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Abstract The edge-to-cloud compute continuum has become increasingly popular
in recent years for effectively collecting and analyzing data generated by Internet of
Things (IoT) devices at the network edge, ensuring low latency, high scalability, and
privacy preservation. This continuum of computing resources, features, and services,
which spans from the edge to the cloud, can be effectively leveraged in various appli-
cation domains like smart cities, industrial IoT, and smart healthcare. However, many
unexplored scenarios still exist where this technology can be successfully applied.
This chapter investigates how the compute continuum can support speaker tracking
in smart spaces, such as smart homes, offices, and public venues, especially focusing
on multimodal systems that leverage both audio and visual data. The effectiveness
of the edge-to-cloud continuum in supporting such systems was assessed through
a simulation-based experimental evaluation performed with the iFogSim toolkit.
Our findings reveal that edge-cloud integration improves application performance in
terms of network usage and latency, compared to a centralized solution that solely
relies on cloud computing.
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1.1 Introduction

In recent years, the rise of the Internet of Things (IoT) has led to the generation of
massive amounts of high-velocity and heterogeneous data at the network edge [6, 2].
To effectively collect, process, and analyze these data, edge-to-cloud continuum
solutions have emerged, which integrate the features and services provided by both
edge and cloud computing, enabling real-time and data-driven decision-making in
various domains [14]. In fact, current applications for processing IoT data primarily
rely on cloud computing, posing challenges related to network traffic management
and response time. To address these challenges, the edge computing paradigm has
been introduced, allowing for data processing closer to the data source, thus offering
benefits such as low latency, privacy preservation, and scalability. Nevertheless, due
to the limited resources of edge devices, there is a need to combine their capabilities
with cloud computing, which allows for the persistent aggregation and resource-
intensive analysis of big data.

While the edge-to-cloud compute continuum has garnered considerable attention
in cutting-edge application domains such as smart cities, industrial IoT, and smart
healthcare, there are still many unexplored scenarios that can benefit from it. In
particular, this study focuses on speaker tracking in smart spaces, such as smart
homes, offices, and public venues. The localization and tracking of speakers in these
environments have become increasingly important due to the widespread use of voice
assistants, security systems, and smart meeting rooms [8]. Specifically, multimodal
speaker tracking, which combines audio and visual data, has been proposed as a
technique to ensure accurate and robust tracking, overcoming limitations of video-
only or audio-only methods. In fact, video-only monitoring is limited by the camera’s
coverage area and faces challenges like occlusion and lighting variations, while
audio-only solutions can be affected by noise and reverberations.

In this chapter, we specifically investigate the effectiveness of the edge-to-cloud
continuum for multimodal speaker tracking in smart spaces, which leverages edge
computing for real-time sensor data processing and cloud computing for higher-level
processing and analysis. To evaluate the effectiveness of the edge-cloud integration,
we followed a simulation-based approach, due to the large scale, heterogeneity, and
complexity of such an IoT system, which poses significant challenges in system
performance, scalability, and resource utilization. Indeed, modeling and simulation
are essential to support the design and development of IoT applications, allowing a
detailed evaluation before the real deployment. In particular, different design choices
were investigated to understand their impact on the application performance in terms
of bandwidth consumption and network latency, also comparing the performance
of the edge-to-cloud continuum approach with a centralized cloud-based solution.
The findings of our evaluation demonstrate the benefits of edge-cloud integration in
improving application performance.

The remainder of this chapter is as follows. Section 1.2 provides the main con-
cepts around multimodal speaker tracking in smart spaces and the compute contin-
uum. Section 1.3 discusses related work. Section 1.4 describes how the multimodal
speaker tracking system was modeled for simulation purposes. Section 1.5 presents
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the performance evaluation of deploying such an application at the edge-to-cloud
continuum, by following a simulation-based approach. Finally, Section 1.6 concludes
the chapter.

1.2 Background

This section provides the preliminaries to the rest of this chapter. In particular, we
first discuss the task of multimodal speaker tracking in smart spaces and state-of-
the-art techniques. Later, we introduce the edge-to-cloud compute continuum and
its multi-tier structure.

Multimodal speaker tracking in smart spaces. Multimodal speaker tracking is
the process of detecting and locating speakers in audio-visual contexts such as video
conferences and public venues. This involves analyzing both audio and video streams
to identify speakers’ location and track their movements over time, which makes the
task challenging due to issues like video occlusion, background noise, and changes
in lighting conditions.

Generally, the audio information is used to determine the direction of arrival
(DOA) of the voice, by estimating the time delay of arrival (TDOA) of the signal
to different microphones. One common algorithm is the Steered Response Power
(SRP) algorithm, which analyzes the signals received by an array of microphones
or sensors to determine the direction from which the sound is coming. The SRP
algorithm uses a steered beamformer approach to enhance the desired signal coming
from a particular direction while suppressing interference from other directions.
This is done by computing the power spectral density of the received signals at
different spatial locations and then steering the beamformer toward the direction
with the maximum power, which corresponds to the estimated DOA of the sound
source. However, a challenge with these systems is that their precision depends on the
density of points to be evaluated, making them expensive for real-time applications.
To solve this issue, the space to be scanned can be divided into sectors to identify
possible sound sources, which can be further reduced by overlapping sectors in
systems with multiple microphone arrays.

In addition to audio processing, video processing is also employed to identify po-
tential speakers based on visual cues, such as lip movement and head orientation, and
track them. These visual cues can be combined with audio-based DOA information
to improve the robustness and accuracy of speaker tracking in complex environments
with multiple speakers and background noise. This can be done by using the particle
filter (PF) algorithm, adding the DOA information obtained from audio processing
to the particle propagation stage of the PF. In particular, the PF is a type of sequential
Monte Carlo (SMC) method used for estimating the state of a dynamic system based
on noisy measurements. The basic idea is to represent the probability distribution
of the system state using a set of discrete particles, where each particle represents
a hypothesis or a guess about the true state of the system at a given time. These
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particles are propagated through time using a state transition model that describes
how the system evolves over time. At each time step, measurements of the system are
used to update the particle weights, which reflect the likelihood of each particle being
the true state of the system. Therefore, particles with higher weights are considered
more likely to represent the true state of the system.

Based on these concepts, different techniques have been proposed in the literature
to address the problem of speaker localization and tracking in smart spaces. Qian et
al. [15] proposed an algorithm that integrates audio and visual cues from a local-
ized multi-modal sensor platform, using a PF framework to dynamically combine
the cues while considering audio signals measured by the maximum Global Coher-
ence Field (GCF). Liu et al. [10] proposed a two-layer PF algorithm for multimodal
speaker tracking, generating two sets of particles from the audio and video streams
independently and propagating them in separate audio and visual layers. The authors
combined the audio and visual likelihoods using an adaptive sigmoid function that
adjusts particle weights based on the confidence of the two modalities. In a subse-
quent work, the same authors [11] modified the prediction and update stage of the
PF algorithm, refining the direction of the particles with multimodal information
in the prediction stage and calculating the particle likelihood by combining visual
distance and audio-visual direction information in the update stage. The distance
likelihood was obtained using the camera projection model and the estimated size
of the speaker’s face, while the direction likelihood was determined by audio-visual
particle fitness.

Compute continuum. The edge-to-cloud compute continuum refers to the con-
tinuum of computing resources that span from the edge of a network to the cloud.
It typically consists of the following layers, categorized based on the proximity of
computing resources to the data source and the level of processing that occurs at
each layer:

* The edge layer is the closest to the data source and generally includes edge devices,
such as IoT devices, which perform local processing of the data according to the
edge computing paradigm. This allows for reducing latency and bandwidth usage
by processing data locally, near the data source, especially in real-time or near-
real-time scenarios, such as autonomous vehicles, smart industries, smart cities,
and smart spaces.

* The fog layer is an intermediate layer between the edge and the cloud. It includes
local data centers or computing resources that are closer to the edge but are
more powerful than edge devices, such as gateways. Fog computing provides
edge devices with additional processing capabilities, storage, and networking
resources, allowing them to offload some of the processing tasks that they are
unable to complete, while still maintaining lower latency than the cloud.

* The cloud layer refers to the centralized computing infrastructure that is typically
located in remote data centers and provides on-demand computing resources,
such as virtual machines, storage, and services, over the internet. The cloud layer
offers scalability, elasticity, and cost-efficiency, and is used for compute-intensive
data processing and storage.
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This distributed architecture provides several advantages and benefits that can
greatly enhance the capabilities of modern computing systems. In fact, by leverag-
ing the strengths of both edge and cloud computing, edge-cloud integration allows
for real-time data processing and analysis, greater scalability, improved security
and privacy, and more efficient use of resources. This can be especially useful in
IoT applications such as industrial automation, autonomous vehicles, and intelli-
gent environments like smart cities and smart spaces, where speed, reliability, and
responsiveness are critical.

1.3 Related work

Deploying and testing an IoT system for multimodal speaker tracking in a real-
world smart space can be costly and logistically challenging. To address these is-
sues, simulation approaches can be key to guiding design choices for IoT system
modeling and validation in edge-cloud architectures. Indeed, simulation allows the
exploration of different deploying strategies in the compute continuum, resource
allocation policies, and system configurations in a controlled and reproducible en-
vironment. Also, it enables the evaluation of system performance under varying
conditions, such as changing network conditions, workloads, and dynamic resource
availability across the various layers of the edge-cloud architecture. Furthermore, it
provides insights into the impact of different parameters on system behavior, helping
identify performance bottlenecks and optimization opportunities. Finally, simulation
is cost-effective compared to real-world implementations, as it requires no physical
infrastructure and allows for the evaluation of system performance in extreme or rare
scenarios that may be difficult to replicate in real-world settings [4, 7, 9].

Various open-source simulators, such as iFogSim [5], IoTSim [20], and Edge-
CloudSim [19], have been proposed in the literature to simulate IoT environments,
and several research works have used simulation-based approaches to test specific
IoT applications on edge-cloud architectures [18, 3, 12].

1.4 Modeling and simulation of a speaker tracking system

In this section, we describe how a speaker tracking system can be modeled and
simulated using iFogSim, an open-source toolkit that provides a comprehensive
framework for the modeling, simulation, and evaluation of fog computing environ-
ments. It enables the modeling of diverse elements in a fog computing environment,
including fog devices, IoT devices, and cloud servers. Moreover, it facilitates the
simulation of their interactions, along with the evaluation of fog computing systems’
efficiency, scalability, and overall performance.
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In the following of this section, we delve into the details of our study, beginning
with the application modeling and simulation parameters, followed by a comprehen-
sive overview of the edge-to-cloud architecture utilized in our simulations.

1.4.1 Application modeling

The speaker tracking system comprises different modules that are connected to each
other, as shown in the Directed Data Flow (DDF) model in Figure 1.1. In this model,
the application is represented as a directed graph where the vertices are application
modules and the directed edges convey the flow of data between modules.
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Fig. 1.1 DDF application model of a multimodal speaker tracking system.

In particular, the system is divided into nine modules, which are described below.

* The sector-based detector, which identifies when a specific sector is active, based
on audio input signals. It utilizes signal processing techniques to extract relevant
features and classify the sector’s activity level. The information is then transmitted
to the point-based locator for further processing.

* The point-based locator, which operates on a grid of points within the identified
sector and calculates the SRP for each point. The information about the top two
points with the highest SRP is then passed to the speech classifier, indicating the
most probable location of the audio source.

» The speech classifier, which determines if the audio response detected by the
microphones originates from a human speaker. Additionally, it processes the
DOA information received from the point-based locator to estimate the speaker’s
location. The DOA information is also forwarded to the face tracker in order to
be combined with the visual information detected by the smart cameras.



1

Simulating multimodal speaker tracking systems in the compute continuum 7

The face detector, which selects and transmits the frames captured by a smart
camera to the face tracker.

The face tracker, which employs an Audio-Visual Particle Filter (AV-PF) to
accurately track the detected face’s movement over time. The module continuously
updates the estimated face position based on the audio and visual signals received
and transmits the final estimated face position to the user interface for user
interaction and to the camera control for tracking the speaker through the actuator.
The user interface, which displays the frames captured by the camera and the
detected face positions in real-time, allows users to track the speaker’s move-
ment. It may also provide additional functionalities, such as displaying the sector
information, SRP values, and DOA information for further user interaction and
analysis.

The camera control, which modifies the position of the smart camera to track the
speaker, based on the location detected by the face tracker. This module acts as
the actuator of the system.

The properties of tuples carried by edges between the modules in the application

are described in Table 1.1, in terms of CPU length, expressed in MIPS, and network
length, which refers to the communication cost between fog devices or fog nodes in

the fog layer. The values were chosen according to different works of the literature
[13,5,16,17, 1].

Tuple type CPU length (MIPS) N/W length

Audio stream 1,000 150
Sector-based information 1,500 150
Point-based location 1,000 150
DOA estimation 2,000 100

Raw video stream 1,000 20,000

Face detected 2,000 2,000

Face location 500 2,000
Camera parameters 100 100

Table 1.1 Tuple type parameters.

1.4.2 Edge-to-cloud architecture

To investigate the behavior of the system and evaluate its performance, we used
an architecture composed of the following physical devices: i) smart cameras and
microphone arrays at the edge layer, which capture real-time audio and video data
from the smart space; ii) gateways at the fog layer, which support more resource-
intensive tasks like speech classification or face tracking; and iii) the cloud, which
receives the processed data from the fog layer for further analysis and storage.
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In particular, the fog layer also handles communication with the Internet Service
Provider (ISP) gateway, which provides access to the Internet for the cameras and
microphone arrays. Moreover, the cloud layer also provides services and APIs for
applications, including a user interface to interact with processed data. The system
architecture is shown in Figure 1.2.
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Fig. 1.2 Edge-to-cloud architecture to support a multimodal speaker tracking system.

Based on this architecture, we have explored two distinct strategies for the de-
ployment and placement of application modules, namely the cloud-only and the
edge-ward approaches. In the former, all the modules that make up the application
are deployed in a remote data center, following the traditional cloud-based deploy-
ment model. In the latter, the deployment of application modules occurs closer to the
network edge. However, devices located at the network edge, such as cameras and
microphone arrays, may have limited computing power, which may not be sufficient
to meet the application requirements due to their resource-constrained nature. There-
fore, in a such case, the fog resources are iteratively exploited up to the cloud. Table
1.2 describes the simulation parameters used to configure the physical topology.
Specifically, the physical devices in the architecture, i.e., smart cameras, micro-
phone arrays, area gateways, ISP gateways, and cloud — ordered by their location
from edge to cloud — are described in terms of MIPS of the CPU, RAM, and the
upload latency to the destination device in the architecture.

In order to investigate how the edge-to-cloud compute continuum can support
the described system, we analyzed different simulation configurations with varying
numbers of devices. In particular, the system was tested across various physical
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Device CPU (MIPS) RAM (GB) Latency (ms) Destination

Microphone array 500 1 Area gateway

1
Smart camera 500 1 1 Area gateway
Area gateway 11,200 16 2 ISP gateway
ISP gateway 22,400 64 100 Cloud
Cloud 44,800 128 - -

Table 1.2 Configuration of the different physical devices of the architecture.

topology configurations with different numbers of cameras and monitored areas. We
tested the use of 2 and 4 cameras and microphone arrays, combined with different
numbers of covered areas, i.e., 2, 4, 8, and 16. Therefore, in each area, 2 or 4 cameras
and microphone arrays can be strategically placed to monitor that area. Instead,
the number of microphones was set constant to 4 throughout all simulations. In
summary, a total of eight configurations, referred to as Config 1, Config 2, Config 3,
Config 4, Config 5, Config 6, Config 7, and Config 8 in the experimental evaluation,
have been tested as shown in Table 1.3. These configurations have been strategically
chosen to simulate both small smart spaces that can be covered by 2 cameras and
microphones, and larger spaces that need more cameras and microphones. Each
simulation configuration is run according to the two deployments described above,
i.e. cloud-only and edge-ward.

Configuration
Config 1 Config 2 Config 3 Config 4 Config 5 Config 6 Config 7 Config 8
No. of areas 2 4 8 16 2 4 8 16
No. of cameras 5 2 5 ’ 4 4 4 4
per area
No. of mic. 2 2 ) 4 4 4 4

arrays per area

Table 1.3 Description of the different simulation configurations with a varying number of compo-
nents.

1.5 Performance evaluation

This section presents the results of simulations carried out on an edge-to-cloud com-
pute continuum architecture, aimed at evaluating the efficiency of two deployment
strategies for the described speaker tracking system, namely cloud-only and edge-
ward. In the cloud-only strategy, all processing is done in the cloud, while in the
edge-ward strategy, the processing is distributed along the edge-to-cloud continuum.
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We compared the performance achieved by using the two deployment strategies
in all configurations described in Table 1.3. The objective of these simulations was
to understand to what extent an edge-cloud environment can reduce network usage
and latency for a multimodal speaker tracking system.
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Fig. 1.3 Comparison of the network usage achieved by the cloud-based and edge-ward policies
with eight configurations.

Figure 1.3 shows the total network usage for each of the eight configurations. The
results are similar both when considering small areas that can be monitored by 2
cameras and 2 microphones (Config 1 to 4), and large areas that require a higher
number of cameras and microphones (Config 5 to 8). In particular, as the number of
configurations becomes more complex in terms of the number of areas to be covered
(from 2 to 16), the network load increases and becomes a significant challenge,
especially when relying solely on cloud resources. Instead, as the results in Figure
1.3 suggest, the use of fog devices can significantly reduce network usage compared
to cloud-only execution. In fact, using a cloud-based approach can result in uncon-
trolled growth of network usage, leading to network congestion and performance
degradation of the application. On the contrary, the seamless integration of com-
puting resources along the edge-to-cloud compute continuum allows for effectively
reducing the network load, mitigating the risk of network congestion, and maintain-
ing optimal performance of the application. In fact, instead of deploying modules on
the cloud, the edge-ward policy distributes modules to different locations:

 the camera control runs by default on each smart camera;

* the face detector is deployed in the cameras at the edge layer;

* the sector-based detector is deployed in the microphones at the edge layer;
 the point-based locator and the speech classifier are deployed in the area gateways;
* the face tracker is deployed in the ISP gateway;

* the user interface runs by default in the cloud.

The findings from Figure 1.4 show the impact of the compute continuum on the
latency of response of the system. In particular, the delays are considerably reduced
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when the modules are distributed over the edge-to-cloud continuum for each of the
eight configurations, compared to the cloud-only deployment. This reduced delay
results from the use of edge computing, where tasks are executed closer to the
data source, in fog nodes or edge devices. This allows for faster processing and
dramatically decrease in data transfer overheads, resulting in reduced delays.
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Fig. 1.4 Comparison of the delay achieved by the cloud-based and edge-ward policies with eight
configurations.

1.6 Conclusions

The integration of computing resources across the edge-to-cloud compute contin-
uum has garnered attention as a feasible solution for enabling efficient and effective
collection, processing, and analysis of massive amounts of IoT data. In this chapter,
we evaluated the use of an edge-to-cloud continuum architecture for a multimodal
speaker tracking system, comparing two deployment strategies, namely cloud-only
and edge-ward. The simulation results reveal that leveraging computing resources
along the edge-to-cloud continuum, using the edge-ward approach, consistently
outperforms the cloud-only approach in all simulated configurations, especially as
the number of areas to be covered by smart cameras and microphone arrays in-
creases. Therefore, this approach enables efficient resource utilization and reduces
data transfer overheads, demonstrating better overall performance in terms of latency
and network usage, while also ensuring robustness and scalability.
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