {altomare,cesario}@icar.cnr.it

†DIMES-University of Calabria, {ccomito,fmarozzo,talia}@dimes.unical.it

Abstract—The increasing pervasiveness of mobile devices along
with the use of technologies like GPS, Wifi networks, RFID,
and sensors, allows for the collections of large amounts of
movement data. This amount of information can be analyzed
to extract descriptive and predictive models that can be properly
exploited to improve urban life. This paper presents a workflow-
based parallel approach for discovering patterns and rules
from trajectory data, executed on a Cloud-based framework for
urban computing. Experimental evaluation shows that, due to
complexity and large data involved in the application scenario,
the trajectory pattern mining process takes advantage from the
scalable execution environment offered by a Cloud architecture.

I. INTRODUCTION

Urban computing is the process of acquisition, integration,
and analysis of big and heterogeneous urban data to tackle
the major issues that cities face, including air pollution, en-
ergy consumption, traffic flows, human mobility, environmen-
tal preservation, commercial activities and savings in public
spending.

From a technological viewpoint, Cloud computing can play
an essential role by helping city administrators to quickly
acquire new capabilities and reducing initial capital costs by
means of a comprehensive pay-as-you-go solution. In fact,
by providing applications, infrastructure, networking, systems
software, middleware and maintenance, Cloud computing low-
ers the barrier of entry and enables city managers to deliver
high quality services to their citizens. In addition, managing
heterogeneous data volumes while allowing interoperability
among different tools, it also needs compliance to standards.
In this regard, Cloud computing systems are suitable platforms
to fulfil most of the above requirements, due to their features
such as scalable computing, on-demand processing, facilitating
data accessibility and storage across platforms [1], [2], [3], [4].

Accordingly to this aim, we developed a Cloud-based
framework specifically designed for solving urban computing
issues in smart cities [5]. The framework includes software
layers for data management, service composition and appli-
cation execution, integrated in a Cloud platform that interacts
with data source generators like sensors, smart phones and
other wireless devices. The framework includes a set of
services allowing users to gather and collect environmental
data, process and analyze them in order to mine social and
environmental behaviors.

The discovery of mobility models is one of the most
challenging issues in urban computing. It can improve resource

furnishing and management of cities. In addition, the increas-
ing pervasiveness of mobile devices along with the use of
wireless and GPS sensors is making the monitoring of people
and vehicle movements a very common task. This leads to
the generation of a large number of trajectories drawn by the
users during their daily activities. Such amount of information
can be analyzed to discover people and community behavior,
i.e. patterns, rules and regularities in moving trajectories.
The basic assumption is that people often tend to follow
common routes: e.g., they go to work every day travelling
the same roads. Thus, if we have enough data to model
typical behaviors, such knowledge can be used to predict and
manage future movements of people [6], [7]. For example,
data generated by using mobile devices produce patterns of
movement that can support the decisions of city managers
in transport planning, intelligent traffic management, route
recommendations, etc.

This paper describes the design and implementation of a
parallel data mining methodology for discovering patterns
and rules from trajectory data, performed over the Cloud-
based framework presented in [5]. In particular, the applicative
scenario described here focuses on the study of the trajectories
followed by mobile devices with the aim to discover knowl-
edge models, and thus to catch users’ mobility behaviours.
To this aim, the proposed algorithm is based on a two-steps
approach: first, it detects dense regions within a given geo-
graphical area, i.e. more densely passed through regions, and
then extracts trajectory patterns from those regions. We apply
the trajectory pattern extraction methodology to a real-world
dataset concerning mobility of citizens within an urban area.
Experimental evaluation, carried out on a public Cloud plat-
form, shows that, due to complexity and large data involved in
the application scenario, the trajectory pattern mining process
takes advantage from the scalable execution platform offered
by the Cloud.

For the sake of clarity, this paper extends a research work
whose some activities have been introduced in [4] and in [5].
In particular, [5] presents the Cloud-based architecture for
Urban Computing, while paper [4] (a poster paper) gives
general hints on the exploitation of Clouds for smart city
applications. Differently from the previous ones, this paper
is focused on the development and execution of the trajectory
mining methodology on a public Cloud [5], and it provides
several original contributions with respect to the previous
ones. First, it describes in details the design of the workflow

implementing the application and its execution by a workflow
engine. Second, it shows the results of a complete experimental
evaluation on a public Cloud, by pointing out advantages in
terms of execution time, speedup and scaleup.

The rest of the paper is organized as follows. Section II
outlines related work in the area of mobility pattern discovery,
with a particular focus on Cloud-based urban computing.
Section III reports a short description of the Cloud-based
framework. Section IV presents the trajectory analysis sce-
nario describing the trajectory pattern detection methodology
together with the designed workflow. Experimental evaluation
on a real use case scenario is reported in Section V. Section
VI concludes the paper.

II. RELATED WORK

The objective of this work is twofold: (i) provide a Cloud-
based framework for efficiently manage socio-environmental
data, with a particular focus on the urban context of cities, and
(ii) provide a methodology to analyze trajectories of mobile
users in order to mine social and environmental behaviors.
Accordingly, in this section we will briefly review some of the
most representative research and projects in both the areas.

A. Cloud-based Urban Computing

Several Cloud enabled tools for urban planning and man-
agement in the smart city context have been recently proposed.
Environmental Software and Services (ESS) [1] exploits the
Cloud paradigm to offer a range of services for environmental
planning and management, policy and decision making, world
wide. Analogously, the Environmental Virtual Observatory
pilot (EVOp) [2] uses Clouds to achieve similar objectives
in the soil and water domains.

The European Platform for Intelligent Cities (EPIC) [8]
combines the Cloud computing infrastructure with the knowl-
edge and expertise of the Living Lab approach to deliver sus-
tainable, user-driven web services for citizens and businesses.

The Life 2.0 project [9] offers a set of services ranging from
basic geographical positioning systems to socially networked
services and to local market-based services. The project aims
to provide solutions that increase opportunities for social con-
tacts between elderly people in their local area, by providing
new services for elderly people, based on the use of tracking
systems and social network applications.

IBM introduced Smarter City Solutions on the IBM Smart-
Cloud Enterprise, a public Cloud platform that includes hard-
ware, network and storage [3]. The platform provides pay-as-
you-go services for urban management within cities. Those
services include application software, infrastructure, network-
ing, systems software, middleware and maintenance.

B. Trajectory Pattern Mining

Discovering periodic patterns from historical object move-
ments is a very challenging task. In [7] an approach to
discovery hidden periodic patterns in spatio-temporal data
is proposed. In particular, authors define the spatio-temporal
periodic pattern mining problem and propose an algorithm for

retrieving maximal periodic patterns. Moreover, they devise
a specialized index structure, aimed at supporting more effi-
cient execution of spatiotemporal queries over the discovered
patterns.

A prediction approach to estimate an object future location,
based on its pattern information and recent movements, is
proposed in [6]. Specifically, the discovered trajectory patterns
are stored in the TPT, a tree data structure exploited for
an efficient and accurate prediction of future locations. In
addition, two query processing techniques are presented, to
perform both near and distant time predictive queries on the
TPT structure.

Reference [10] presents a smart driving direction system,
where GPS-equipped taxis are employed as mobile sensors
aimed at probing the traffic rhythm of a city. In particular,
the main idea is to exploit the intelligence of experienced taxi
drivers so as to provide a user with the practically fastest route
to a given destination at a given departure time. The system
has been tested on a real-world trajectory dataset generated by
over thirty thousands taxis in a period of 3 months, aimed at
evaluating the effectiveness of the approach.

In [11] the authors extend the sequential pattern mining
methodology to analyse moving objects. Some approaches of
different complexity are proposed, that have been empirically
evaluated over real data and synthetic benchmarks, comparing
their strengths and weaknesses.

Differently from the approaches described above, at the
best of our knowledge, this work is novel in two aspects.
First, it is a pioneering workflow-based approach to mine
trajectory patterns on a real public Cloud platform. This allows
to analyze large amount of trajectory data whose size is
much higher than that can be analyzed by the most of the
systems found in literature. Second, the experimental tests
conducted on these large datasets show that the whole process
takes advantages from such a scalable environment, both in
terms of execution time and achieved speedup. Moreover,
another important distinguishing feature of our framework is
that it has been tailored to provide general-purpose services
for urban planning and management within the city context.
Nevertheless, the framework has been designed as a set of
modular components allowing easy extensibility and integra-
tion of different heterogeneous components (e.g., software,
data sources, etc).

III. A CLOUD-BASED FRAMEWORK FOR URBAN
COMPUTING

In this section we introduce the architecture of the
framework we developed for the implementation of services
aiming at improving the planning, managing and monitoring
of activities within a urban context, such as healthcare, smart
transportation, smart home, smart tourism and smart public
services. The proposed architecture has been designed as a
middleware substrate allowing for the integration and han-
dling of large-scale, fragmented, cross-thematic environmental
and socio-geographic data with the focus of mining human

behavior from such data for urban planning and manage-
ment. The Cloud computing paradigm allows to implement
the above urban-related services: facilitates data access and
storage across platforms, provides on-demand computational
resources, and allows for integrated processing and data anal-
ysis.

Figure 1 shows the architecture consisting of a set of
modular layers. At the lower level, the Platform layer is based
on a hybrid Cloud environment that ensures cross-platform
accessibility of environmental data. This layer can be made
more efficient and functional by integrating other systems as
MapReduce, Storm and Kafka. The Data Acquisition layer
allows accessing environmental data collected from disparate
sources, to monitor water quality, energy usage, etc. At the
Data Storage level the data collected is organized in ad-hoc
repositories (i.e., historical archives and real-time repositories).
The Software Service layer is composed of a set of software
components exposed as services, that can use data provided by
the lower level and are invoked by the upper level to compose
applications. The Service Composition layer is responsible to
design workflows, identify data sources, and link necessary
processing components to enact the workflows. Finally, the
Smart Urban Application Services layer offers a set of services
for urban management, that can be used to perform intelligent
analysis on environmental data. For lack of space, no more
details are reported in this paper. A list of the main function-
alities of the framework can be found in [5].

Traffic
Public

Safety
Water GIS Weather Health

Cloud Platform

Satellites

Smart

Mobile

Devices

Sensors

Cameras

Web Cameras

Workflow Engine

Platform
Layer

Data
Acquisition

Layer

Data Storage
Service
Layer

Service
Composition

Layer

Application
Service
Layer

Client
Layer

Static

Spatial

Data

Imagery

Real-

Time

Data

Maps 3-D Trajectories

Social

Networks

City

Archives

Tr
a

ff
ic

P
re

d
ic

ti
o

n

W
e

a
th

e
r

F
o

re
ca

st

W
a

te
r

M
g

m
t

E
n

e
rg

y

C
o

n
su

m
p

ti
o

n

Visualization

Modelling &

Simulation

S
m

a
rt

 H
e

a
lt

h

S
m

a
rt

To
u

ti
sm

Smart Urban Services

Predictive

Systems

Software
Service
Layer

GEOLocate
Google

Maps
T-Apriori DBScan

Fig. 1. A Cloud-based architecture for urban computing.

The implementation of the Service Composition Layer has
been done using the Data Mining Cloud Framework [12], a
software environment that allow users to design and execute
data analysis, mining and knowledge discovery workflows on
the Cloud. Following the approach proposed in [13], such a
framework models knowledge discovery workflows as graphs
whose nodes represent resources (datasets, data mining tools,
data mining models) and whose edges represent dependencies
between resources. The framework includes a Website to
compose workflows and to submit their execution to the Cloud,
following a Software-as-a-Service approach.

Figure 2 shows the architecture of the Data Mining Cloud
Framework, which includes a set of binary and text data
containers used to store data to be mined (Input datasets)
and the results of data mining tasks (Data mining models),
a Task Queue that contains the workflow tasks to be executed,
a Task Table and a Tool Table that keep information about
current tasks and available tools, a pool of k Workers (k is the
number of virtual servers available) in charge of executing
the workflow tasks and finally a Website that allows users
to submit, monitor the execution, and access the results of
knowledge discovery workflows.

The following steps are performed to develop and execute
a knowledge discovery application [14] (see Figure 2):

1) A user accesses the Website and develops her/his appli-
cation as a workflow through an HTML-5 interface.

2) After application submission, a set of tasks that compose
the workflow are created and inserted into the Task
Queue.

3) Each idle Worker picks a task from the Task Queue, and
starts its execution on a virtual server.

4) Each Worker gets the input dataset from its original
location.

5) After task completion, each Worker puts the result on a
data storage element.

6) The Website notifies the user as soon as her/his task(s)
have completed, and allows her/him to access the results.

The Data Mining Cloud Framework has been de-
signed to be implemented on different Cloud systems.
The current implementation is based on Windows Azure
(”www.microsoft.com/windowsazure”).

�������

�

�

	

�������

����	 ��
�����

�����

�������
���

�����

����� ����
����

����������

�

�

����
��

�
����
������

����������
������

����

����������

����
���������

���� �����

�
����

Fig. 2. Architecture of the Data Mining Cloud Framework.

IV. THE TRAJECTORY PATTERN MINING METHODOLOGY

This section provides a real-world application scenario as
a case study of urban planning and management within the
proposed framework. In particular, we focused on the study
of the trajectories traced by mobile devices, with the aim
to discover user’s behavior and provide useful information
about mobility-related phenomena. To this aim, we propose a

trajectory pattern extraction methodology allowing to predict
future movements of citizens, in order to support decisions
in various ways. The trajectory patterns extracted represent
a basic building block around which further tasks can be
implemented, including the following ones:

• Next location prediction. Predict the possible future lo-
cation of a moving object, based on the object recent
movements and trajectory pattern models, to anticipate
or pre-fetch possible services in that location.

• Intelligent traffic management. Predict traffic congestion
patterns and adopt improvements to the transportation
model of a city, to reduce the wasted time due to vehicular
traffic.

• Movement-similarity analysis. Estimate the similarity be-
tween users in terms of their location histories so as to
promote services for car sharing, car pooling, etc.

• Travel recommendations. Mine the top interesting loca-
tions and travel sequences among locations, and exploit
such information to recommend the best routes and
itineraries that people can follow to visit a given location.

In this section we first describe the trajectory pattern ex-
traction methodology to analyze routes drawn by users during
their daily activities. Second, we point out how a workflow
mechanism can be used to design the methodology within
a parallel setting, as the one of the proposed Cloud-based
architecture (see Figure 1).

A. Trajectory Pattern Detection Approach

Before describing the approach, let us introduce some
notation used in the remainder of the section. Let be
T =< t1, t2, . . . , tH > an ordered timestamp list, such
that th < th+1, ∀0<h<H . A raw trajectory (or simply
trajectory) τK is a spatio-temporal sequence, τK =<
(x1K , y1K , t1), . . . , (xHK , yHK , tH) >, where each triple
(xiK , yiK , ti) indicates that an object of the trajectory τK is
in the position (xiK , yiK) at time ti. The trajectory length is
the number of triples composing the trajectory (i.e., |T | = H).
A frequent (or dense) region is an area of points that is more
frequently visited by the object’s trajectories with respect to
other areas; in particular, we represent with Rj

t the jth dense
region at the time t. A structured trajectory τK is a spatio-
temporal sequence, τK =< Rj1

t1 , . . . , R
jH
tH >, where each

element Rji
ti indicates that an object of the trajectory τK is in

the dense region Rji at time ti. A trajectory pattern is a special
association rule, in the form Rj1

t1 ∧ Rj2
t2 ∧ . . . ∧ Rjr

tr

c−→ Rjs
ts ,

with time constraints t1 < t2 < . . . < tr < ts. The block on
the left, i.e. Rj1

t1 ∧ Rj2
t2 ∧ . . . ∧ Rjr

tr is the primes, while Rjs
ts

is the consequence of the rule. Finally, c is the confidence
of the rule, meaning that when the premise occurs then the
consequence will occur with probability c.

Now, let us describe the approach adopted to detect
trajectory patterns, that is composed of three main steps. To
better describe the whole process, Figure 3 shows a graphic
representation of how trajectory patterns are discovered. The
input data of the analysis is a set of raw trajectories, that have
been obtained by sampling real trajectories traced by users

during their daily activities. The first step of the algorithm
consists in the detection of frequent regions from the original
raw trajectory dataset. The goal of this step is detecting spatial
areas more densely passed through, in order to conduct the
further analysis as movements through areas rather than single
points. The second step consists in the synthesization of the
trajectories, by changing their representation from movements
between points into movements between frequent regions.
Precisely, each point of the original dataset is substituted by
the region it belongs to. The third step is aimed at extracting
trajectory patterns, in the form of associative rules, analyzing
the trajectories of frequent regions obtained at the previous
step.

y

x

t t1 t2 t4 t3

τ
1

τ
2

τ
3

τ
4

Λ Λ →

Λ →

…

y

x

t t1 t2 t4 t3

τ
1

τ
2

τ
3

τ
4

y

x

t t1 t2 t4 t3

τ
1

τ
2

τ
3

τ
4

Frequent

Regions

Detection

Step 1

Trajectory

Data

Synthetization

Step 2

Trajectory

Patterns

Extraction

Step 3

Raw

Trajectories

Dense

Regions

Structured

Trajectories

Trajectory

Patterns

Fig. 3. Trajectory Pattern Detection Steps.

B. Trajectory Pattern Detection: a parallel implementation

The trajectory pattern detection process consists of a se-
quence of concatenated steps involving different kinds of data
and tools that can be located over geographically distributed
environments. Moreover, some steps can be naturally paral-
lelized, in order to achieve higher performance . In particular,
as it will be better shown in the experimental evaluation
section, the frequent regions detection step is the most time-
consuming and critical task. For such a reason, our first effort
consists in the parallelization of this step (that has been done
by implementing a Single Program Multiple Data parallelism
pattern).

Now, in order to have a clear view of the whole process,
Figure 4 shows it by exploiting the workflow formalism,
i.e. a graph in which nodes represent data sources, data
mining tools and algorithms, and edges represent execution

Step 0 Step 1 Step 2

Frequent

Regions

Detection

Frequent

Regions

Detection

Frequent

Regions

Detection

Clusters

Clusters

Clusters

Trajectory

Patterns

Extraction

Trajectory

Data (raw)
Trajectory

Data

(structured)

Trajectory

Partition [t1]

Trajectory

Partition [t2]

Trajectory

Partition [tH]

Dense Regions [tH]

Dense Regions [t2]

Dense Regions [t1]

Trajectory

Synthesizer
Trajectory

Patterns

Step 3

Time

Stamp

Splitter

Fig. 4. Trajectory Pattern Detection Workflow.

dependencies among nodes. The original data set D is a
raw trajectory data, populated by the trajectories (represented
in the previously described format) of some users collected
somehow. In particular, let us suppose that the original dataset
is composed of N trajectories, each one represented as a
sequence of H (x, y, t)-triples.

The workflow is composed of four steps (see Figure 4), as
described in the following:
Step 0 - Vertical Data Splitting. The original trajectory
dataset is partitioned by the Time Stamp Splitter in a vertical
way, with respect to the timestamp value. In other words, the
points of the trajectories visited at the time stamp ti ∈ T will
be gathered in the ith output dataset. At the end of this step,
|T | different datasets are available. It is worth noticing that
this is an additional step with respect to the sequential case,
where no splitting step is contemplated.
Step 1 - Frequent Regions Detection. This step is aimed
at detecting, for each timestamp, the regions that are more
densely visited with respect to others (thus, of interest for
the further analysis). In the workflow this is done by running
H clustering algorithm instances, each one taking in input
a dataset built at the previous step. The final result consists
of H clustering models, whereas the clusters of the th-model
represent the detected dense regions of the th-timestamp (each
cluster corresponds to a dense region). The number of detected
regions (i.e., number of clusters) may be different for each
timestamp t.
Step 2 - Trajectory Data Synthetization. This step is aimed
at synthesizing the trajectories to build a structured trajectory
dataset. This task is performed by running the Trajectory
Synthesizer tool, whose goal is to create a dataset where
each point of the original trajectories is substituted by the
dense region it belongs to (discovered at the Step 1). The
final dataset, the Trajectory Data (structured) in figure, results
populated by trajectories between dense regions (but between
single points).
Step 3 - Trajectory Pattern Extraction. Finally, a Trajectory
Pattern Extraction algorithm on the dense regions trajectory
data is executed, to discover trajectory patterns from them.

The final mining model is a set of associative rules describing
spatio-temporal relations between the movement of the users
under investigation.

V. EXPERIMENTAL EVALUATION

In this section we explore a trajectory analysis case study,
by applying the pattern mining detection method described in
the previous section over a real dataset. The workflow has
been composed and executed on the Cloud system described
in Section III, exploiting the Data Mining Cloud Framework
[12]. The goal of the evaluation is to assess the execution
time and scalability of the whole task, by analyzing the time
elapsed in each step and comparing the performances obtained
by both sequential and parallel executions.

The input dataset chosen for the experiments is the T-Drive
Trajectory Data Sample [15], [16], a collection of GPS traces
describing the movement of GPS-equipped taxis in the urban
area of Beijing, China. The temporal span of the dataset is
one week. The number of vehicles tracked is 10,357. The
total number of points is about 15 millions and the total
area covered by the trajectories reaches almost 9 million
kilometers. Starting from this dataset, we extracted a subset of
80,000 trajectories, obtained by sampling taxi positions every
5 minutes. Then, from this dataset we created four different
ones, all of 80,000 trajectories, that differentiate only for the
length of the trajectories. In particular, we built datasets whose
trajectories are traced by 16, 32, 64 and 128 samples (i.e.,
timestamps), referred in the following as D16, D32, D64 and
D128, respectively. Those four datasets have been used in the
experimental evaluation. For what concerns the algorithms,
the Frequent Regions Detection step has been implemented
by using DBSCAN [17], a density-based clustering algorithm,
whereas the Trajectory Pattern Extraction step has been per-
formed by T-Apriori, an our ad-hoc modified version of the
well-known Apriori algorithm [18].

Figure 5 shows a snapshot of the workflow designed through
the Service Composition Layer. Each node represents either a
data source or a data mining tool, whereas an edge represents
an execution dependency among nodes. Moreover, some nodes

Fig. 5. Trajectories workflow at the end of the execution, with visualization of the final result.

are labeled by the array notation, which is a compact way
to represent multiple instances of the same dataset or tool.
For example, the ”DBSCAN[128]”-labeled node represents
128 parallel instances of the algorithm, each one belonging
to a different path of the workflow. The workflow shown
in Figure 5 reproduces and implements the steps shown in
Figure 4. The initial dataset, Trajectory Data, is partitioned
into H (i.e.,= |T |) subsets using the Time Stamp Splitter
tool, where H is equal to the number of timestamps (the
points in the trajectory). In the example shown in the Figure
5, H = 128. This step, corresponding to the Step 0 of the
workflow shown in Figure 4, produces H data partitions. Now,
each partition TrajPartition[i], i = 1, ..., H , is analyzed by
an instance of DBScan and produces a ClusteringModel
(Step 1). Each clustering model is a set of clusters/dense
regions, for a given timestamp. The TrajectorySynthetizer tool
analyzes all models and the initial dataset, so as to generate the
Structured Trajectory Data, where each point of the original
trajectories is substituted by the dense region it belongs to
(Step 2). Finally, the T-APriori gets in input this dataset to
extract trajectory patterns and, thus, produces the final results
(Step 3).

We executed our experiments on the Microsoft Azure plat-
form using 1 virtual server to run the Data Mining Cloud
Framework Website, and up to 64 virtual servers for the Work-
ers. Each virtual server was equipped with a single-core 1.66
GHz CPU, 1.75 GB of memory, and 225 GB of disk space.
Each test has been executed on the four datasets previously
described (i.e., trajectories of different length) and by varying
the number of virtual servers used to run the trajectory pattern
mining application. As performance indicators, we used the
turnaround time and the achieved speedup. The first one is
the total execution time of the distributed algorithm, that is,
the elapsed time from the task submission until the final result
is returned to it. The second one is the ratio of the turnaround
time elapsed by exploiting 1 node to the turnaround time on
n nodes.

Figure 6(a) shows the turnaround times of the application
for the four considered datasets using from 1 to 64 virtual
servers. The case of 1 server corresponds to a sequential

architecture in which the mining computation is performed on
a single node. Therefore the shown results can also be seen
as a comparison between a parallel and a sequential solution.
In particular, for the 16 timestamp dataset the turnaround time
decreases from around 8.3 hours obtained on a single server, to
about 34 minutes on 16 servers. For the 32 timestamp dataset
the turnaround time diminuishes from 17 hours to 38 minutes.
For the 64 timestamp dataset the turnaround time decreases
from 35 hours to 41 minutes. Finally, with the 128 timestamp,
the turnaround time ranges from about 68 hours to about 1.4
hour using 64 virtual machines.

Figure 6(b) shows how the turnaround time increases with
respect to the dataset size, for a different number of virtual
machines. The graph shows that the time required to execute
the entire workflow increases proportionally with the increase
of the input size. On the contrary, the time required to execute
the entire workflow decreases proportionally with the increase
of computing resources.

Figure 7(a) shows the execution speedup values. The
speedup is almost linear with all datasets, up to the case of 16
nodes. In particular, for the 16 timestamp dataset, the speedup
passes from 2.0 using 2 servers to 14.5 using 16 servers,
that represents a very notable trend. For an higher number
of nodes, the speedup is not linear because of the influence
of the sequential steps of the application, however it follows
a good trend. In fact, for the 32 timestamp dataset, it ranges
from 2.0 to 26.9 using 32 servers, while for the 64 timestamp
dataset the speedup ranges from 2.0 to 50.7. Finally, with the
128 timestamp it ranges from 2.0 to 49.3 by using 64 servers.

Figure 7(b) measures the application scale-up by showing
the turnaround times obtained when the size of the input
dataset increases proportionally to the number of virtual
servers exploited for the computation (i.e., 16 timestamp on 16
servers, 32 timestamp on 32 server servers, 64 timestamp on
64 servers). The results show that the total turnaround time is
almost constant. This demonstrates that the amount of data that
can be analyzed in a given amount of time increases, almost
linearly, with the number of computing resources available.
Other than showing the total turnaround time, Figure 7(b)
shows the time required by each step of the workflow. We

 0

 50000

 100000

 150000

 200000

 250000

12 4 8 16 32 64

T
ur

na
ro

un
d

tim
e

(s
ec

.)

Number of servers

D16
D32
D64

D128

(a) Turnaround time vs the number of available servers,
for different data sizes.

 0

 50000

 100000

 150000

 200000

 250000

D16 D32 D64 D128

T
ur

na
ro

un
d

tim
e

(s
ec

.)

Datasets

#Servers= 1
#Servers= 2
#Servers= 4
#Servers= 8

#Servers=16
#Servers=32
#Servers=64

(b) Turnaround times vs data sizes, for different number
of available servers.

Fig. 6. Turnaround times in different scenarios.

can notice that in each scenario the DBSCAN step takes
most of the total time and this time is almost constant in all
three scenarios. This is due to the fact that the parallelization
degree of DBSCAN executions increases proportionally with
the dataset size. On the other side, the time required by
Timestamp Splitter, Trajectories Synthetizer and Apriori steps,
that are implemented as sequential tasks, increases for larger
dimensions of the dataset.

Finally, we evaluate the overhead introduced by the Data
Mining Cloud Framework. We defined as overhead the time
required by the system to perform preliminary operations
(e.g., getting the task from the Task Queue, downloading
the libraries and the input from the Cloud storage) and final
operations (e.g., update of the Task Table, upload of the output
results in the Cloud storage) of each step of a workflow to
execute. The overhead increases with the number of tasks and
the size of the datasets involved in the computation. In fact,
the more the tasks involved, the longer the time elapsed for
their submission, monitoring, finalization, etc. Similarly, the
higher the data size, the longer the cumulative time spent for

2
4

8

16

32

64

12 4 8 16 32 64

S
pe

ed
up

Number of servers

 Ideal
 D16
 D32
 D64

D128

(a) Speedup vs the number of available servers, for
different dataset sizes.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

16VMs/D16 32VMs/D32 64VMs/D64

T
ur

na
ro

un
d

 ti
m

e
(s

ec
.)

Number of servers/Dataset size

Timestamp Splitter
DBScan
Trajectory Sinthetizer
Apriori

(b) Scale-up with the partial times required by each step
of the workflow.

Fig. 7. Speedup and Scaleup.

its transfer. This trend is confirmed in Figure 8, that shows
the turnaround and the overhead times, when the size of the
input dataset increases proportionally to the number of virtual
servers. We can observe that the overhead takes only a very
small amount of the total turnaround time. For example, the
overhead of the analysis of the 16 timestamp dataset takes 47
seconds on a total execution time of 2066 seconds, while the
64 timestamp dataset takes 172 seconds on a total of about
2479 seconds. This means that the system overhead is just the
2,3% and the 6,9% of the total execution.

Through the Visualization module of the proposed
framework we obtained the visualization of trajectories on the
city map plus the taxi movement rules like the snapshot in
Figure 9, which shows a graphical visualization of a trajectory
pattern rule discovered during the trajectory data analysis. In
particular, is illustrated the rule R23

1 ∧ R11
4 ∧ R13

6
0.75−−→ R28

12,
which models a relation between the first three dense regions
occurring in the premise of the rule and the dense region
occurring in the consequent part. The rule shows that if a
taxi passes through the dense regions R23, R11, R13 at the

timestamps 1,4 and 6 respectively, it will pass for the region
R28 at the timestamp 12 with a confidence of 75%.

 0

 500

 1000

 1500

 2000

 2500

 3000

16VMs/D16 32VMs/D32 64VMs/D64

T
im

e
(s

ec
.)

Number of servers/Dataset size

turnaround time
overhead time

Fig. 8. Overhead time vs data sizes.

32

1
R

28

21
R

11

4
R

31

6
R

75.0c

Fig. 9. Graphical visualization of a trajectory pattern rule discovered from
Beijing taxi trajectory data.

VI. CONCLUSION

A large amount of movement data is daily collected, due to
the increasing pervasiveness of mobile and wireless devices,
sensing technologies, GPS traces, and sensors. Such collection
of information can be analyzed to discover descriptive and
predictive models, that can be exploited to have a smart
management of the city resources. To this aim, we developed
a Cloud-based framework specifically designed for urban
computing supporting smart cities. The framework has been
designed as a composition of different services allowing to
gather and collect environmental data, and to process and
analyze them in order to mine social and urban behaviors.
Within such framework we have designed and implemented a
parallel methodology, modeled by the workflow formalism, for
pattern discovery from trajectory data. The main idea of the
methodology consists in (i) finding the more densely passed
through regions in a given geographical area, and (ii) then
extracting trajectory patterns from those regions in the form
of association rules.

Experimental evaluation of the framework, conducted on a
real-world dataset, shows that the trajectory pattern mining
process takes advantage from a Cloud architecture in terms of
both execution time and speedup.

As future work, we will extend some functionalities of the
framework, and we will implement on it new urban computing
applications. In particular, in the next development steps we
will introduce some optimizations in the trajectory analysis
methodology with the goal of exploiting further sources of
parallelism.

REFERENCES

[1] “ESS.” [Online]. Available: www.ess.co.at/
[2] “EVO.” [Online]. Available: www.evo-uk.org/
[3] “Ibm smarter city solutions on cloud.” [Online]. Available: www-

01.ibm.com/software/industry/smartercities-on-cloud/
[4] A. Altomare, E. Cesario, C. Comito, F. Marozzo, and D. Talia, “Using

clouds for smart city applications,” in Proceedings of the fifth Interna-
tional Conference on Cloud Computing Technology and Science, ser.
Cloudcom’13. IEEE, 2013, pp. 234–237.

[5] E. Cesario, C. Comito, and D. Talia, “Towards a cloud-based framework
for urban computing. the trajectory analysis case.” in Proceedings of the
3rd International Conference on Cloud and Green Computing, ser. CGC
’13. IEEE, 2013, pp. 16–23.

[6] H. Jeung, Q. Liu, H. Shen, and X. Tao Zhou, “A hybrid prediction model
for moving objects,” in Proceedings of the 2008 IEEE 24th International
Conference on Data Engineering, ser. ICDE ’08. IEEE Computer
Society, 2008, pp. 70–79.

[7] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and
D. W. Cheung, “Mining, indexing, and querying historical spatiotem-
poral data,” in Proceedings of the tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’04.
ACM, 2004, pp. 236–245.

[8] “EPIC.” [Online]. Available: www.epic-cities.eu/
[9] “Life2.0.” [Online]. Available: www.life2project.eu

[10] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “T-drive: Enhancing driving
directions with taxi drivers’ intelligence,” IEEE Transactions on Knowl-
edge and Data Engineering, vol. 25, no. 1, pp. 220–232, 2013.

[11] F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi, “Trajectory pattern
mining,” in Proceedings of the 13th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, ser. KDD ’07. ACM,
2007, pp. 330–339.

[12] F. Marozzo, D. Talia, and P. Trunfio, “Using clouds for scalable
knowledge discovery applications,” in Euro-Par Workshops. Springer,
2012, pp. 220–227.

[13] E. Cesario, M. Lackovic, D. Talia, and P. Trunfio, “Programming
knowledge discovery workflows in service-oriented distributed systems,”
Concurrency and Computation: Practice and Experience, vol. 25, no. 10,
pp. 1482–1504, 2013.

[14] F. Marozzo, D. Talia, and P. Trunfio, “A cloud framework for parameter
sweeping data mining applications,” in Proceedings of the third Inter-
national Conference on Cloud Computing Technology and Science, ser.
CloudCom’11. IEEE, 2011, pp. 367–374.

[15] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang, “T-
drive: driving directions based on taxi trajectories,” in Proceedings of the
18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems, ser. GIS ’10. ACM, 2010, pp. 99–108.

[16] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge
from the physical world,” in Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
ser. KDD ’11. ACM, 2011, pp. 316–324.

[17] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the second International Conference on Knowledge
Discovery and Data Mining, ser. KDD’96. AAAI Press, 1996, pp.
226–231.

[18] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proceedings of the 20th International Conference
on Very Large Data Bases, ser. VLDB ’94. Morgan Kaufmann
Publishers Inc., 1994, pp. 487–499.

