
Scalable Script-based Data Analysis Workflows on Clouds

Fabrizio Marozzo
DIMES

University of Calabria
Italy

fmarozzo@dimes.unical.it

Domenico Talia
DIMES

University of Calabria
ICAR-CNR

Italy
talia@dimes.unical.it

Paolo Trunfio
DIMES

University of Calabria
Italy

trunfio@dimes.unical.it

ABSTRACT

Data analysis workflows are often composed by many con-
current and compute-intensive tasks that can be efficiently
executed only on scalable computing infrastructures, such as
HPC systems, Grids and Cloud platforms. The use of Cloud
services for the scalable execution of data analysis workflows
is the key feature of the Data Mining Cloud Framework
(DMCF), which provides a Web interface to develop data
analysis applications using a visual workflow formalism. In
this paper we describe how we extended DMCF to support
also the design and execution of script-based data analysis
workflows on Clouds. We introduce a workflow language,
named JS4Cloud, that extends JavaScript to support the
implementation of Cloud-based data analysis tasks and the
handling of data on the Cloud. We also describe how data
analysis workflows programmed through JS4Cloud are pro-
cessed by DMCF to make parallelism explicit and to enable
their scalable execution on Clouds. Finally, we present a
data analysis application developed with JS4Cloud, and the
performance results obtained executing the application with
DMCF on the Windows Azure platform.

Categories and Subject Descriptors

Computer systems organization [Architectures]: Dis-
tributed architectures—Cloud computing

Keywords

Workflows, Data analysis, Data mining, Cloud computing,
Scalability, JS4Cloud

1. INTRODUCTION
Workflows are an effective paradigm to address the com-

plexity of scientific and business applications. They pro-
vide a declarative way of specifying the high-level logic of
an application while hiding the low-level details that are
not fundamental for application design [14][13]. The use of 
 
 
 
 
 
 
 
 
 
 
 
 

workflows has proven to be very effective to describe com-
plex data analysis processes, e.g. Knowledge Discovery in
Databases (KDD) applications, which can be conveniently
modelled as graphs linking together data sources, filtering
tools, data mining algorithms, and knowledge models.

Data analysis workflows are often composed by many con-
current and compute-intensive tasks that can be efficiently
handled only on scalable computing infrastructures, such as
HPC systems, Grids and Cloud platforms. The use of Cloud
services for the scalable execution of data analysis work-
flows is the key feature of the Data Mining Cloud Frame-
work (DMCF), presented in [9]. In DMCF, data analysis
workflows are designed through visual programming, which
is a very effective design approach for high-level users, e.g.
domain-expert analysts having a limited understanding of
programming. In addition, a graphical representation of
workflows intrinsically captures parallelism at the task level,
without the need to make parallelism explicit through con-
trol structures [7]. On the other hand, script-based work-
flows can be used as an effective alternative to graphical
workflows, since the formers can allow expert users to pro-
gram complex applications more rapidly, in a more concise
way, and with higher flexibility. Therefore, we extended the
DMCF system to support also script-based data analysis
workflows, as an additional and more flexible programming
interface for skilled users.

In this paper we describe our solution for program-
ming and executing parallel script-based data analysis work-
flows in DMCF. We introduce a workflow language, named
JS4Cloud, that extends JavaScript to support the develop-
ment of Cloud-based data analysis tasks and the access to
data on the Cloud. The main benefits of JS4Cloud are: i) it
is based on a well known scripting language, so that users do
not have to learn a new programming language from scratch;
ii) it implements a data-driven task parallelism that auto-
matically spawns ready-to-run tasks to the available Cloud
resources; iii) it exploits implicit parallelism so application
workflows can be programmed in a totally sequential way,
which frees users from duties like work partitioning, syn-
chronization and communication.

The remainder of the paper is organized as follows. Sec-
tion 2 shortly presents the Data Mining Cloud Frame-
work and its visual workflow formalism. Section 3 presents
JS4Cloud and discusses how workflows programmed through
this language are executed by DMCF. Section 4 describes
a data analysis application developed with JS4Cloud, and
presents performance results obtained executing the appli-
cation with DMCF on the Windows Azure platform. Sec-



tion 5 discusses related work. Finally, Section 6 concludes
the paper.

2. DATA MINING CLOUD FRAMEWORK
The Data Mining Cloud Framework (DMCF) is a software

framework for designing and executing data analysis work-
flows on the Cloud. DMCF supports a large variety of data
mining processes, including single-task applications, param-
eter sweeping application, and workflow-based applications.
Following the approach proposed in [2], DMCF represents
knowledge discovery workflows as graphs whose nodes de-
note resources (datasets, data mining tools, data mining
models) and whose edges denote dependencies among re-
sources. A Web-based user interface allows users to com-
pose workflows and to submit them for execution to Cloud
platforms, following a Software-as-a-Service approach.
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Figure 1: Architecture of the Data Mining Cloud

Framework.

The architecture of DMCF includes the following compo-
nents (see Figure 1):

• A set of binary and text data containers used to store
data to be mined (Input datasets) and the results of
data mining tasks (Data mining models).

• A Task Queue that contains the workflow tasks to be
executed.

• A Task Table and a Tool Table that keep information
about current tasks and available tools.

• A pool of k Workers, where k is the number of virtual
servers available, in charge of executing the workflow
tasks.

• A Website that allows users to submit, monitor the ex-
ecution, and access the results of knowledge discovery
workflows.

The DMCF architecture has been designed in a sufficiently
abstract and generic way to be implemented on top of the

IaaS level of different Cloud systems. In fact, we are work-
ing to implement it on commercial and open source Cloud
platforms. However, the current implementation we discuss
here is based on Windows Azure1.

2.1 Execution mechanisms
A user interacts with the system to perform the follow-

ing steps for designing and executing a knowledge discovery
application:

1. The user accesses the Website and designs the applica-
tion through an HTML-5 interface. A service catalog
provides her/him with the available data and tools that
can be used in the application that must be developed.

2. After application submission, the runtime identifies
the workflow tasks and inserts them into the Task
Queue on the basis of the dependencies among them.

3. Each idle Worker picks a task from the Task Queue,
and concurrently executes it on a virtual compute
server.

4. Each Worker gets the input dataset from its original
location.

5. After task completion, each Worker puts the result on
a data storage element.

6. The Website notifies the user as soon as her/his task(s)
have completed, and allows her/him to access the re-
sults.

All the potential parallelism of the workflow is exploited
by using all the virtual compute servers available to the user.
In addition, multi-threaded tasks exploit all the cores avail-
able on the virtual compute servers they are assigned to.

2.2 Visual workflow formalism
Visual workflows in DMCF are directed acyclic graphs

whose nodes represent resources and whose edges represent
the dependencies among the resources. Workflows includes
two types of nodes:

• Data node, which represents an input or output data
element. Two subtypes exist: Dataset, which repre-
sents a data collection, and Model, which represents a
model generated by a data analysis tool (e.g., a deci-
sion tree).

• Tool node, which represents a tool performing any kind
of operation that can be applied to a data node (filter-
ing, splitting, data mining, etc.).

The nodes can be connected with each other through
direct edges, establishing specific dependency relationships
among them. When an edge is being created between two
nodes, a label is automatically attached to it representing
the kind of relationship between the two nodes.

Data and Tool nodes can be added to the workflow singu-
larly or in array form. A data array is an ordered collection
of input/output data elements, while a tool array represents
multiple instances of the same tool.

Figure 2 shows an example of data analysis workflow de-
veloped using the visual workflow formalism of DMCF. In

1http://www.microsoft.com/windowsazure



Figure 2: Example of data analysis application designed using the DMCF visual formalism.

this example, the Census dataset is split into a training set
and a test set using a partitioning tool. Then the training set
is analyzed in parallel by ten instances of the J48 classifica-
tion tool, which are represented as a single tool array node
in the workflow. The J48 instances differ each other only
for the value of one input parameter (the confidence factor).
The ten models generated by the J48 instances, represented
as a data array, are then evaluated against the test set by a
ModelSelector to identify the best model, which is the final
output of the workflow.

3. THE JS4CLOUD LANGUAGE
JS4Cloud (JavaScript for Cloud) is a JavaScript-based

language for programming data analysis workflows. It has
been introduced as the script-based language for the Data
Mining Cloud Framework (DMCF). The Web interface of
DMCF allows to design and execute workflows programmed
by the JS4Cloud language, by providing an environment
similar to that used to develop visual workflows in the same
framework. The basic difference is in the programming
editor supporting JS4Cloud program design instead of the
graphical composition system.
The main benefits of JS4Cloud are: i) it is based on a

well known scripting language, so that users do not have to
learn a new programming language from scratch; ii) it im-
plements a data-driven task parallelism that automatically
spawns ready-to-run tasks to the available Cloud resources;
iii) it exploits implicit parallelism so application workflows
can be programmed in a totally sequential way, which frees
users from duties like work partitioning, synchronization and
communication.
Two strength points of JavaScript motivated its adoption

as the basis for JS4Cloud: i) JavaScript natively provides
support to arrays and calls to external functions, which are
fundamental to implement parallelism and remote task ex-
ecution in DMCF; ii) JavaScript code can be executed us-
ing the standard interpreters available in any modern Web
browser, a key feature to write and execute script-based
workflows using the Web interface of DMCF.

3.1 Key programming concepts
Two key programming abstractions in JS4Cloud are Data

and Tool :

• Data elements denote input files or storage elements
(e.g., a dataset to be analyzed) or output files or stored
elements (e.g., a data mining model).

• Tool elements denote algorithms, software tools or
complex applications performing any kind of operation
that can be applied to a data element (data mining,
filtering, partitioning, etc.).

For each Data and Tool element included in a JS4Cloud
workflow, an associated descriptor, expressed in JSON for-
mat, will be included in the environment of the user who is
developing the workflow.

A Tool descriptor includes a reference to its executable,
the required libraries, and the list of input and output pa-
rameters. Each parameter is characterized by name, descrip-
tion, type, and can be mandatory or optional. An example
of descriptor for a data classification tool is presented in
Figure 3.

The JSON descriptor of a new tool is created automati-
cally through a guided procedure provided by DMCF, which
allows users to specify all the needed information for invok-
ing the tool (executable, input and output parameters, etc.).

Similarly, a Data descriptor contains information to access
an input or output file, including its identifier, location, and
format. Differently from Tool descriptors, Data descriptors
can also be created dynamically as a result of a task opera-
tion during the execution of a JS4Cloud script. For example,
if a workflow W reads a dataset Di and creates (writes) a
new dataset Dj , only Di’s descriptor will be present in the
environment before W ’s execution, whereas Dj ’s descriptor
will be created at runtime.

Another key element in JS4Cloud is the task concept,
which represents the unit of parallelism in our model. A
task is a Tool, invoked from the script code, which is in-
tended to run in parallel with other tasks on a set of Cloud
resources.

According to this approach, JS4Cloud implements data-
driven task parallelism. This means that, as soon as a task
does not depend on any other task in the same workflow,
the runtime asynchronously spawns it to the first available
virtual machine. A task Tj does not depend on a task Ti

belonging to the same workflow (with i 6= j), if Tj during
its execution does not read any data element created by Ti.



"J48": {

"libraryList": ["java.exe","weka.jar"],

"executable": "java.exe -cp weka.jar

weka.classifiers.trees.J48",

"parameterList":[{

"name": "dataset",

"flag": "-t",

"mandatory": true,

"parType": "IN",

"type": "file",

"array": false,

"description": "Input Dataset"

},{

"name": "confidence",

"flag": "-C",

"mandatory": false,

"parType": "OP",

"type": "real",

"array": false,

"description": "Confidence value",

"value": "0.25"

},{

"name": "model",

"flag": "-d",

"mandatory": true,

"parType": "OUT",

"type": "file",

"array": false,

"description": "Output model"}]

}

Figure 3: Example of Tool descriptor in JSON for-

mat.

3.2 JS4Cloud Functions
JS4Cloud extends JavaScript with three additional func-

tionalities, implemented by the set of functions listed in Ta-
ble 1:

• Data Access, for accessing a data element stored in the
Cloud;

• Data Definition: to define a new data element that will
be created at runtime as a result of a tool execution;

• Tool Execution: to invoke the execution of a tool avail-
able in the Cloud.

Data Access is implemented by the Data.get function,
which is available in two versions: the first one receives the
name of a data element, and returns a reference to it; the
second one returns an array of references to the data ele-
ments whose name match the provided regular expression.
For example, the following statement:

var ref = Data.get("Census");

assigns to variable ref a reference to the dataset named
Census, while the following statement:

var ref = Data.get(new RegExp("^CensusPart"));

assigns to ref an array of references (ref[0]...ref[n-1]) to
all the datasets whose name begins with CensusPart.
Data Definition is done through the Data.define function,

available in three versions: the first one defines a single data
element; the second one defines a one-dimensional array of
data elements; the third one defines a multi-dimensional ar-
ray of data elements. For instance, the following piece of
code:

var ref = Data.define("CensusModel");

defines a new data element named CensusModel and assigns
its reference to variable ref, while the following statement:

var ref = Data.define("CensusModel", 16);

defines an array of data elements of size 16 (ref[0]...
ref[15]). In both cases, the data elements will be created
at runtime as result of a tool execution.

Differently from Data Access and Data Definition, there
is not a named function for Tool Execution. In fact, the
invocation of a tool T is made by calling a function with
the same name of T . For example, the J48 tool defined in
Figure 3 can be invoked as in the following statement:

J48({dataset:DRef, confidence:0.05, model:MRef});

where DRef is a reference to the dataset to be analyzed, pre-
viously introduced using the Data.get function, and MRef is
a reference to the model to be generated, previously intro-
duced using Data.define.

3.3 Basic patterns
In the following we describe how the basic control flow

patterns can be programmed with JS4Cloud. We focus
on basic patterns [1] such as single task, pipeline, data
partitioning and data aggregation, and on two additional
patterns provided by the visual workflow formalism of
DMCF, namely parameter sweeping and input sweeping.
For each pattern, we first introduce an example as a visual
DMCF workflow, and then we show how the same example
can be coded using JS4Cloud.

Single task

An example of single-task pattern is shown in the following
figure:

Customers K-Means ClustModel

dataset model

This example represents a K-Means tool that produces a
clustering model from a dataset. Each workflow node hides
some configuration parameters that have been set by the
user, e.g., the number of clusters for the K-Means tool. The
following JS4Cloud script is equivalent to the visual work-
flow shown above:

var DRef = Data.get("Customers");

var nc = 5;

var MRef = Data.define("ClustModel");

K-Means({dataset:DRef, numClusters:nc, model:MRef});

The script accesses the dataset to be analyzed (Customers),
sets to 5 the number of clusters, and defines the name
of data element that will contain the clustering model
(ClustModel). Then, the K-Means tool is invoked along with
the parameters indicated in its JSON descriptor (input
dataset, number of clusters, output model).

Pipeline

In the pipeline pattern, the output of a task is the input
for the subsequent task, as in the following example:



Table 1: JS4Cloud functions.
Functionality Function Description

Data
Access

Data.get(<dataName>);
Returns a reference to the data element with the
provided name.

Data.get(new RegExp(<regular expression>));
Returns an array of references to the data elements
whose name match the regular expression.

Data
Definition

Data.define(<dataName>); Defines a new data element that will be created at
runtime.

Data.define(<arrayName>,<dim>); Define an array of data elements.

Data.define(<arrayName>,[<dim1>,...,<dimn>]); Define a multi-dimensional array of data elements.

Tool
Execution

<toolName>(<par1>:<val1>,...,<parn>:<valn>); Invokes an existing tool with associated parameter
values.

SCensus J48 CensusTree

dataset model

Census Sampler

input output

The first part of the shown example extracts a sample from
an input dataset using a tool named Sampler. The second
part creates a classification model from the sample using
the J48 tool. This pattern example can be implemented in
JS4Cloud as follows:

var DRef = Data.get("Census");

var SDRef = Data.define("SCensus");

Sampler({input:DRef, percent:0.25, output:SDRef});

var MRef = Data.define("CensusTree");

J48({dataset:SDRef, confidence:0.1, model:MRef});

In this case, since J48 receives as input the output of
Sampler, the former will be executed only after the end of
the latter.

Data partitioning

The data partitioning pattern produces two or more out-
put data from an input data element, as in the following
example:

CovTypeTest

CovType PartitionerTT

dataset

trainSet

CovTypeTrain

testSet

In this example a training set and a test set are extracted
from a dataset, using a tool named PartitionerTT. With
JS4Cloud, this can be written as follows:

var DRef = Data.get("CovType");

var TrRef = Data.define("CovTypeTrain");

var TeRef = Data.define("CovTypeTest");

PartitionerTT({dataset:DRef, percTrain:0.70,

trainSet:TrRef, testSet:TeRef});

If data partitioning is used to divide a dataset into a num-
ber of splits, the DMCF’s data array formalism can be con-
veniently used as in the following example:

NetLog Partitioner

dataset datasetParts

NetLogPart[16]

In this case, a Partitioner tool splits a dataset into 16 parts.
The corresponding JS4Cloud code is:

var DRef = Data.get("NetLog");

var PRef = Data.define("NetLogParts", 16);

Partitioner({dataset:DRef, datasetParts:PRef});

Note that an array of 16 data elements is first defined and
then created by the Partitioner tool.

Data aggregation

The data aggregation pattern generates one output data
from multiple input data, as in the following example:

Model2 ModelChooser

Model1

Model3

BestModel

model1

model2

model3

bestModel

In this example, a ModelChooser tool takes as input three
data mining models and chooses the best one based on some
evaluation criteria. The corresponding JS4Cloud script is:

var M1Ref = Data.get("Model1");

var M2Ref = Data.get("Model2");

var M3Ref = Data.get("Model3");

var BMRef = Data.define("BestModel");

ModelChooser({model1:M1Ref, model2:M2Ref,

model3:M3Ref, bestModel:BMRef});

DMCF’s data arrays may be used for a more compact
visual representation. For example, the following pattern
example chooses the best one among 8 models:

ModelChooser

models bestModel

Model[8] BestModel

The same task can be coded as follows using JS4Cloud:

var BMRef = Data.define("BestModel");

ModelChooser({models:MsRef, bestModel:BMRef});



In this script, it is assumed that MsRef is a reference to an
array of models created on a previous step.

Parameter sweeping

Parameter sweeping is a data analysis pattern in which a
dataset is analyzed by multiple instances of the same tool
with different parameters, as in the following example:

TrainSet J48[5]
PS: confidence

Model[5]

dataset model

In this example, a training set is processed in parallel by 5
instances of J48 to produce the same number of data mining
models. The DMCF’s tool array formalism is used to repre-
sent the 5 tools in a compact form. The J48 instances differ
each other by the value of a single parameter, the confi-
dence factor, which has been configured (through the visual
interface) to range from 0.1 to 0.5 with a step of 0.1. The
equivalent JS4Cloud script is:

var TRef = Data.get("TrainSet");

var nMod = 5;

var MRef = Data.define("Model", nMod);

var min = 0.1;

var max = 0.5;

for(var i=0; i<nMod; i++)

J48({dataset:TRef, model:MRef[i],

confidence:(min+i*(max-min)/(nMod-1))});

In this case, the for construct is used to create 5 instances of
J48, where the i-th instance takes as input the same training
set (TRef), and produces a different model (MRef[i]), using a
specific value for the confidence parameter (0.1 for J48[0],
0.2 for J48[1], and so on). It is worth noticing that the
tools are independent each other, and so the runtime can
execute them in parallel.

Input sweeping

Input sweeping is a pattern in which a set of input data
is analyzed independently to produce the same number of
output data. It is similar to the parameter sweeping pattern,
with the difference that in this case the sweeping is done on
the input data rather than on a tool parameter. An example
of input sweeping pattern is represented in the following
figure:

TrainSet[16] J48[16]
PS: dataset

Model[16]

dataset model

In this example, 16 training sets are processed in parallel
by 16 instances of J48, to produce the same number of data
mining models. Data arrays are used to represent both in-
put data and output models, while a tool array is used to
represent the J48 tools. The following JS4Cloud script cor-
responds to the example shown above:

var nMod = 16;

var MRef = Data.define("Model", nMod);

for(var i=0; i<nMod; i++)

J48({dataset:TsRef[i], model:MRef[i],

confidence:0.1});

It is assumed that TsRef is a reference to an array of train-
ing sets created on a previous step. The for loop creates
16 instances of J48, where the i-th instance takes as input
TsRef[i] to produce MRef[i]. Also in this case, since the
tools are independent each other, they can be executed in
parallel by the runtime.

3.4 Parallelism exploitation
As explained above, as soon as a task in a JS4Cloud

workflow does not depend on any other task, the DMCF
runtime asynchronously spawns it to the first available vir-
tual machine. To better explain how parallelism is exploited
with this approach, let us consider again the visual workflow
shown in Figure 2, which performs a data classification with
parameter sweeping. The equivalent JS4Cloud workflow is
shown in the left part of Figure 4.

The workflow can be seen as composed of three steps. In
the first step, PartitionerTT splits the input dataset into
training set and test set (task T1). The second step consists
in the concurrent execution of 10 instances of J48 (tasks
T20...T29). During the third step, ModelSelector chooses
the best model (task T3).

Overall, the workflow generates 12 tasks that are related
each other as specified by the dependency graph shown in
the right part of Figure 4. The graph shows that, as soon
as T1 completes, tasks T20...T29 can be executed. After
completion of all such tasks, T3 can be finally executed.
The parallelism exhibited by the graph is fully exploited by
executing the dependency-free tasks on the available virtual
machines. In this case, tasks T20...T29 will run in parallel,
thus resulting in a significant execution speedup.

4. PERFORMANCE EVALUATION
In this section we present some experimental performance

results obtained executing a JS4Cloud workflow with the
Data Mining Cloud Framework. The Cloud environment
used for the experiment was composed by 64 virtual servers,
each one equipped with a single-core 1.66 GHz CPU, 1.75
GB of memory, and 225 GB of disk space.

The workflow used for this evaluation analyzes a dataset
using n instances of the J48 classification algorithm that
work on n partitions of the training set and generate n

knowledge models. By using the n generated models and
the test set, n classifiers produce in parallel n classified
datasets (n classifications). In the final step of the work-
flow, a voter generates the final classification (in the file
FinalClassTestSet) by assigning a class to each data item.
This is done by choosing the class predicted by the majority
of the models [16].

The input dataset, containing about 46 million tuples and
with a size of 5 GB, was generated from theKDD Cup 1999 ’s
dataset2, which contains a wide variety of simulated intru-
sion records in a military network environment.

Figure 5 shows the JS4Cloud code of the workflow. At the
beginning, the input dataset is split into training set and test
set by a partitioning tool (line 3 ). Then, the training set
is partitioned into 64 parts using another partitioning tool
(line 5 ). As third step, the training sets are analyzed in
parallel by 64 instances of the J48 classification algorithm,
to produce the same number of classification models (lines
7-8 ). The fourth step classifies the test set using the 64

2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99



var DRef = Data.get("Census"); 

var TrRef = Data.define("TrainSet"); 

var TeRef = Data.define("TestSet");

var min = 0.1, max = 0.5; nMod = 10;

var MRef = Data.define("Model", nMod);

var BRef = Data.define("BestModel");

PartitionerTT({dataset:DRef, percTrain:0.70, trainSet:TrRef, testSet:TeRef});

for(int i=0; i<nMod; i++)

J48({dataset:TrRef, model:Model[i], confidence:(min+i*(max-min)/(nMod-1))});

ModelSelector({testSet:TeRef, model:Model, bestModel:BRef});
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Figure 4: JS4Cloud script equivalent to the workflow in Figure 2, with associated task dependency graph.

1: var n = 64;

2: var DRef = Data.get("KDDCup99_5GB"),

TrRef = Data.define("TrainSet"),

TeRef = Data.define("TestSet");

3: PartitionerTT({dataset:DRef, percTrain:0.7,

trainSet:TrRef, testSet:TeRef});

4: var PRef = Data.define("TrainsetPart", n);

5: Partitioner({dataset:TrRef, datasetPart:PRef});

6: var MRef = Data.define("Model", n);

7: for(var i=0; i<n; i++)

8: J48({dataset:PRef[i], model:MRef[i],

confidence:0.1});

9: var CRef = Data.define("ClassTestSet", n);

10: for(var i=0; i<n; i++)

11: Classifier({dataset:TeRef, model:MRef[i],

classDataset:CRef[i]});

12: var FRef = Data.define("FinalClassTestSet");

13: Voter({classData:CRef, finalClassData:FRef});

Figure 5: JS4Cloud workflow for data classification.

models generated on the previous step (lines 10-11 ). The
classification is performed by 64 classifiers that run in par-
allel to produce 64 classified test sets. As the last operation,
the 64 classified test sets are passed to a voter that pro-
duces the final classified test set. The workflow is composed
of 131 tasks, which are related each other as specified by the
dependency graph shown in Figure 6.
Figure 7 shows a snapshot of the workflow taken during

its execution in the DMCF’s user interface. Beside each
code line number, a colored circle indicates the status of
execution. The green circles at lines 3 and 5 indicate that
the two partitioners have completed their execution; the blue
circle at line 8 indicates that J48 tasks are still running;
the orange circles indicates that the corresponding tasks are
waiting to be executed.
Figure 8 shows the turnaround times of the workflow, ob-

tained varying the number of virtual servers used to run it
on the Cloud from 1 (sequential execution) to 64 (maximum
parallelism). As shown in the figure, the turnaround time
decreases from more than 107 hours (4.5 days) by using a
single server, to about 2 hours on 64 servers. This is an
evident and significant reduction of time, which proves the
system scalability.
The scalability achieved by the system can be further

J48[0] 

J48[1] 

J48[62] 

J48[63] 

PartitionerTT Partitioner 

J48 Classifier 

Voter 

Class[0] 

Class[1] 

Class[62] 

Class[63] 

Figure 6: Task dependency graph associated with

the workflow in Figure 5.

evaluated through Figure 9, which illustrates the relative
speedup achieved by using up to 64 servers. As shown in
the figure, the speedup increases from 7.64 using 8 servers
to 50.78 using 64 servers. This is a very positive result,
taking into account that some sequential parts of the im-
plemented application (namely, partitioning and voting) do
not run in parallel.

Figure 10 shows the application efficiency, calculated as
the speedup divided by the number of used servers. As
shown in the figure, efficiency on 32 servers is equal to 0.9
whereas on 64 servers it is equal to 0.8. Thus in this case,
80% of the computing power of each used server is exploited.

5. RELATED WORK
Several systems have been proposed to design workflows

using script-based or visual formalisms [13], but only some
of them currently work on the Cloud. In the following, we
briefly discuss the most representative Cloud-based work-
flow management systems that support either script-based
or visual workflow design.

Pegasus [3], developed at the University of Southern Cal-
ifornia, includes a set of technologies to execute workflow-
based applications in a number of different environments,
including desktops, clusters and Grids. It has been used
in several scientific areas including bioinformatics, astron-
omy, earthquake science, gravitational wave physics, and
ocean science. The Pegasus workflow management system
can manage the execution of an application formalized as a
visual workflow by mapping it onto available resources and



Figure 7: Snapshot of the JS4Cloud workflow running in the DMCF’s user interface.
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Figure 8: Turnaround time vs number of available

servers.

executing the workflow tasks in the order of their depen-
dencies. Recent research activities carried out on Pegasus
investigated the system implementation on Cloud platforms
and how to manage computational workflows in the Cloud
for developing scalable scientific applications [5].
Taverna [15] is a workflow management system developed

at the University of Manchester. Its primary goal is sup-
porting the life sciences community (biology, chemistry, and
medicine) to design and execute scientific workflows and sup-
port in silico experimentation, where research is performed
through computer simulations with models closely reflecting
the real world. Even though most Taverna applications lie
in the bioinformatics domain, it can be applied to a wide
range of fields since it can invoke any web service by simply
providing the URL of its WSDL document. This feature is
very important in allowing users of Taverna to reuse code
(represented as a service) that is available on the internet.
Therefore, the system is open to third-part legacy code by
providing interoperability with Web services.
ClowdFlows [6] is a Cloud-based platform for the com-

position, execution, and sharing of interactive data mining
workflows. According with the Software-as-a-Service ap-
proach, ClowdFlows provides a user interface that allows
programming visual workflows in any Web browser. In ad-
dition, its service-oriented architecture allows using third
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Figure 9: Speedup vs number of available servers.

party services (e.g., Web services wrapping open-source or
custom data mining algorithms). The server side consists of
methods for the client side workflow editor to compose and
execute workflows, and a relational database of workflows
and data.

E-Science Central (e-SC) [4] is a Cloud-based system that
allows scientists to store, analyze and share data in the
Cloud. Like ClowdFlows, e-Sc provides a user interface that
allows programming visual workflows in any Web browser.
Its in-browser workflow editor allows users to design a work-
flow by connecting services, either uploaded by themselves
or shared by other users of the system. One of the most com-
mon use cases for e-Sc is to provide a data analysis back end
to a standalone desktop or Web application. To this end,
the e-SC API provides a set of workflow control methods
and data structures. In the current implementation, all the
workflow services within a single invocation of a workflow
execute on the same Cloud node.

Differently from the systems above, which support visual
workflow design, we provide both visual and script-based
workflow programming, so as to meet the needs of both
high-level users and skilled programmers. In addition, the
DMCF’s runtime differs from that of ClowdFlows and E-
Science Central because it is able to parallelize the execution
of the tasks of each workflow, an important feature to ensure
scalable data analysis workflows execution on the Cloud.
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COMPSs [8] is a programming model and an execution
runtime, whose main objective is to ease the development
of workflows for distributed environments, including private
and public Clouds. With COMPSs, users create a sequential
application and specify which methods of the application
code will be executed remotely. This selection is done by
providing an annotated interface where these methods are
declared with some metadata about them and their param-
eters. The runtime intercepts any call to a selected method
creating a representative task and finding the data depen-
dencies with all the previous ones that must be considered
along the application run. This COMPSs strategy is sim-
ilar to that exploited in DMCF for parallelizing JS4Cloud
workflows. However, while in COMPSs users must provide
explicit annotations to specify which methods will be ex-
ecuted remotely, JS4Cloud is a pure implicit parallel lan-
guage, since no special directives or annotations are needed
to enable parallel execution.
We finally mention two script-based workflow languages,

Gscript [7] and JOLIE [11], which are related to JS4Cloud,
even if they are not explicitly designed for Cloud-based sys-
tems.
Gscript is a script-based workflow language, designed to

be semantically equivalent to GWENDIA, a visual language
to express scientific workflows involving complex data flow
patters [10]. A Gscript program is composed of a series of
statements, blocks, scalar or array expressions. Each state-
ment defines a processor, its inputs and outputs, and the
iteration strategies in a single statement.
JOLIE allows programmers to compose statements in

a workflow by making sequences, parallelism and non-
deterministic choices. Using its communication primitives
and its compositional operators, JOLIE can compose other
services by exploiting their input operations. JOLIE pro-
vides also statements for user input/output console interac-
tion.
Both Gscript and JOLIE are custom languages with a

given syntax to write a workflow and to invoke services from
it, while JS4Cloud relies on the widely-known JavaScript
language. Furthermore, Gscript and JOLIE require the user
to explicitly deal with parallelism (through specific control
structures in the case of Gscript; by specifying operators be-
tween statements in the case of JOLIE), whereas JS4Cloud
relies on sequential JavaScript programming and leaves to

the runtime the task of exploiting workflow parallelism.

6. CONCLUSION
The Data Mining Cloud Framework (DMCF) is a soft-

ware system for designing and executing data analysis and
knowledge discovery workflows on the Cloud. In this paper
we described our solution for programming and executing
parallel script-based data analysis workflows in DMCF. We
introduced a workflow language, named JS4Cloud, that ex-
tends JavaScript to support the development of Cloud-based
data analysis tasks and the access to data on the Cloud.

The main benefits of JS4Cloud are: i) it is based on a
well known scripting language, so that users do not have to
learn a new programming language from scratch; ii) it im-
plements a data-driven task parallelism that automatically
spawns ready-to-run tasks to the available Cloud resources;
iii) it exploits implicit parallelism so application workflows
can be programmed in a totally sequential way, which frees
users from duties like work partitioning, synchronization and
communication.

Experimental performance results, obtained designing and
executing JS4Cloud workflows in DMCF, have proven the ef-
fectiveness of the proposed language for programming data
analysis workflows, as well as the scalability that can be
achieved by executing such workflows on a public Cloud in-
frastructure. Cloud environments like DMCF and its visual
and script-based programming interfaces are important ele-
ments for helping researchers and developers in the imple-
mentation of big data analysis applications [12].
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