
Belcastro et al.

RESEARCH

Using Social Media for Sub-Event Detection
during Disasters
Loris Belcastro1, Fabrizio Marozzo1*, Domenico Talia1, Paolo Trunfio1, Francesco Branda1, Themis

Palpanas2,3 and Muhammad Imran4

*Correspondence:

fmarozzo@dimes.unical.it
1University of Calabria, Rende,

Italy

Full list of author information is

available at the end of the article

Abstract

Social media platforms have become fundamental tools for sharing information
during natural disasters or catastrophic events. This paper presents SEDOM-DD
(Sub-Events Detection on sOcial Media During Disasters), a new method that
analyzes user posts to discover sub-events that occurred after a disaster (e.g.,
collapsed buildings, broken gas pipes, floods). SEDOM-DD has been evaluated
with datasets of different sizes that contain real posts from social media related
to different natural disasters (e.g., earthquakes, floods and hurricanes). Starting
from such data, we generated synthetic datasets with different features, such as
different percentages of relevant posts and/or geotagged posts. Experiments
performed on both real and synthetic datasets showed that SEDOM-DD is able
to identify sub-events with high accuracy. For example, with a percentage of
relevant posts of 80% and geotagged posts of 15%, our method detects the
sub-events and their areas with an accuracy of 85%, revealing the high accuracy
and effectiveness of the proposed approach.

Keywords: Social media; Events detection; Natural disasters; Catastrophic
events; Crisis computing; Disaster management; Mass emergencies; Earthquake

1 Introduction
Social media platforms have become an important source of information that can

be exploited to understand human dynamics and behaviors. Social media posts can

be geotagged, that means they are marked with geographic coordinates that allow a

program to identify the location where the post was created. In some cases, such in-

formation can be combined with the textual content of the post to understand what

was happening in that location. This information is extremely useful in many ap-

plication contexts, such as understanding the movement of tourists within cities [1]

or the behaviours of fans following important sporting events [2], discovering the

best areas to open new businesses [3], analyzing the purchasing trends of users in a

specific area [4].

Data elements contained in social media posts are often unstructured and require

advanced analysis in order to extract useful knowledge. For example, the textual

content of a post may contain information about the discussion topic [5], the senti-

ment of the user who wrote the posts [6], the place where the post was written [7],

user opinion on a certain argument [8] and risk prevention [9]. To obtain this infor-

mation, advanced machine learning techniques, such as Natural Language Process-

ing (NLP), neural networks and deep learning techniques, must be exploited [10, 11].
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In the context of natural disasters, the very large use of social media platforms

has enabled eyewitnesses and other disaster-affected people to share information

about their damages, risks and emergencies in real time. As an example, during

Hurricane Harvey in 2017, when 911, the emergency telephone number in the US,

was overwhelmed by thousands of calls from those in need of immediate aid, people

turned to social media to ask for help [12]. Research studies show the importance

and usefulness of the information shared during disasters, both through traditional

infrastructures [13] and social media [14, 15].

Despite these advantages, the use of social media posts to help rescue and inter-

vention activities remains an open challenge as users often publish posts containing

inaccurate information, slang or abbreviated words, or without using geolocaliza-

tion. While extensive research work has been done on the classification of posts to

understand their high-level informational categories [14], little focus has been given

to understand and extract small-scale events that affect small communities. In fact,

every disaster creates a series of small-scale emergencies (sub-events), such as family

members stranded, power outage, damage to buildings, school closure, or damage

to bridges. Normally, these sub-events affect only a small portion of the population

in the disaster area and thus receive less attention and delayed response. Among

other causes, the lack of information about these events causes a slow response from

the authorities, especially during an ongoing disaster.

In this work, we aim at identifying small-scale events that occurred after a natural

disaster or catastrophic event. For this purpose, we present a new method, namely

SEDOM-DD (Sub-Events Detection on sOcial Media During Disasters), for detect-

ing sub-events during disasters from social media data. Specifically, the proposed

method addresses two important issues: understanding whether a post is relevant

about a disaster and discovering the sub-events that occurred in the disaster area.

SEDOM-DD performs these tasks in four main steps: (i) collection of posts that are

potentially related to the disaster; (ii) filtering of posts to keep only the relevant

ones; (iii) data enrichment by using information contained in posts to increase the

number of posts for which it is possible to estimate their geolocalization; and (iv)

use of clustering techniques on geotagged relevant posts for detecting sub-events.

SEDOM-DD has been evaluated with datasets of different sizes that contain real

social media posts related to different natural disasters (e.g., earthquakes, floods

and hurricanes). Furthermore, starting from such datasets containing real posts, we

generated synthetic datasets with different features, such as different percentages

of relevant posts and/or geotagged posts. Several experiments performed on both

real and synthetic datasets showed that SEDOM-DD is able to identify sub-events

with high accuracy both in detecting the area where they took place and in under-

standing the type of problem (e.g, collapsed buildings, broken gas pipes, flooding).

Specifically, with a percentage of relevant posts of 80% and geotagged posts of 15%

the method correctly detects the sub-events and their location areas with an ac-

curacy of about 85%. Also in all the other configurations, our method was able to

detect sub-events with high accuracy, revealing its effectiveness even dealing with

noisy data.

Differently from other existing techniques, SEDOM-DD focuses on discovering

sub-events that can occur as secondary effects of a disaster. For this reason, it
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can be integrated with existing systems for coordinating and enhancing emergency

response. The detected sub-events, together with the posts and photos that made it

possible to detect such events, can be analyzed and validated by a group of experts

to establish the type and the priority of interventions to be carried out.

The remainder of the paper is organized as follows. Section 2 discusses related

work. Section 3 describes the proposed method. Section 4 presents the experimental

evaluation of different case studies, and Section 5 concludes the paper.

2 Related work
A recent study carried out a comprehensive literature survey on the use of social

media as a tool for improving damage estimation and better organizing relief op-

erations during disasters [14]. The study also discussed the main issues in the use

of social media data in disaster scenarios, such as the difficulty of processing huge

amounts of data in a timely manner, the presence of unwanted or fake informa-

tion, and the difficulty of collecting data describing the different stages of a disas-

ter. Other surveys have addressed the issue of processing social media posts during

mass emergencies [16, 17, 14, 18] by focusing on different aspects, such as coordinat-

ing evacuation operations [19], combining data from different sources like satellite

imagery [16], and understanding how information spreads during such events [20].

Some researchers have analyzed social media traffic data for detecting earthquakes

and estimating their impact area [21, 22]. For example, Avvenuti et al. [23] devel-

oped a system, namely EARS, which analyzes streaming data from Twitter for

detecting seismic events. Such a system exploits a burst detection algorithm to

identify earthquakes from tweets, and processes the corpus of each message for

determining the impact of the seismic events on people and infrastructure. Other

works focused on collecting and providing information about earthquakes currently

in action. LastQuake [24] is a system that has been developed in collaboration with

the European Mediterranean Seismological Centre (EMSC) that provides eyewit-

nesses with visual information on felt earthquakes and, at the same time, it allows

to collect user feedback on the main seismic shock and its subsequent aftershocks.

Sangameswar et al. [25] proposed a sentiment analysis approach for identifying the

places of natural disasters (e.g., earthquakes), which could be a region, country, or

continent.

An important aspect of disaster management is identifying sub-events that can

take place at different locations during or after a disaster (e.g, collapsed build-

ings, broken gas pipes, flooding). Different studies have tried to discover sub-events

from social media data using different approaches, based on both supervised and

unsupervised techniques.

Some supervised techniques have been proposed for discovering sub-events after

disasters. Most of them exploit weighted graph-based structures [26], TF-IDF (Term

Frequency-Inverse Document Frequency) vectors [27], while others exploited neural

networks for discovering, classifying and summarizing sub-events from social media

data [28, 29, 30]. Supervised techniques require a manual definition of features and

parameters used by the discovering algorithms. For some events, such techniques

can achieve good results, but in many other cases the effort required to configure

and optimize the algorithms could be very high and the obtained results could
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not be effective. For these reasons, many studies have focused on event detection

techniques based on unsupervised approaches.

In fact, most unsupervised techniques that have been proposed for discovering

sub-events in natural disasters are usually based on clustering algorithms coupled

with similarity metrics. With regard to social media data, each textual feature (e.g.,

text or hashtags) is modeled as a weight vector by using TF-IDF in which the cosine

similarity is used as distance metric among features [31, 32]. Other unsupervised

techniques are based on topic model approaches, such as LDA (Latent Dirichlet Al-

location) and HDP (Hierarchical Dirichlet Processes), which extract sub-events by

analyzing the semantic representations of documents [33, 34]. Nolasco and Oliveira

[35] used LDA for event mining from raw text and topic labeling methods to assign

representative labels to them. Instead, Rudra et al. [36] proposed a technique based

on ILP (Integer Linear Programming) and exploited a natural language processing

approach for identifying and summarizing sub-events from Twitter data.

Differently from existing techniques, SEDOM-DD focuses on discovering sub-

events that can occur as secondary effects of a disaster. Specifically, our method

is specialized in searching and displaying sub-events on a map from social media

data, even in presence of noise. The proposed method tries to use as many posts

as possible by including posts that are not geotagged but that contain textual in-

formation from which geographical position can be deduced. Compared with other

work that finds sub-events from social media, such as Rudra et al. [36], our method

exploits a spatial clustering algorithm to identify the geographical areas where the

sub-events occurred. Then, by analyzing the texts and keywords of posts in each

cluster, it identifies the types of sub-events that occurred. Several experiments on

different datasets related to different types of natural disasters (i.e., earthquakes,

floods and hurricanes) demonstrated that SEDOM-DD is able to detect sub-events

with high accuracy, revealing the effectiveness of the proposed approach.

3 Proposed method
To identify sub-events during a disaster, the proposed method mainly relies on four

important steps. Figure 1 shows these steps together with their inputs and outputs:

1 Data collection: given a disaster event and its impact areas, all the posts

generated in the event’s area are collected. These posts can be collected from

social media platforms (e.g., Twitter) through queries based on keywords or

locations.

2 Filtering of posts: we use supervised machine learning techniques to identify

relevant posts. Posts that refer to the disaster and that come from users who

live in the affected area are relevant for analysis, and thus are maintained.

3 Enrichment of posts: since many posts are relevant for analysis but are not

geotagged, the information contained in the text is used to estimate the coor-

dinates of the location where such posts were created. For example, if a post

refers to a specific location (e.g., by reporting in the text the name of a road

or a monument), it is possible to use a geocoding service for estimating its

coordinates.

4 Finding sub-events: geotagged posts are analyzed and aggregated for finding

clusters of posts mentioning a common problem (i.e., a specific sub-event that
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occurred in a certain area). This step involves the use of a spatial clustering

algorithm to identify the areas where the sub-events occurred. Then, by an-

alyzing the texts and keywords of posts generated inside each cluster, it is

possible to understand the type of sub-event that occurred.

Collection
of posts

Filtering
of posts

Enrichment
of posts

Event (E) Posts (P)
Relevant 
posts (Pf) Finding

sub-events

Enriched 
posts (P+) 

Sub- 
events (S) 

Textual classification algorithms
(e.g., neural networks)

Geocoding services or
NLP algorithms

Clustering and text
analysis algorithms

Figure 1 Execution flow of SEDOM-DD.

Figure 2 shows an example of how our method works. Specifically, it was built

starting from an earthquake that really happened. On May 21, 2019, the province of

Barletta-Andria-Trani in Apulia (Italy) was affected by an earthquake of magnitude

3.9 having an epicenter at 34 km of depth 4 km from the city of Barletta. After the

shock warning in several municipalities across the province, many public institutions

had to be evacuated, including schools, judicial offices and other facilities. The

discomforts have also spread on public transport, in fact, many railway lines have

been interrupted for a few hours, in order to guarantee passengers safety. The old

town of the city of Trani turned out to be one of the most affected areas.

During these panic hours, we collected posts from social media focusing on the

catastrophic event that occurred in the area (see Figure 2(a)). Starting from such

posts, those that do not explicitly refer to any sub-event have been filtered out (Fig-

ure 2(b)). Posts regarding sub-events have been clustered and their text analyzed to

understand the type of sub-event that occurred in each cluster’s area (Figure 2(c)).

In particular, Figure 2(c) highlights four significant sub-events that happened in the

old town of Trani: the fall of material from the church of San Domenico, a struc-

tural problem with the Liceo De Santis, a water outage in the St. Mary district,

and people evacuated from the judicial offices. More details on the algorithms used

in the different steps of our method are provided below.

3.1 Filtering of posts

During this step, posts collected from social media are processed and filtered for

keeping only the ones that are relevant for the analysis. A post is relevant when

it contains text concerning a catastrophic event (e.g., earthquake, flooding) that

happened in the area under analysis. Relevant posts can be further divided into

two categories: (i) generic, which generically refer to a catastrophic event, without

mentioning any specific sub-event (e.g., “yesterday there was an earthquake, we were

very scared!”); (ii) not-generic, which explicitly refer to problems/sub-events that

occurred as secondary effects of a catastrophic event (e.g., “we have been without

electricity since yesterday”). We are mainly interested in relevant posts and, in

particular, non-generic ones that mention some sub-events that have occurred.
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(a) Relevant posts. (b) Filtering of posts related to sub-
events.

(c) Sub-events detection.

Figure 2 An example of using SEDOM-DD on posts collected during the earthquake in the old
town of Trani (May 21, 2019).

It is evident that the classification of posts is a crucial step for obtaining accurate

sub-event results. In Section 4 we described the data we collected on Twitter and

the results of some classification algorithms for separating relevant tweets from not-

relevant ones. The results show that classification algorithms are able to correctly

detect relevant tweets with high precision.

3.2 Enrichment of posts

The proposed method uses geotagged posts to identify the areas where the sub-

events occurred. The main problem with posts from social media is that they are

not always geotagged, which makes them not always useful for the analysis. The data

enrichment step aims at estimating the coordinates of relevant but not geotagged

posts through the analysis of the text. In this way, it is possible to increase the

volume of geotagged data to be analyzed, which should lead to better accuracy in

the identification of sub-events.

Posts that are not geotagged can include textual information that allows to es-

timate their geographical coordinates. For instance, users often report in the text

the name of the street or the district where the event occurred (e.g., “Washington

Street in Cork closed to traffic following the partial collapse of a building”). Sev-

eral studies have proposed techniques for geotagging posts exploiting the textual

information they contain [37][38]. In addition, different geocoding services, such as
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Google Map[1] or Nominatim[2], can be exploited for converting an address, even

partial, into coordinates. In some cases, natural language processing techniques,

e.g., based on CoreNLP [3], can also be used for identifying the locations mentioned

in the text of a post.

Our method uses the following approach for estimating the coordinates of a post.

Given a geographical area to be analyzed, we exploit geocoding web services for

retrieving Points-of-Interest (PoIs) in the area and the most common names used

to refer to them. Then, we extract street and district names from a text through

textual patterns. Once we have identified this information in the text, we translate

it into coordinates with four levels of accuracy: PoI, street, district, or city. For

example, a post that refers to a PoI is geotagged with the coordinates of such PoI.

While a post that refers to a street (without a house number) or district is assigned

to a point randomly chosen inside the street/district where the sub-event occurred.

A post about a catastrophic event that cannot be associated with a specific point

or area is placed at the city level.

3.3 Finding sub-events

Following the same approach proposed in [39], we used a clustering algorithm to

aggregate the posts that refer to the same sub-event and discover the area where

it occurred. In particular, DBSCAN [40] has been chosen for its ability to detect

clusters with different sizes and shapes, tolerate noise, and be applicable on small

or large data sets. Moreover, in the context of the extraction of areas or regions-of-

interest, it is one of the most used algorithms in the literature [41].

For each cluster identified by DBSCAN, a procedure is carried out for identifying

the sub-event that occurred in the cluster’s area. In particular, we extract the

keywords (and their frequency) contained in the posts from such a cluster. The

keywords are then sorted by frequency. A high frequency does not necessarily denote

high representative keywords, but it is a useful starting point. As an example,

the keyword “earthquake” may have a higher frequency than “building collapse”,

although “building collapse” is evidently more representative as a sub-event that

occurred in an area. The most representative keywords are then compared with

a manually trained dictionary, which contains a list of terms that are commonly

used to report specific sub-events that occurred. The dictionary associates a term,

representing a type of sub-event, with some synonyms. As an example, for the sub-

event “collapsed house” we also consider a list of similar terms, such as “destroyed

house”, “house collapse”, and “unsafe house”. As stated in [36], the terms used to

report a sub-event in the text are usually composed of a pair 〈 subject entity, action

happened〉, such as “bridge collapsed” and “power outage”.

4 Experimental evaluation
Several experiments were carried out to evaluate the performance of SEDOM-DD,

using datasets related to different types of natural disasters (i.e., earthquakes, floods

and hurricanes) that occurred in the period 2009-2019. Moreover, for evaluating the

[1]https://developers.google.com/maps
[2]https://nominatim.openstreetmap.org
[3]https://stanfordnlp.github.io/CoreNLP/
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performance of SEDOM-DD using data with different characteristics and levels of

precision, we started from such real data and generated a few synthetic datasets.

This section is organized as follows. Section 4.1 describes the data collection pro-

cess and the algorithms used to classify posts in relevant and not relevant. Sec-

tion 4.2 discusses the synthetic data generator, the algorithm for detecting sub-

events, and results obtained in our tests. Finally, Section 4.3 presents the results

obtained by SEDOM-DD on a large collection of posts about Hurricane Harvey, a

Category 4 storm that hit Texas in 2017.

4.1 Collected data and classification of relevant one

In this paper, we used social media messages posted on Twitter during catastrophic

events. Although our system is able to use data from other social media (e.g., Face-

book or Flickr), Twitter has been chosen because it is widely used in this application

context as it allows to download large amounts of data through public APIs. Other

social media, although more widespread and used than Twitter (Facebook and In-

stagram), do not allow researchers to download users’ posts on a certain topic and

therefore appear to be unusable.

We used Twitter APIs for searching and collecting tweets matching keywords

related to earthquakes, including those that occurred in Barletta (May 21, 2019) and

Peru (May 26, 2019). From the analysis of the collected data, we noticed that some

tweets report the earthquake and the problems/sub-events it generated (relevant),

while others do not refer to the catastrophic event (not relevant).

Starting from the collected data, we created a manually classified dataset (D1)

composed of 5,000 tweets, half relevant and half not relevant. Such data have been

used to train different machine learning algorithms, which are Näıve Bayes (NB),

K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression

(LR), Decision Tree (DT), Random Forest (RF), XGBoost (XGB), and Neural

Networks (NN). In particular, we used the implementations included in the scikit-

learn library[4], together with Keras[5], TensorFlow[6] and Word2Vec [42] for creating

neural networks.

The obtained classification models take into account different features of tweets,

such as length and presence of keywords, hashtags or bi-grams that are typically

used to refer to disasters. Let P = {p1, p2, ..., pn} be a set of social media posts,

where a generic post pi is a social media content (e.g., a tweet) posted by a user

after a catastrophic event E. Specifically, a generic post pi includes:

� user id, containing the identifier of the user who posted pi;

� timestamp, indicating when (date and time) pi was posted;

� text, containing a textual description of pi;

� tags, containing the tags associated to pi;

� coordinates, which consists of latitude and longitude of the place from where

pi was created (often this field is undefined);

� profile geo, containing public location information provided by the user in its

profile;

[4]https://scikit-learn.org/stable/
[5]https://keras.io/
[6]https://www.tensorflow.org/
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� length, indicating the length of the text of pi;

� numKeywords, indicating the number of relevant keywords (e.g., earthquake,

flooding, magnitude, lack of water, electrical problems) contained in the text

of pi;

We performed several experiments for tuning the input hyperparameters used to

control the training process. Table 1 reports the values of the main hyperparameters

used for the different algorithms.

Table 1 Hyperparameter settings.

Algorithm Hyperparameter (Value)

KNN
Number of neighbors (13); Type of algorithm (auto); Leaf size (30);
Power parameter p (1);

SVM C (10); Kernel (rbf); Gamma (0.1);
Decision Tree Maximum depth (20); Minimum samples leaf (1);

Random Forest
Number of estimators (300); Maximum features (auto);
Maximum depth (70); Minimum samples split (5)
Minimum samples leaf (4); Bootstrap (true);

XGBoost
Number of estimators (500); Learning rate (0.01);
Maximum depth (10); Minimum child weight (5);

Neural Network (CNN) +
Word2vec

Batch size (64); Number of epochs (100); Optimizer (Adam);
Dropout (0.3); Number of hidden layers (2); Filter size (1);
Number of filters (200); Minimum word frequency (5);
Iterations (100); Layer Size (300); Window Size (25);

For the different algorithms, the classification models have been trained using

dataset D1. Then, such models have been tested on five datasets [43], different from

D1, which are related to different natural disasters (i.e., floods and earthquakes)

that occurred in the period 2009-2019 (see Table 2). In such a way, the training

and testing datasets are completely decoupled, which enables to evaluate how well

the models are generalized to deal with new unseen data. It is worth noting that

some datasets are unbalanced because the two classes, relevant and not relevant,

are not equally represented. In order to correctly evaluate the classification models,

the training datasets have been balanced before building the models [44].

Table 2 Datasets specifications.

ID Place Type Year N. of tuples Relevant Not relevant

D2 Italy Earthquake 2019 2,000 1,000 1,000
D3 L’Aquila Earthquake 2009 1,062 792 270
D4 Emilia Earthquake 2012 3,170 2,648 522
D5 Sardegna Flood 2013 976 911 65
D6 Genova Flood 2014 434 388 46

Table 3 Evaluation of the classification models made on the D2 testset.

Algorithms Acc Prec Rec F1

Näıve Bayes 0.753 0.735 0.753 0.739
KNN 0.807 0.803 0.807 0.781
SVM 0.776 0.765 0.776 0.751
Logistic Regr. 0.790 0.773 0.790 0.766
Decision Tree 0.744 0.755 0.744 0.753
Random For. 0.795 0.794 0.790 0.783
XGBoost 0.815 0.812 0.815 0.809
Neural Net. 0.830 0.826 0.864 0.845
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With all the datasets, the classification algorithms were able to separate relevant

tweets from non-relevant ones with high accuracy. As an example, Table 3 shows the

results obtained by the different algorithms on the D2 dataset (similar behaviors we

obtain with the other datasets). The algorithm based on neural networks was the

most accurate with an accuracy of 83%, followed by the algorithms XGBoost (81%)

and Random Forest (80%). Figure 4.1 reports the classification results obtained

with the other four datasets (D3, D4, D5, D6), which assess the high accuracy

obtained by neural networks in all four tests. For this reason. such a model has

been used for classifying posts into relevant and not relevant with high accuracy.

Algorithm
NB KNN SVM LR DT RF XGB NN

F 1
 s

co
re

0

0.2

0.4

0.6

0.8

1

Dataset
D3 D4 D5 D6

Figure 3 Comparative analysis among several machine learning algorithms, evaluating the
F1-score obtained by our approach for each dataset used in this work.

4.2 Detection of sub-events on synthetic data

To evaluate the performance of SEDOM-DD, we generated several synthetic

datasets, each with different characteristics and levels of precision [45]. In partic-

ular, such datasets were generated starting from real social media posts published

during or immediately after catastrophic events. Some of these synthetic posts are

marked with precise geographic coordinates, others are not geotagged but contain

information that can be used to estimate their coordinates with a varying degree

of precision, and the remaining ones generically refer to the main disaster but not

to any sub-events.

In the next sections we describe the algorithms used for generating synthetic data

and detecting sub-events.

4.2.1 Synthetic post generator

Algorithm 1 shows the pseudo-code of the procedure used to generate synthetic

posts. The input parameters are reported in Table 4 along with the values that

were used for the experimental evaluation described in Section 4.2.4. The output is

composed of a set of sub-events S and a set of posts P .

At the beginning, the two sets, S and P , are initialized (line 1). A given number

of sub-events (numSubEvents) are generated and added to S (lines 2-19). In par-

ticular, a generic sub-event s is created (line 3) and its type (s.type) is randomly

chosen from subEventTypes, a list of predefined sub-event types (line 4). Such a

list contains different types of problems/sub-events that occur after catastrophic
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Table 4 Simulation parameters.

Parameter Description Value

percGeotagged Perc. of geotagged posts 10%, 15%, 20%

percGeneric Perc. of generic posts 10%, 20%, 30%

distrGeoInfoInText
Distribution of geotagging information
in the text of a post
(PoI/district/street/city)

[0.1, 0.1, 0.2, 0.6]
[0.1, 0.2, 0.2, 0.5]
[0.2, 0.2, 0.2, 0.4]

numSubEvents Number of sub-events 5, 10, 20

postPerSubEvent
Min. and max. number of posts
for sub-event

[10,50],[20,100],[30,150]

subEventRadius
Min. and max. radius of the area where
the sub-event occurred

[50,100],[50,150],[50,200]

distrSubEventPosts
Distribution of sub-event posts among
levels (PoI/district/street/city level)

[0.6, 0.2, 0.1, 0.1]
[0.5, 0.2, 0.1, 0.1]
[0.4, 0.2, 0.1, 0.3]

numSeeds Number of seeds to be used 10

numSubEvents Number of sub-events 5, 10, 20

numSeeds Number of seeds to be used 10

subEventTypes Types of sub-events [Damage building, ...]

analysisArea
Analysis area in which posts are
generated

[Geographic coordinates ...]

dictionaries Dictionary of terms by type [...]

events, such as “damaged building”, “sewerage breakage”, “wall collapse”, “power

outage”, and so on.

A random point (i.e., a pair of coordinates) in the area under analysis is chosen

as the center of the sub-event (line 5). Since the effects of a sub-event propagate

in the surrounding area, the propagation has been modeled with four levels of

precision: Point-of-Interest (PoI), street, district, city. The level PoI specifies the

area where the sub-event occurred (i.e., the exact area of a collapsed building)

and it is represented as a circle with center in s.coordinates and a radius equal to

subEventRadius (line 6). The other levels have been introduced to take into account

that the effects of a sub-event propagate in the surrounding area. The area of a level

contains the areas of the lower levels, that means: PoI ⊂ Street ⊂ District ⊂ City.

For the sake of simplicity, starting from a sub-event at the PoI level, the Street

and district levels are automatically generated and represented as circles with a

greater radius. The area outside the district represents the city level. The generator

establishes the number of posts to be created for a sub-event (line 7). The sub-

event s is then added to S. After that, through an iterative process, the posts

associated with the event s are generated so that they contain information with

different degrees of precision (line 9-19):

� First, it is established at which level (PoI, street, district, or city) the post

p must be geolocated (line 12). Based on this choice, and on the propaga-

tion levels defined for the sub-event, appropriate coordinates for the post

are chosen (line 13). It should be noted that these coordinates are saved as

hiddenCoordinates, because they are only used to validate the accuracy of

the results, which means they are not visible to the analysis algorithm if the

post is not marked as geotagged.

� Since only a certain percentage of posts is geotagged (percGeotagged), we ran-

domly determine if a generated post is geolocated or not (line 14). If the post

is geotagged, the hiddenCoordinates are saved in the coordinates field (line
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15), which can be read by the analysis algorithm. Otherwise, the coordinates

remain undefined (lines 16-17).

� We generate a text for each post (line 18). Specifically, such a text can include

terms related to the type of sub-event, which are taken from a pre-built dic-

tionary which contains a certain number of terms for each type of sub-event.

Moreover, the text can contain information on where the sub-event happened

with varying levels of accuracy (it depends on the distrGeoInfoText param-

eter). The post p is then added to P (line 19).

Eventually, a set of generic posts are generated and added to P , according to the

parameter percGeneric. In such a way, it is possible to add some noise into the data

to be analyzed (line 20).

ALGORITHM 1: Synthetic post generator.

Input : Parameters present in Table 4
Output: List of <subEvents> S, List of <post> P

1 S ← ∅ P ← ∅
2 for i← 0 to numSubEvents by 1 do
3 s← CreateSubEvent()

4 s.type = SelectARandomType(subEventTypes)
5 s.coordinates = GetRandomCoordinates(analysisArea)
6 s.radius = GetRandomRadius(subEventRadius)
7 s.numPosts = GetRandomNumber(postPerSubEvent)
8 S.add(s)
9 for i← 0 to s.numPosts by 1 do

10 p← CreatePost()

11 p.subEvent = s
12 p.precisionLevel = GetRandomLevel(distrSubEventPosts)
13 p.hiddenCoordinates = GetRandomCoordinates(s.coordinates, s.radius,

p.precisionLevel)
14 if GetRandom()<=percGeotagged then
15 p.coordinates = p.hiddenCoordinates

16 else
17 p.coordinates = N.D.

18 p.text = GetRandomText(GetDictionary(dictionaries, s.type),
distrGeoInfoText)

19 P .add(p)

20 P .addAll(percGeneric, GetDictionary(dictionaries, generic))
21 return S, P
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4.2.2 Sub-event detection

Algorithm 2 shows the pseudo-code of the procedure used to discover sub-events

from social media posts. The input is a list of posts P and the parameters of a

clustering algorithm. In particular, DBSCAN was chosen as a clustering algorithm

since it is resistant to noise and it can find clusters of different sizes and shapes.

DBSCAN requires the following parameters as input: eps, the radius of the neigh-

borhood of a point; and minPts, the minimum number of points that are required

to form a cluster. The output is a list of sub-events Sfound that have been discov-

ered in the area under analysis. Regarding the resources required to run DBSCAN

instances, its computational complexity is O(n2) where n is the number of points,

which drops to O(n log n) if a spatial index is used [46].

We point out that, in order to obtain a real situation, not all generated posts are

geotagged: only a small part of them include a geographic position or contain textual

information that allows to estimate, with a certain precision, where the sub-event

occurred. Therefore, due to the way the synthetic datasets have been generated,

it is reasonable to expect that the sub-event detection algorithm will never reach

100% accuracy as some data is missing and cannot be reconstructed.

The algorithm analyzes the posts P by performing some preprocessing and data

enrichment operations (lines 1-11). First, both not relevant and generic posts are

filtered out (lines 2-3). This means they are not considered during the clustering

phase. Then, all posts that are not geotagged are processed in an attempt to esti-

mate their coordinates based on the textual information they contain (lines 4-11).

According to a certain distribution, the geolocation can be estimated at the PoI

level, which allows the estimation of the post coordinates with the highest preci-

sion, or at the street/district levels. Otherwise, the posts that cannot be geolocated

are discarded (lines 10-11). At the end of this process, the remaining posts are thus

relevant and geotagged.

In the second part of the algorithm, geotagged posts are transformed into coordi-

nates and analyzed by DBSCAN so as to generate a set of clusters CP (lines 12-13).

For each cluster cp ∈ CP , the following operations are carried out (lines 14-19). The

most frequent words in the texts of posts belonging to cp are extracted (line 15).

From such words, the most representative ones are selected by using the TF-IDF

algorithm [47] (line 16) and compared with a dictionary containing information that

allows to identify the type of event that occurred (line 17). The points included in

cp can be converted into a convex polygon, which represents the area where the

sub-event occurred (line 18). The detected sub-event s is added to Sfound (line 19).

To evaluate the accuracy of the sub-event detection algorithm, we compare the

sub-events found by Algorithm 2 (Sfound) with those generated by Algorithm 1

(S). In particular, each sub-event found is compared with the one in the initial

dataset that provides the largest match. Then, some performance metrics (i.e.,

precision, recall, and F1-score) are measured by calculating the posts that have

been successfully classified as part of the sub-event.

4.2.3 Example of generated/processed data

Figure 4 shows an example of synthetic data generated in the city of Trani (Apulia,

Italy). Figure 4(a) shows some sub-events that have been represented using the
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ALGORITHM 2: Sub-event detection.
Input : List of <post> P , eps and minNumPoints
Output: List of <subEvents> Sfound,

1 foreach p ∈ P do
2 if IsNotRelevant(p) or IsGeneric(p) then
3 P .delete(p)

4 if p.coordinates == N.D. then
5 geoInfo = p.text.GeoInfo()
6 if geoInfo == PoI then
7 p.coordinates = PoI.coordinates

8 else if geoInfo == street or geoInfo == district then
9 p.coordinates = GetRandom (street.coordinates or district.coordinates)

10 else
11 P .delete(p)

12 C ← GetCoordinates(P)

13 CP ← DBSCAN(C, eps, minNumPoints)
14 foreach cp ∈ CP do
15 K ← getkeywords(cp)
16 Km ← TF-IDF(K)
17 s.problem ← subvent(Km, subEventDictionary)
18 s.area ← CONVEXHULL(CP )
19 Sfound ← Sfound ∪ s

20 return Sfound

four-levels model described above. Specifically, the level PoI is depicted in green,

the street in yellow, the district in pink, and outside the pink circle we have the level

city. Figure 4(b) illustrates synthetic posts (green dots) that have been generated

for the different sub-events in the area. Five examples of posts have been reported

in Table 5: one is geotagged (tweet ID 1), two contain texts that allow to estimate

geotagging information (tweet IDs 2-3), while others are generic and do not allow

to deduce the geographical coordinates (tweet IDs 4-5).

By applying DBSCAN on collected posts, it is possible to discover clusters that

represent the geographical areas where the sub-events occurred. Then, a textual

analysis of the posts of each cluster permits to find the main keywords used in

that area so as to understand the sub-problem that has occurred. As shown in

Figure 4(c), each cluster that is found is represented as a purple polygon. A label

describing the occurred sub-event is also assigned to each cluster.

Table 5 Example of generated tweets. Tweet#1 is geotagged, tweets #2 and #3 contain information
in the text that can be used to estimate coordinates, the others cannot be geolocated.

ID Tweet Lat./lon. Est. lat./lon.

1 The building where I live was damaged
41.268683/
16.419321

-

2
Evacuated from our apartment on Corso
Vittorio Emanuele! #earthquake #Trani

-
41.276308/
16.417803

3 Sewage smell in the area of Nassiriya square -
41.278140/
16.413285

4
Some buildings have been damaged
during the #earthquake

- -

5 The earthquake tonight was truly severe - -
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(a) Areas of sub-events. (b) Generated posts.

Wall collapse

Damaged churchWater problem

Damaged building

Without electricity

Evacuated building

Smell of gas

Sewerage breakage

Unusable road

Damaged building

Smell of gas

(c) Detection of sub-events (i.e., polygons in purple) and extraction of key-
words. To each cluster is assigned a label that describe the occurred sub-
event.

Figure 4 An example of post generation and analysis through SEDOM-DD.

4.2.4 Results

The evaluation was carried out on synthetic datasets by using different configuration

values for the parameters reported in Table 4, some of which were extracted from

real Twitter data as described in [48].

Since such datasets are characterized by significant variability in the density of

points (number of posts per area unit), we made several preliminary tests to de-

termine the optimal input parameters of DBSCAN. In particular, the maximum

distance between points (eps) has been set to 7 meters and the minimum number

of cluster points (minPts) to 150.

During our experiments, we used a reference configuration Cref that has been

made up with the parameter values shown in bold in Table 4 (e.g., percGeotagged =

15%, percGeneric = 20%). Subsequently, some parameters of such configuration

have been varied to understand the behavior of our method with data more or less

precise. For each parameter configuration, we performed ten tests by using different

seeds.

Figures 5-7 show the behavior of SEDOM-DD in detecting 5, 10 and 20 sub-

events by varying a parameter of the reference configuration Cref (e.g., percentage

of geotagged posts). Using the standard configuration Cref , SEDOM-DD obtained

an F1-score of 0.82 with 5 sub-events, 0.88 with 10 sub-events, and 0.86 with 20

sub-events (see the orange bar in the figures).

Figure 5(a) shows the F1-score obtained by varying the number of posts generated

for each sub-event. As shown, the F1-score grows up as the number of posts for each

event increases. Considering the configuration with 10 events, we obtained an F1-

score of 0.58 by using the configuration with the minimum and maximum number
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of posts for sub-event postPerSubEvent = [10, 50] (blue bar), 0.87 for [20, 100]

(orange bar), and 0.89 for [30, 150] (green bar). The greater precision is due to the

fact that there are more posts for each sub-event and therefore the cluster is more

precise.

Figure 5(b) shows per F1-score obtained by varying the value of the parameter

poiRadius. By increasing the mean radius of an event, the F1-score tends to decrease

because the recall tends to be smaller (i.e., the clusters tend to be smaller). As the

radius increases, the points are distributed over a larger area. As a result, there is a

reduction in the density of points that could reduce the ability of DBSCAN to find

larger clusters.
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(a) postPerSubEvent
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(b) poiRadius

Figure 5 F1-score for different values of the number of posts per sub-event (postPerSubEvent)
and radius in meters (poiRadius) of a sub-event.

Other experiments have been performed to study how the results vary with the

percentage of generic (percGeneric) and geotagged (percGeotagged) posts.

In particular, as the percentage of generic posts increases the F1-score decreases

since there are fewer points that can be processed by DBSCAN (Figure 6(a)). In-

stead, as the percentage of geotagged posts increases, the overall F1-score improves

since DBSCAN can exploit a higher number of points to find more accurate clusters

(Figure 6(b)). It should be also noticed that the performance decreases as the num-

ber of sub-events in the area increases. This behavior is mainly due to the fact that

the presence of multiple events in the area produces clusters that are overlapped

and, for this reason, not so representative for the single sub-event.

Figure 7(a) shows the results obtained by changing the distribution of the geo-

tagged posts among the four levels (PoI/district/street/city). As shown, increasing

the concentration of points at the PoI level leads to a better F1-score since the clus-

tering algorithm is able to work on more defined clusters (see green bar). Instead,

Figure 7(b) presents the results obtained by varying the percentage distribution

of textual information, which allows to estimate the coordinates of a post within

one of the four levels (PoI/district/street/city). Also in this case, the greater the

accuracy of the information in the text (i.e., more points can be estimated at the

level PoI) the greater the ability of the algorithm to discover accurate clusters for

sub-events. However, increasing the number of sub-events in the area could result

in a reduction of the F1-score due to the overlap of different clusters (see the case

with 20 events).
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Figure 6 F1-score for different values of the percentages of generic posts (percGeneric) and
geotagged posts (percGeotagged) in the data.
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Figure 7 F1-score for different percentage distributions among the four levels (PoI, street,
district, city) of geotagged posts (distrSubEventPosts) and textual information that allows to
estimate coordinates of a post (distrGeoInfoInText).

The good results obtained by SEDOM-DD are most likely due to the data en-

richment process, which allows DBSCAN to identify clusters with greater accuracy.

In fact, as shown in Figure 8, without using the data enrichment procedure, the

DBSCAN uses only a few natively geotagged posts, obtaining a very low F1-score

(e.g., 0.21 with 10 sub-events).
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Figure 8 Comparison of the F1-score obtained by SEDOM-DD with and without the enrichment
of posts.
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4.3 Detection of sub-events on real data

For assessing the usability of our method in other real study cases, we carried out

an analysis of a large dataset containing tweets about Hurricane Harvey, a Category

4 storm that hit Texas in 2017, causing about USD 200 billion in damage, and at

least 82 deaths according to the Texas Department of Public Safety. Such a dataset

contains about 6.7 million of tweets, which have been collected from August 25, 2017

to September 5, 2017, using specific keywords (i.e., “Hurricane Harvey”, “Harvey”,

“HurricaneHarvey”) as described in [49].

The classification model discussed in Section 4.1 has been used for filtering posts

so as to separate the relevant tweets from the not relevant ones. In particular, we

classified 1,905,585 tweets as relevant (i.e., 29% of total data), but just a small part

of them are geolocated (less than 1%). Through the post enrichment phase, we were

able to deduce the location where the post has been created by analyzing the text

of the tweet (15% of total data). Specifically, we used a name entity recognition

algorithm based on CoreNLP for identifying the locations mentioned in the text

of the tweets. A clustering algorithm is used for detecting interesting clusters on

such geotagged posts. Then, a procedure is carried out for identifying sub-events by

analyzing the keywords (and their frequency) contained in the posts that fall into

each cluster.

Since the area under analysis is very large (several American cities were hit by

the hurricane) and the posts do not provide detailed geolocation information, the

clusters obtained coincide with the main cities of Texas. Considering all the clusters,

the posts that report sub-events are approximately 113,346 (approximately 2 % of

the total data), mainly reporting damages to infrastructures (e.g., roads or houses)

or to utility services (e.g., power outages or water pipes).

Figure 9 shows some significant sub-events that were discovered. In particular, two

large areas with a high density of sub-events (red areas) have been discovered in

the cities of Houston and Rockport. Other areas, smaller and with a lower density

of sub-events (blue-green areas), have been identified elsewhere. Table 6 reports

the sub-events that have been identified in the main cities involved in the disaster.

Notably, Houston was found to be the city with the highest number of sub-events

that occurred after the passing of Harvey, including flooded houses and damages

to toxic waste sites. Also Rockport reported a high number of sub-events, such

as collapsed houses, power lines downs, and damaged boats. The obtained results

confirm that SEDOM-DD is able to discover a high number of sub-events that

occurred after a large-scale natural disaster.

5 Conclusions
The widespread use of social media allows people who are victims of disasters (e.g.,

earthquakes, fires) to share real time information about damages, problems, and

sub-events that can take place at different locations after a disaster (e.g, collapsed

buildings, broken gas pipes). This valuable information is known only to people

located where the events occurred and can be shared with rescue teams and au-

thorities that are far away from the area. In this paper we presented SEDOM-DD,

a new method that combines text mining and clustering analysis for discovering

critical sub-events from social media data during natural disasters.
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Figure 9 Sub-events detected by SEDOM-DD using tweets collected after Hurricane Harvey.

Table 6 Main sub-events detected in tweets about Harvey.

City
Types of
sub-events

Houston
Flooded houses, airports runways and highways, damaged toxic
waste sites and electrical station, destroyed cars.

Rockport Damaged boat storage, collapsed houses, power line down.
Beaumont Flooded houses, damaged oil refineries.

Port Aransas Collapsed houses, damaged ferries and vehicles, power line down.
Austin Power outage.

Crawford Downed trees, collapsed houses.
Dickinson Flooded houses and roads, destroyed churches.

Missouri City Roofless houses, big trees down.
Aransas Pass Water service down.

Galveston Damaged gas station.

Several experiments have been carried out on both real and synthetic datasets

for evaluating the performance of SEDOM-DD. In particular, an analysis of a large

dataset containing real tweets about Hurricane Harvey showed that SEDOM-DD

was able to discover a large number of sub-events that occurred after the disaster.

Moreover, other experiments on synthetic datasets demonstrated that SEDOM-DD

is able to identify sub-events with a very good F1-score (greater than 85%), which

confirms the high accuracy and effectiveness of the proposed approach.

For this reason, SEDOM-DD can be integrated with existing systems for coordi-

nating and enhancing emergency response. The detected sub-events, together with

the posts and photos that made it possible to detect such events, can be analyzed

and validated by a group of experts to establish the type and the priority of inter-

ventions to be carried out.
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