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Abstract. This paper reports on the results of a statistical analysis of
the behavior of Self-Chord, a self-organizing P2P system in which the
resource keys are dynamically sorted with an ant algorithm, without re-
quiring centralized management or human intervention. Key sorting is
driven by the values of “peer centroids”, which summarize the values of
the keys stored by respective peers. It emerged that the distribution of
the spacings between peer centroids is very similar to the distribution
of the eigenvalues of random matrices taken from the Gaussian Unitary
Ensemble (GUE) in the limit of large matrix size. This empirical ob-
servation is also supported by several qualitative considerations on the
similarity between the behavior of Self-Chord centroids and that of the
energy levels of physical systems modeled by GUE matrices. Since Self-
Chord uses a basic and canonical ant algorithm, this analysis seems to
suggest the hypothesis that the mathematical nature of ant algorithms
is inherently connected to random matrix theory and, more widely, to
number theory.

Key words: Ant algorithm, GUE operators, Random matrices, P2P

1 Introduction

Peer-to-peer (P2P) techniques and algorithms are steadily emerging as efficient
solutions for the management of large-scale distributed computing systems, such
as Grid and Cloud frameworks. In particular, the P2P paradigm is used to cope
with the placement, advertising and discovery of resources needed by users for
the execution of their applications.

In recent years, there have been very interesting attempts to reinforce the
adaptive and fault-tolerance characteristics of P2P networks by imitating the
self-organizing behavior of biological systems, such as flocks of birds, insect
swarms, and, above all, ant colonies [9][10]. These algorithms exploit the prop-
erties of “swarm intelligence” systems, in which an intelligent behavior at a
high level is obtained by combining simple low level operations performed by
bio-inspired mobile agents [1][17]. The use of self-organizing algorithms has trig-
gered the design of novel P2P systems that combine the benefits of structured
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and unstructured approaches1. These P2P systems are sometimes referred to as
“self-structured” [7][2], because the organization and ordering of resources does
not rely upon a predetermined network structure, but is obtained through the
use of self-organizing techniques.

An example of this kind of systems is Self-Chord [8][6]. Self-Chord exploits
the ring-shaped overlay of peers offered by the renowned Chord system [16], but
it breaks the tight correlation between resource keys and peer indexes: the keys
are not assigned to specified peers, as in Chord, but are sorted over the ring, in
a self-organizing fashion, through “pick” and “drop” operations performed by
ant-inspired agents. These operations are performed as the result of Bernoulli
trials whose probabilities depend on the distance between the keys under con-
siderations and the “centroid” of the local peer. The value of the peer centroid
is used to summarize the key values stored in the peer: agent operations tend to
pick keys that are distant from the local centroid and move them to the region
of the ring where the peers have centroids similar to the key. With these simple
operations, both the centroids and the keys are sorted over the ring.

The sorting of keys allows discovery operations to be executed in logarithmic
time, thus preserving the fundamental service offered by Chord. In addition,
Self-Chord offers further notable advantages, among which a better load bal-
ance and an improved capacity for recovering rapidly from perturbations. More
importantly, since the space of resource keys and the space of key indexes are
independent from each other, in Self-Chord keys can be given a semantic mean-
ing, and it is possible to place similar keys onto neighbor nodes. This greatly
helps the management of range queries, very important in distributed systems.

Even in a steady situation, the ants operate continuously to cope with possi-
ble perturbations, caused by network churns (peers that leave/join the ring) or
by the publication/removal of keys. Therefore, the values of peer centroids are
always modified by environmental changes, and yet the statistical distribution of
peer centroids is very stable. This distribution is worth being analyzed, because
the efficiency of discovery operations depends on the centroids being sorted and
equally spaced over the ring. The statistical analysis led to a very surprising
result. The distribution of the spacings between the centroids of consecutive
peers appeared to be very similar to the distribution of the spacings between
the eigenvalues of an important set of random matrices: the Gaussian Unitary
Ensemble (GUE). The operators associated with this kind of matrices are used
to model a wide class of complex dynamical systems, especially in the domain
of nuclear physics [13], and these systems are characterized by a semi-chaotic
response to external perturbations.

This paper reports on the results of a statistical analysis that confirmed
the mentioned similarity. Besides confirming the robustness of the key sorting
in Self-Chord, this study aims to be a stimulus for researchers in the field of
ant algorithms, by asking questions such as: is this similarity peculiar to this

1 In structured P2P systems each resource is consigned to a peer whose position in
a predefined structure is obtained with a hash function. In unstructured systems,
resources are positioned and managed without reference to any given structure.
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particular case, related to P2P, or does it apply for a wide class of ant algorithms?
then, can ant algorithms be analyzed by means of random matrix theory? is it
possible to define a GUE operator that models the behavior of ants and helps
to predict the effect of ant operations?

These questions, and their possible answers, are discussed at the end of the
paper, in Section 5. Beforehand, Section 2 summarizes the key points of the Self-
Chord P2P system, Section 3 gives a brief overview into the theory of random
matrices, and Section 4 analyzes the statistical analogies between the distribution
of Self-Chord centroids and that of GUE eigenvalues.

2 Self-Chord: an Ant-Inspired P2P System

In Self-Chord, peers are organized in a logical ring. Each peer is given an index
of Bp bits, obtained with a uniform hash function. The ring is constructed and
maintained as in Chord, see [16] for the details. Each resource is associated with
a key, having Nc possible values, which will be used to discover and access the
resource. Contrary to Chord, the value of Nc can be different from the number
of admissible peer indexes, Nr = 2Bp . This allows resource keys to be decoupled
from peer indexes, with all the related advantages, in particular the possibility
of assigning a semantic meaning to resource keys.

For their work, the agents use the concept of peer centroid. The centroid
of a peer is defined as the real value, between 0 and Nc, which minimizes the
average distance between itself and the keys stored by the peer. For example,
with Nc=64, a peer that stores three keys with values {4,6,8} has a centroid
equal to 6, whereas a peer that stores two keys with values {63, 0} has a centroid
equal to 63.5, since key values are defined in a circular space, in which value 0
succeeds value Nc − 1. The centroid values of peers are used by agents to move
the keys. The agents tend to pick a key from a peer if its value is distant from
the peer centroid, and forward the key towards a peer whose centroid is as
close as possible to the key value. Agents can move between consecutive peers,
or can use short-cuts to jump directly to distant peers, exploiting the finger
tables of the underlying Chord structure. These simple operations are completely
decentralized, since they depend on local information only, and gradually achieve
the global sorting of the keys.

Figure 1 gives an example of the way resource keys are sorted. In this sample
network, peer indexes and resource keys are defined over 6 and 3 bits, respec-
tively, and 16 peers are actually connected to the system. At the interior of the
ring, the figure specifies the indexes of the peers, whereas at the exterior it re-
ports, for every peer, the keys stored by the peer (only three keys are shown
for simplicity) and the peer centroid c. It can be noted that both the values of
centroids and peer indexes are sorted in clockwise direction, but they are not
related to one another. Indeed, different approaches are used to sort them: the
peer indexes are sorted by the Chord management operations, whereas the re-
source keys are sorted by the self-organizing operations of the Self-Chord agents.
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Fig. 1. Sample sorting of resource keys in the peers of Self-Chord. For each peer, its
index, a number of stored keys and the centroid are reported.

2.1 Pick and Drop Operations of Self-Chord Agents

The operations of ant-inspired agents in Self-Chord are inspired by the basic
ant algorithms used by Deneubourg et al. [3] to model the phenomenon of larval
sorting in ants, and by Lumer and Faieta [11] to generalize this behavior to
the sorting of data items. Each agent, in its lifetime, performs a few simple
operations, cyclically: (i) while it is not carrying any key, it hops randomly from
a peer to its predecessor or successor; (ii) at any new peer, it decides whether
or not to pick a key with a Bernoulli trial; (iii) after picking a key, the agent
jumps to a new peer exploiting the current peer’s finger table; (iv) at the new
peer, the agent decides whether or not to drop the carried key with a Bernoulli
trial. Operations (ii) and (iv) are repeated until the agent picks or drops a key,
respectively.

The decision about the pick operation depends on the value of the key under
consideration and the centroid of the current peer. To foster the sorting of keys,
it is convenient to pick keys that are distant from the peer centroid, whereas
the keys that are close to it are probably already placed in the correct place.
Therefore, the probability of picking a key k at a peer having centroid c is defined
to be inversely proportional to the similarity between k and c. The similarity
function f(k, c) and the pick probability Ppick are,

f(k, c) = 1− d(k, c)

Nc/2
(1)

Ppick = (
αp

αp + f(r, c)
)2 with αp ≥ 0 (2)

where d(k, c) is the distance between k and c, computed on the circular space
of the keys. For example, with Nc=64, d(12, 18.7)=6.7 and d(3, 63.5)=3.5. The



A Statistical Analysis of Self-Chord: on Possible Connections... 5

value of f(k, c) is comprised between 0 (maximum diversity between k and c)
and 1 (maximum similarity). With high probability the agent picks a key whose
value is distant from the peer centroid. The parameter αp is a threshold that
can be tuned to modulate the pick probability: when f ≪ αp, Ppick is close to
1; when f ≫ αp, Ppick is close to 0.

Once an agent has picked a key k from a peer, it tries to jump to the region
of the ring where this key should be deposited, therefore towards peers whose
centroids are as close as possible to the carried key. To calculate the length of
the jump, the agent exploits the fact that the peer indexes are ordered and the
resource keys are also being ordered. First, the agent calculates the difference k−c
in the arithmetic modulo Nc, where c is the centroid of the current peer. Then,
it makes a proportion between this distance, calculated in the space of resource
keys, and the distance between the current peer Ps and the “destination” peer
Pd, calculated in the space of peer indexes:

k − c

Nc
=

Pd − Ps

Nr
(3)

The agent tries to jump to a peer whose index is as close as possible to:

Pd = Ps +
Nr

Nc
(k − c) (4)

To do this, the agent exploits the finger table of Ps. In Chord, the i−th finger
of peer p, denoted by p.finger(i) contains the index of the first peer, d, that
succeeds the index of p by at least 2i−1, namely d = successor(p + 2i−1), i =
1..Bp. The finger table is used by Chord to let the search messages jump to
distant peers, so as to complete discovery procedures in a logarithmic time,
since at every jump the search space can be halved.

After calculating Pd, the agent jumps to the peer of the finger table whose
index is the closest to Pd. At the new peer, the agent evaluates the drop operation
(see the details below). If this operation is actually performed, the agent will
again move towards the successor or predecessor peer, until it will pick another
key. Otherwise, the agent will recalculate the value of Pd and make another
jump, trying to approach better the region of the ring where the carried key
should be deposited.

After each jump, the agent must decide whether or not to drop the key on
this peer. The drop probability, Pdrop, is,

Pdrop = (
f(k, c)

αd + f(k, c)
)
2

with αd ≥ 0 (5)

where k is the value of the carried key, c is the centroid of the current peer,
and the similarity function f(k, c) is computed as in (1). The threshold αd has
a similar meaning as αp. Contrary to Ppick, Pdrop is directly proportional to the
similarity between k and c, therefore the agent tends to drop a key when it is
similar to the other keys stored in the local peer.
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Pick and drop operations contribute to the correct reordering of keys, because
the agents tend to place every key in a peer that has a centroid value close to the
key value. The performance of Self-Chord was evaluated in [6], both with respect
to the effectiveness and rapidity of key sorting and to the efficiency of discovery
operations. In Section 4, attention will be centered on the distance between
consecutive centroids. Indeed, it is easy to see that the average distance between
consecutive peer centroids, in a network with Np peers and Nc admissible values
of resource keys, must be equal to Nc/Np. But it is also important to analyze the
distribution of this distance: a narrow distribution, with many values close to
the average, is an indication that the centroids are equally spaced, and a robust
guarantee about the expected efficiency of discovery operations.

3 Random Matrix Theory

This section gives a short introduction to the field of random matrix theory,
in particular to the properties of the Gaussian Unitary Ensemble (GUE), and
to the connections with number theory. Besides the technical papers and books
cited below, the reader can find an interesting summary and a critical discussion
of these issues in Chapters 17 and 18 of the book “Prime Obsession” authored
by John Derbyshire [4].

The random matrix theory has proved essential for the study of complex
physical systems [13]. In particular, the exact calculation of the energy levels of
non-trivial quantum mechanical systems is practically impossible owing to the
enormous number of possible states and of the possible interactions among the
involved components. However, first Wigner, and then Dyson [5], showed that a
statistical description is possible by studying the properties of random matrices.
In particular, the energy levels of a wide range of semi-chaotic dynamical systems
are excellently fitted by the eigenvalues of the random matrices belonging to the
Gaussian Unitary Ensemble (GUE), in the limit N −→ ∞, N being the matrix
size. The GUE consists of n x n complex matrices of the form A = (ajk), where

ajj =
√
2 · σj,j

ajk = σj,k + iηj,k for j < k and

ajk = akj = σk,j − iηk,j for j > k

where σj,k and ηj,k are independent standard normal variables.
Square matrices of this kind, which are equal to their own conjugate trans-

poses, are called Hermitian or self-adjoint, and it was proved that all their
eigenvalues are real. The GUE matrices are a subset of Hermitian matrices,
and for this subset a well established theory proved the existence of the so-called
“repulsion effect” between consecutive eigenvalues. This means that that the
probability of finding two consecutive eigenvalues spaced by an amount ω (and,
correspondingly, the probability of finding two consecutive energy levels of the
associated physical system spaced by the same amount) decays at small values
of ω.
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This property derives from the pair correlation function of the eigenvalues of
GUE random matrices, derived by Dyson for very large matrices:

1− sin2(πx)

π2x2
(6)

This means, informally, that the fraction of eigenvalues couples ϕm and ϕn,
for which the distance between them (i.e., the modulus of the difference of their
values) is between α and β, is approximately equal to:∫ β

α

(1− sin2(πx)

π2x2
)dx (7)

Notice that the value of expression (6) decreases and tends to zero for de-
creasing values of x, which proves the repulsion effect: the number of very close
eigenvalues is much lower than the one that would be experienced if the eigen-
values were distributed uniformly.

The GUE pair correlation is also the subject of the famous Montgomery con-
jecture [14], which states that the distribution of the spacings between the non-
trivial zeros of the Riemann Zeta function is statistically identical to the spac-
ings of GUE eigenvalues. These non-trivial zeros, whose location in the complex
plane is the subject of the famous unsolved Riemann hypothesis, are strictly re-
lated to the distribution of prime numbers. The Montgomery conjecture opened
a very fruitful research stream, as physicists and number theorists do not see
any reason why the Zeta function should be correlated to the behavior of a wide
class of dynamical systems, among which the quantum mechanical systems men-
tioned above. Moreover, this unexpected correlation is deemed as one of the most
promising avenues that could lead to the demonstration of the Riemann hypoth-
esis. Following the work of Montgomery, Odlyzko [15] made an accurate analysis
of the statistical properties of the zeros of the Zeta function, which consolidated
the Montgomery conjecture and turned it into the Montgomery-Odlyzko law.
Odlyzko compared the statistical properties of the GUE eigenvalues to those of
different sets of 10000 consecutive zeros of the Riemann Zeta function.

4 On Statistical Analogies between Self-Chord Centroids
and GUE Eigenvalues

As mentioned in Section 2, the effectiveness of the Self-Chord P2P system is
strongly related to the distribution of the spacings between consecutive peer
centroids. Several hints suggest a possible analogy between this distribution and
the distribution of GUE eigenvalues. They are:

1. the processes modeled by GUE matrices have a random and semi-chaotic
nature. The key sorting in Self-Chord is a random process and its behav-
ior has also semi-chaotic characteristics: after an external perturbation, the
key sorting is recovered, but the value of a single peer centroid is almost
unpredictable;
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2. in Self-Chord there is a clear repulsion effect between consecutive centroids:
since the ants continuously sort the keys with respect to centroids, the cen-
troids tend to keep a minimum distance between each other. Similarly, large
spacings are also unlikely. In general, the values of centroid spacings tend to
be close to the average, much more than what would be experienced if the
centroid values were not biased, i.e., if they followed a Poisson distribution.
A similar phenomenon is experienced by consecutive GUE eigenvalues;

3. the most popular application of GUE operators concerns the study of the
energy levels of quantum mechanical systems. These systems have a strong
connection with number theory, because energy levels derive from the com-
position of the energy states of single components, which are not defined on
a continuum but must be multiple of energy quanta. In the same fashion, the
value of a centroid is calculated from the values of a finite number of keys,
and the keys can only have integer values;

4. continuing the comparison to particle systems, the energy levels may change
their values after the absorption, or the emission, of energy quanta. These
modifications happen continuously under the effect of inner statistical pro-
cesses and external perturbations. A similar phenomenon happens in the
Self-Chord system, owing to the pick and drop operations performed by ants
as the result of random Bernoulli trials. After a couple of pick/drop oper-
ations, a key with an integer value is moved between two peers, and the
respective centroids change their values accordingly.

Of course, these are only hints, but, quite surprisingly, they were confirmed
by a large number of statistical experiments. The distribution of centroid spac-
ings was calculated in Self-Chord systems where: the number of peers Np is
equal to 2000, 5000 and 10000 peers; the number of admissible peer indexes is
Nc = 1, 000, 000; each peer published 100 keys on average; the values of thresh-
olds αp and αd are set, respectively, to 0.3 and 0.4. Experiments were performed
using the Self-Chord event-based simulator available at the Web site http://self-
chord.icar.cnr.it. The centroid distribution was compared to the distribution of
GUE eigenvalues, and the result is reported in Figure 2. To obtain the distri-
bution of centroid spacings, a histogram was calculated for values of spacings
between 0 and 4 (the average was normalized to 1), and step 0.04. The distri-
bution of GUE spacings, suitably normalized, can be obtained through a quite
complex mathematical procedure devised by Mehta and des Cloizeaux, and de-
tailed in [12]. For the purpose of this work, the distribution was provided directly
by Odlyzko, whose landmark work was mentioned in the previous section.

The two distributions are clearly very similar. The zigzag deviations of the
centroid distributions may be caused by the limited size of the system. In fact,
deviations become smaller as the system size increases, as noticed in the fig-
ure, which seems to mean that the contribution of the hypothetical white noise
component tends to vanish in very large systems. This can be seen as a further
confirmation about the correctness of the alleged similarity: the theoretical dis-
tribution of GUE eigenvalues is related to matrices whose size tends to infinity.
It should be noticed that the GUE distribution is remarkably different from any
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Fig. 2. Probability density of normalized spacings between consecutive centroids, com-
puted for Self-Chord networks with different size, compared to the distribution of nor-
malized spacings between GUE eigenvalues.

common statistical distribution - normal, truncated normal, Gamma, Poisson,
etc. - and that neither the centroid spacings can be approximated by any of these
distributions.

Figure 2 is useful to visibly compare the distributions, but cannot be con-
sidered as a stringent statistical test. The “q-q plot”, or quantile-quantile plot,
is a more rigorous test, very useful to detect the deviations between a theoreti-
cal distribution (in this case, the GUE distribution) and an empirical one (the
centroid spacings). This test was used by Odlyzko for his comparison between
the GUE eigenvalues and the zeros of the Zeta function. The q-q graph plots
the quantiles of two distributions one against the other. A quantile is defined
as the value of the random variable under observation that is strictly greater
than a given fraction of samples. For example, let us consider the point of the
q-q plot that corresponds to the 0.3 quantile: the x coordinate of this point is
the value at which the GUE cumulative distribution is equal to 0.3, whereas the
y coordinate is the value that is higher than 30% of the values of the centroid
spacings.

Figure 3 shows the q-q plot for different network sizes, calculated at the
quantiles 0.02, 0.04, up to 0.98. It appears that the three graphs are all very
close to the straight line y = x, which would be obtained if the theoretical and
empirical distributions were identical. The largest deviations are observed at the
two ends of the plot. This is not surprising, since the first and the last quantiles
are related to the tails of the distribution. They are therefore determined by the
sample values that are the most distant from the average, and are particularly
subject to statistical perturbations. But, again, these deviations seem to wane
as the network size increases.

An interesting question is whether the centroid distribution depends on the
particular setting of Self-Chord parameters. Actually, there are only two pa-
rameters, the αp and αd thresholds used for pick and drop operations. If the
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discovered similarity with the GUE distribution were valid only for a particular
setting, the phenomenon could not be considered general. Fortunately, this is
not the case. A number of experiments were performed, in networks with 2000
peers, when varying the value of each of the two parameters, with the other
kept constant. Figure 4 reports the obtained values of the Pearson coefficient,
which summarizes the correlation between centroid and GUE distributions with
a single value. This statistical index can assume values between -1.0 and 1.0,
and the latter value corresponds to a linear correlation between the two com-
pared distributions. The figure shows that the Pearson coefficient is greater than
0.97 for wide ranges of values of αp and αd. Indeed, these are the values that
allow Self-Chord to sort the keys properly. In other words, with any setting that
ensures a successful sorting of keys, the distribution of centroids is always very
similar to the GUE distribution.
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5 Conclusion

What conclusions can be drawn from the results reported in the previous section?
First of all, they offer a robust statistical confirmation about the Self-Chord
capacity of sorting the peer centroids and limiting the variations of the spacings
among them: indeed, the observed distribution of spacings is quite narrow, and
high values of spacings are extremely unlikely. This phenomenon, along with the
observation that the keys stored by a peer are always very similar to the local
centroid [6], ensures that a quest for a key can be turned into the quest for a peer
centroid, and that a given centroid can be discovered in logarithmic time with
a high level of guarantee. This is an interesting result per se, as it confirms that
ant algorithms can be used to give self-* properties to structured P2P systems,
which has been deemed impossible for a long time. It should be noticed that
algorithms of this kind can be devised not only for Chord, but also for other
popular P2P systems, like CAN and Pastry.

Now, let us turn to the questions asked in the introductory section. Firstly,
is this phenomenon tied to the P2P scenario, or is it valid for a wide class of ant
algorithms? The algorithm used in Self-Chord is very similar to many basic ant
algorithms, for example to those described in Chapter 4 of the renowned book
on Swarm Intelligence authored by Bonabeau et al. [1]. Therefore, it is plausible
that this behavior applies to ant algorithms in general. If this is true, is it
possible to derive a GUE operator (i.e., an operator that uses GUEmatrices) that
models the Self-Chord process, or other processes based on the ant paradigm?
This would be particularly important, since today there is a significant need for
rigorous methodologies that may help to design and analyze ant algorithms. It
should be considered that ant algorithms are widely exploited to solve a large
number of complex problems, such as task allocation, routing problems, graph
partitioning, etc., but the detailed behavior of these algorithms is still mostly
obscure.

Finally, there is the not yet unveiled tie between random matrix theory and
the Riemann Zeta function. Is it conceivable that ant algorithms are correlated
to the theory of prime numbers? Could this correlation concern only artificial
ants or even real ants? No, this is too much beyond any reasonable conjecture.
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