
1

Programming Visual and Script-based

Big Data Analytics Workflows on Clouds

Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio

DIMES, University of Calabria

Via P. Bucci 41c, 87036 Rende, Italy

{lbelcastro, fmarozzo, talia, trunfio}@dimes.unical.it

Abstract

Data analysis applications often include large datasets and complex

software systems in which multiple data processing tools are executed in a

coordinated way. Data analysis workflows are effective in expressing task

coordination and they can be designed through visual- and script-based

programming paradigms. The Data Mining Cloud Framework (DMCF)

supports the design and scalable execution of data analysis applications on

Cloud platforms. A workflow in DMCF can be developed using a visual-

or a script-based language. The visual language, called VL4Cloud, is

based on a design approach for high-level users, e.g., domain expert

analysts having a limited knowledge of programming paradigms. The

script-based language JS4Cloud is provided as a flexible programming

paradigm for skilled users who prefer to code their workflows through

scripts. Both languages implement a data-driven task parallelism that

spawns ready-to-run tasks to Cloud resources. In addition, they exploit

implicit parallelism that frees users from duties like workload partitioning,

synchronization and communication. In this chapter, we present the

DMCF framework and discuss how its workflow paradigm has been

integrated with the MapReduce model. In particular, we describe how

VL4Cloud/JS4Cloud workflows can include MapReduce tools, and how

these workflows are executed in parallel on DMCF enabling scalable data

processing on Clouds.

1. Introduction

Cloud computing systems provide elastic services, high performance and scalable data

storage to a large and everyday increasing number of users [1]. Clouds enlarged the

computing and storage offer of distributed computing systems by providing advanced

Internet services that complement and complete functionalities of distributed computing

provided by the Web, Grids, and peer-to-peer networks. In fact, Cloud computing

systems provide large-scale computing infrastructures for complex high-performance

applications. Most of those applications use big data repositories and often access and

analyze them to extract useful information.

Big data is a new and over-used term that refers to massive, heterogeneous, and often

unstructured digital content that is difficult to process using traditional data

management tools and techniques. The term includes the complexity and variety of data

and data types, real-time data collection and processing needs, and the value that can be

obtained by smart analytics. Advanced data mining techniques and associated tools can

help extract information from large, complex datasets that are useful in making

2

informed decisions in many business and scientific applications including advertising,

market sales, social studies, bioinformatics, and high-energy physics. Combining big

data analytics and knowledge discovery techniques with scalable computing systems

will produce new insights in a shorter time [2].

Although a few Cloud-based analytics platforms are available today, current research

work foresees that they will become common within a few years. Some current

solutions are open source systems such as Apache Hadoop and SciDB, while others are

proprietary solutions provided by companies such as Google, IBM, Microsoft, EMC,

BigML, Splunk Storm, Kognitio, and InsightsOne. As such platforms become available,

researchers are increasingly porting powerful data mining programming tools and

strategies to the Cloud to exploit complex and flexible software models, such as the

distributed workflow paradigm. The increasing use of service-oriented computing in

many application domains is accelerating this trend. Developers and researchers can

adopt the software as a service (SaaS), platform as a service (PaaS), and infrastructure

as a service (IaaS) models to implement big data analytics solutions in the Cloud. In

such a way, data mining tasks and knowledge discovery applications can be offered as

high-level services on Clouds. This approach creates a new way to deliver data analysis

software that is called data analytics as a service (DAaaS).

This chapter describes a Data Mining Cloud Framework (DMCF) that we developed

according to this approach. In DMCF, data analysis workflows can be designed through

a visual- or a script-based formalism. The visual formalism, called VL4Cloud, is a very

effective design approach for high-level users, e.g., domain expert analysts having a

limited knowledge of programming languages. As an alternative, the script-based

language, called JS4Cloud, offers a flexible programming approach for skilled users

who prefer to program their workflows using a more technical approach. We discuss

how the DMCF framework based on the workflow model has been integrated with the

MapReduce paradigm. In particular, we describe how VL4Cloud/JS4Cloud workflows

can include MapReduce algorithms and tools, and how these workflows can be

executed in parallel on DMCF to support scalable data analysis on Clouds.

The remainder of the chapter is organized as follows. Section 2 presents the Data

Mining Cloud Framework introducing its architecture, the parallel execution model and

the workflow-based programming paradigm offered by VL4Cloud and JS4Cloud.

Section 3 describes how the VL4Cloud and JS4Cloud languages have been extended to

integrate with the MapReduce model. Section 4 discusses a data mining application

implemented using the proposed approach. Finally, Section 5 concludes the chapter.

2. Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) is a software system developed for

allowing users to design and execute data analysis workflows on Clouds. DMCF

supports a large variety of data analysis processes, including single-task applications,

parameter sweeping applications, and workflow-based applications. A Web-based user

interface allows users to compose their applications and to submit them for execution to

a Cloud platform, according to a Software-as-a-Service approach.

3

Figure 1: Architecture of Data Mining Cloud Framework.

The DMCF’s architecture includes a set of components that can be classified as storage

and compute components [3] (see Figure 1).

The storage components include:

 A Data Folder that contains data sources and the results of knowledge discovery

processes. Similarly, a Tool folder contains libraries and executable files for data

selection, pre-processing, transformation, data mining, and results evaluation.

 The Data Table, Tool Table and Task Table that contain metadata information

associated with data, tools, and tasks.

 The Task Queue that manages the tasks to be executed.

The compute components are:

 A pool of Virtual Compute Servers, which are in charge of executing the data

mining tasks.

 A pool of Virtual Web Servers host the Web-based user interface.

The user interface provides three functionalities:

i) App submission, which allows users to submit single-task, parameter sweeping,

or workflow-based applications;

ii) App monitoring, which is used to monitor the status and access results of the

submitted applications;

iii) Data/Tool management, which allows users to manage input/output data and

tools.

The Data Mining Cloud Framework architecture has been designed as a reference

architecture to be implemented on different Cloud systems. However, a first

implementation of the framework has been carried out on the Microsoft Azure Cloud

platform1 and has been evaluated through a set of data analysis applications executed on

a Microsoft Cloud data center.

The DMCF framework takes advantage of cloud computing features, such as elasticity

of resources provisioning. In DMCF, at least one Virtual Web Server runs continuously

1 http://azure.microsoft.com/

4

in the Cloud, as it serves as user front-end. In addition, users specify the minimum and

maximum number of Virtual Compute Servers. DMCF can exploit the auto-scaling

features of Microsoft Azure that allows dynamic spinning up or shutting down Virtual

Compute Servers, based on the number of tasks ready for execution in the DMCF’s

Task Queue. Since storage is managed by the Cloud platform, the number of storage

servers is transparent to the user.

The remainder of the section outlines applications execution in DMCF, and describes

the DMCF’s visual- and script-based formalisms used to implement workflow

applications.

2.1 Applications execution

For designing and executing a knowledge discovery application, users interact with the

system performing the following steps:

1. The Website is used to design an application (either single-task, parameter

sweeping, or workflow-based) through a Web-based interface that offers both the

visual programming interface and the script.

2. When a user submits an application, the system creates a set of tasks and inserts

them into the Task Queue on the basis of the application requirements.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and

concurrently executes it.

4. Each Virtual Compute Server gets the input dataset from the location specified by

the application. To this end, file transfer is performed from the Data Folder where

the dataset is located, to the local storage of the Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the result on the Data

Folder.

6. The Website notifies the user as soon as her/his task(s) have completed, and

allows her/him to access the results.

The set of tasks created on the second step depends on the type of application submitted

by a user. In the case of a single-task application, just one data mining task is inserted

into the Task Queue. If users submit a parameter sweeping application, a set of tasks

corresponding to the combinations of the input parameters values are executed in

parallel. If a workflow-based application has to be executed, the set of tasks created

depends on how many data analysis tools are invoked within the workflow. Initially,

only the workflow tasks without dependencies are inserted into the Task Queue [3].

2.2 Workflow formalisms

The DMCF allows creating data mining and knowledge discovery applications using

workflow formalisms. Workflows may encompass all the steps of discovery based on

the execution of complex algorithms and the access and analysis of scientific data. In

data-driven discovery processes, knowledge discovery workflows can produce results

that can confirm real experiments or provide insights that cannot be achieved in

laboratories. In particular, DMCF allows to program workflow applications using two

languages:

- VL4Cloud (Visual Language for Cloud), a visual programming language that lets

users develop applications by programming the workflow components graphically

[4].

- JS4Cloud (JavaScript for Cloud), a scripting language for programming data

analysis workflows based on JavaScript [5].

5

Both languages use two key programming abstractions:

- Data elements denote input files or storage elements (e.g., a dataset to be

analyzed) or output files or stored elements (e.g., a data mining model).

- Tool elements denote algorithms, software tools or complex applications

performing any kind of operation that can be applied to a data element (data

mining, filtering, partitioning, etc.).

Another common element is the task concept, which represents the unit of parallelism in

our model. A task is a Tool, invoked in the workflow, which is intended to run in

parallel with other tasks on a set of Cloud resources. According to this approach,

VL4Cloud and JS4Cloud implement a data-driven task parallelism. This means that, as

soon as a task does not depend on any other task in the same workflow, the runtime

asynchronously spawns it to the first available virtual machine. A task Tj does not

depend on a task Ti belonging to the same workflow (with i ≠ j), if Tj during its

execution does not read any data element created by Ti.

In VL4Cloud, workflows are directed acyclic graphs whose nodes represent data and

tools elements. The nodes can be connected with each other through direct edges,

establishing specific dependency relationships among them. When an edge is being

created between two nodes, a label is automatically attached to it representing the type

of relationship between the two nodes. Data and Tool nodes can be added to the

workflow singularly or in array form. A data array is an ordered collection of

input/output data elements, while a tool array represents multiple instances of the same

tool. Figure 2 shows an example of data analysis workflow developed using the visual

workflow formalism of DMCF [6].

Figure 2: Example of data analysis application designed using VL4Cloud.

In JS4Cloud, workflows are defined with a JavaScript code that interacts with Data and

Tool elements through three functions:

- Data Access, for accessing a Data element stored in the Cloud;

- Data Definition, to define a new Data element that will be created at runtime as a

result of a Tool execution;

- Tool Execution: to invoke the execution of a Tool available in the Cloud.

Once the JS4Cloud workflow code has been submitted, an interpreter translates the

workflow into a set of concurrent tasks by analysing the existing dependencies in the

code. The main benefits of JS4Cloud are:

1) it extends the well-known JavaScript language while using only its basic

functions (arrays, functions, loops);

2) it implements both a data-driven task parallelism that automatically spawns

ready-to-run tasks to the Cloud resources, and data parallelism through an array-

based formalism;

6

3) these two types of parallelism are exploited implicitly so that workflows can be

programmed in a totally sequential way, which frees users from duties like work

partitioning, synchronization and communication.

Figure 3 shows the script-based workflow version of the visual workflow shown in

Figure 2. In this example, parallelism is exploited in the for loop at line 7, where up to

16 instances of the J48 classifier are executed in parallel on 16 different partitions of the

training sets, and in the for loop at line 10, where up to 16 instances of the Predictor tool

are executed in parallel to classify the test set using 16 different classification models.

Figure 3: Example of data analysis application designed using JS4Cloud.

Figure 3 shows a snapshot of the parallel classification workflow taken during its

execution in the DMCF’s user interface. Beside each code line number, a colored circle

indicates the status of execution. This feature allows user to monitor the status of the

workflow execution. Green circles at lines 3 and 5 indicate that the two partitioners

have completed their execution; the blue circle at line 8 indicates that J48 tasks are still

running; the orange circles at lines 11 and 13 indicate that the corresponding tasks are

waiting to be executed.

3. Extending VS4Cloud/JS4Cloud with MapReduce

In this section, we describe how the DMCF has been extended to include the execution

of MapReduce tasks. In particular, we describe the MapReduce programming model,

why it is widely used by data specialists, and how the DMCF’s languages have been

extended to support MapReduce applications.

3.1 Motivations

MapReduce [7] is a programming model developed by Google to process large amounts

of data. It is inspired by the map and reduce primitives present in Lisp and other

functional languages. A user defines a MapReduce application in terms of a map

function that processes a (key, value) pair to generate a list of intermediate (key, value)

pairs, and a reduce function that merges all intermediate values associated with the same

intermediate key. Most MapReduce implementations are based on a master-slave

architecture. A job is submitted by a user node to a master node that selects idle workers

and assigns a map or reduce task to each one. When all the tasks have been completed,

the master node returns the result to the user node.

7

MapReduce and its best-known implementation Hadoop2 have become widely used by

data specialists to develop parallel applications that analyze big amount of data. Hadoop

is designed to scale up from a single server to thousands of servers, and has become the

focus of several other projects, including Spark3 for in-memory machine learning and

data analysis, Storm4 for streaming data analysis, Hive5 as data warehouse software to

query and manage large datasets, and Pig6 as dataflow language for exploring large

datasets.

Algorithms and applications written using MapReduce are automatically parallelized

and executed on a large number of servers. Consequently, MapReduce has been widely

used to implement data mining algorithms in parallel. Chu et al. [8] offer an overview of

how several learning algorithms can be efficiently implemented using MapReduce.

More in details, the authors demonstrate that MapReduce shows basically a linear

speedup with an increasing number of processors on a variety of learning algorithms

such as K-means, neural networks and Expectation-Maximization probabilistic

clustering. Mahout7 is an Apache project built on Hadoop that provides scalable

machine learning libraries. Ricardo project [9] is a platform that integrate R8 statistical

tools and Hadoop to support parallel data analysis. The use of MapReduce for data

intensive scientific analysis and bioinformatics is deeply analyzed in [10].

For the reasons discussed above and for the large number of MapReduce algorithms and

applications available online, we designed an extension of the DMCF’s workflow

formalism to support also the execution of MapReduce tools.

3.2 Integration Model

In DMCF, a Tool represents a software tool or service performing any kind of process

that can be applied to a data element (data mining, filtering, partitioning, etc.).

Figure 4: Types of Tools available in DMCF.

As shown in Figure 4, three different types of Tools can be used in a DCMF workflow:

2 http://hadoop.apache.org
3 http://spark.apache.org
4 http://storm.apache.org
5 http://hive.apache.org
6 http://pig.apache.org
7 http://mahout.apache.org
8 http://www.r-project.org

8

- A Batch Tool is used to execute an algorithm or a software tool on a Virtual

Compute Server without user interaction. All input parameters are passed as

command-line arguments.

- A Web Service Tool is used to insert into a workflow a Web service invocation.

It is possible to integrate both REST and SOAP-based Web services [11].

- A MapReduce Tool is used to insert into a workflow the execution of a

MapReduce algorithm or application running on a cluster of virtual servers.

For each Tool in a workflow, a Tool descriptor includes a reference to its executable,

the required libraries, and the list of input and output parameters. Each parameter is

characterized by name, description, type, and can be mandatory or optional.

In more detail, a MapReduce Tool descriptor is composed by two groups of parameters:

generic parameters, which are parameters used by the MapReduce runtime, and

applications parameters, which are parameters associated to specific MapReduce

applications. In the following, we list a few examples of generic parameters:

- mapreduce.job.reduces: the number of reduce tasks per job;

- mapreduce.job.maps: the number of map tasks per job;

- mapreduce.input.fileinputformat.split.minsize: the minimum size of chunk that

map input should be split into;

- mapreduce.input.fileinputformat.split.maxsize: the maximum size of chunk that

map input should be split into;

- mapreduce.map.output.compress: enable the compression of the intermediate

mapper outputs before being sent to the reducers;

Figure 5 shows an example of MapReduce Tool descriptor for an implementation of the

Random Forest algorithm. As shown by the descriptor, the algorithm can be configured

with the following parameters: a set of input files (dataInput), the number of trees that

will be generated (nTrees), the minimum number of elements for node split

(minSplitNum), the column containing the class labels (classColumn), and the output

models (dataOutput). DMCF uses this descriptor to allow the inclusion of a

RandonForest algorithm in a workflow, and to execute it on a MapReduce cluster.

9

Figure 5: Example of MapReduce descriptor in JSON format.

4. A Data Mining Application Case

In this section, we describe a DMCF data mining application whose workflow includes

MapReduce computations. Through this example, we show how the MapReduce

paradigm has been integrated into DMCF workflows, and how it can be used to exploit

the inherent parallelism of the application. The application deals with a significant

economic problem coupled with the flight delay prediction. Every year approximately

20% of airline flights are delayed or canceled mainly due to bad weather, carrier

equipment or technical airport problems. These delays result in significant cost to both

airlines and passengers. In fact, the cost of flight delays for US economy was estimated

to be $32.9 billion in 2007 and more than half of it was charged to passengers [12].

The goal of this application is to implement a predictor of the arrival delay of scheduled

flights due to weather conditions. The predicted arrival delay takes into consideration

both implicit flight information (origin airport, destination airport, scheduled departure

time, scheduled arrival time) and weather forecast at origin and destination airports. In

particular, we consider the closest weather observation at origin and destination airports

based on scheduled flight departure and arrival time. If the predicted arrival delay of a

scheduled flight is less than a given threshold, it is classified as an on-time flight;

otherwise, it is classified as a delayed flight.

Two open datasets of airline flights and weather observations have been collected, and

exploratory data analysis has been performed to discover initial insights, evaluate the

quality of data, and identify potentially interesting subsets. The first dataset is the

Airline On-Time Performance (AOTP) provided by RITA - Bureau of Transportation

10

Statistics9. The AOTP dataset contains data for domestic US flights by major air

carriers, providing for each flight detailed information such as origin and destination

airports, scheduled and actual departure and arrival times, air time, and non-stop

distance. The second is the Quality Controlled Local Climatological Data (QCLCD)

dataset available from the National Climatic Data Center10. The dataset contains hourly

weather observations from about 1,600 U.S. stations. Each weather observation includes

data about temperature, humidity, wind direction and speed, barometric pressure, sky

condition, visibility and weather phenomena descriptor.

For data classification, a MapReduce version of the Random Forest (RF) algorithm has

been used. RF is an ensemble learning method for classification [13]. It creates a

collection of different decision trees called forest. Once forest trees are created, the

classification of an unlabeled tuple is performed by aggregating the predictions of the

different trees through majority voting.

The results presented for this application have been obtained using data for a five-year

period beginning on January 2009 and ending on December 2013. Data are actually too

large to be analyzed on a single server. In fact, the joint table for five years data is larger

than 120GB, which cannot be analyzed on a single server due to memory limits. A

cloud system makes the analysis possible by providing the necessary computing

resources and scalability. In addition, the cloud makes the proposed process more

general: in fact, if the amount of data increases (e.g., by extending the analysis to many

years of flight and weather data), the cloud provides the required resources with a high

level of elasticity, reliability, and scalability. More application details are described in

[14].

Using DMCF, we created a workflow for the whole data analysis process (see Figure 6).

Figure 6: Flight delay analysis workflow using DMCF with MapReduce.

The workflow begins by pre-processing the AOTP and the QCLCD datasets using two

instances of PreProc Tool. These steps allow looking for possible wrong data, treating

missing values, and filtering out diverted and cancelled flights and weather observations

not related to airport locations. Then, a Joiner Tool executes a relational join between

Flights and Weather Observations data in parallel using a MapReduce algorithm. The

result is a JointTable. Then, a PartionerTT Tool creates five pairs of <Trainset, Testset>

using different delay threshold values. The five instances of training set and test set are

represented in the workflow as two data array nodes, labelled as Trainset[5] and

Testset[5].

Then, five instances of the RandomForest Tool analyze in parallel the five instances of

Trainset to generate five models (Model[5]). For each model, an instance of the

Evaluator Tool generates the confusion matrix (EvalModel), which is a commonly used

method to measure the quality of classification. Starting from the set of confusion

9 http://www.transtats.bts.gov
10 http://cdo.ncdc.noaa.gov/qclcd/QCLCD

11

matrices obtained, these tools calculate some metrics, e.g., accuracy, precision, recall,

which can be used to select the best model.

For our experiments, we deployed a Hadoop cluster over the Virtual Computer Servers

of DMCF. The cluster includes 1 head node having eight 2.2 GHz CPU cores and 14

GB of memory, and 8 worker nodes having four 2.2 GHz CPU cores and 7 GB of

memory. Table 1 presents the workflow’s turnaround times and speedup values

obtained using up to 8 workers. Taking into account the whole workflow, the

turnaround time decreases from about 7 hours using 2 workers, to 1.7 hours using 8

workers, with a speedup that is very close to linear values.

Tool

2 workers (1x) 4 workers (2x) 8 workers (4x)

Turnaround
time

(hh.mm.ss)
Speedup

Turnaround
time

(hh.mm.ss)
Speedup

Turnaround
time

(hh.mm.ss)
Speedup

PreProc 00.08.34 - 00.04.13 2.0 00.02.31 3.4

Filter 03.00.21 - 01.36.39 1.9 00.46.45 3.9

PartitionerTT 02.14.06 - 01.06.59 2.0 00.33.19 4.0

RandomForest 00.30.27 - 00.15.22 2.0 00.07.51 3.9

Evaluator 01.00.44 - 00.31.26 1.9 00.16.07 3.8

Total 06.54.12 - 03.34.39 1.9 01.46.33 3.8

Table 1: Turnaround time and relative speedups (with respect to 2 workers)

Scalability is obtained exploiting the parallelism offered both by MapReduce Tools and

by the DMCF workflow languages. In the first case, each MapReduce Tool is executed

in parallel exploiting the cluster resources. The level of parallelism depends on the

number of map and reduce tasks and on the resources available in the cluster. In the

second case, the DMCF workflow languages allow creating parallel paths and array of

tools that can be executed concurrently. In this case, the level of the parallelism depends

on the dependencies among tasks and on the resources available in the cluster.

5. Related work

Several systems have been proposed to design and execute workflow-based applications

[15], but only some of them currently work on the Cloud and support visual or script-

based workflow programming. The most known systems are Taverna [16], Orange4WS

[17] [18], Kepler [19], E-Science Central (e-SC) [20], ClowdFlows [21], Pegasus [22]

[23], WS-PGRADE [24] and Swift [25]. In particular, Swift is a parallel scripting

language that executes workflows across several distributed systems, like clusters,

Clouds, grids, and supercomputers. It provides a functional language in which

workflows are modelled as a set of program invocations with their associated command-

line arguments, input and output files. Swift uses a C-like syntax consisting of function

definitions and expressions that provide a data-driven task parallelism. The runtime

includes a set of services that implement the parallel execution of Swift scripts

exploiting the maximal concurrency permitted by data dependencies within a script and

by external resource availability. Swift users can use Galaxy [26] to provide a visual

interface for Swift [27].

For comparison purposes, we distinguish two types of parallelism levels: workflow

parallelism, which refers to the ability of executing multiple workflows concurrently;

and task parallelism, which is the ability of executing multiple tasks of the same

workflow concurrently. Most systems, including DMCF, support both workflow and

12

task parallelisms, except for ClowdFlows and E-Science Central that focus on workflow

parallelism only.

Most systems are provided according with the SaaS model (e.g., E-Science Central,

ClowdFlows, Pegasus, WS-PGRADE, Swift+Galaxy and DMCF), whereas Taverna,

Kepler and Orange4WS are implemented as desktop applications that can invoke Cloud

software exposed as Web Services. All the SaaS systems are implemented on top of

Infrastructure-as-a-Service (IaaS) Clouds, except for DMCF that is designed to run on

top of Platform-as-a-Service (PaaS) Clouds.

DMCF is one of the few SaaS systems featuring both workflow/task parallelism and

support to data/tool arrays. However, differently from the data/tool array formalisms

provided by the other systems, DMCF’s arrays make explicit the parallelism level of

each workflow node, i.e., the number of input/output datasets (in case of data arrays)

and the number of tools to be concurrently executed (in case of tool arrays).

Furthermore, DMCF is the only system designed to run on top of a PaaS. A key

advantage of this approach is the independence from the infrastructure layer. In fact, the

DMCF’s components are mapped into PaaS services, which in turn are implemented on

infrastructure components. Changes to the Cloud infrastructure affect only the

infrastructure/platform interface, which is managed by the Cloud provider, and therefore

DMCF’s implementation and functionality are not influenced. In addition, the PaaS

approach facilitates the implementation of the system on a public Cloud, which free

final users and organizations from any hardware and OS management duties.

6. Conclusions

Data analysis applications often involve big data and complex software systems in

which multiple data processing tools are executed in a coordinated way. Big data refers

to massive, heterogeneous, and often unstructured digital content that is difficult to

process using traditional data management tools and technique. Cloud computing

systems provide elastic services, high performance and scalable data storage, which can

be used as large-scale computing infrastructures for complex high-performance data

mining applications.

Data analysis workflows are effective in expressing task coordination and can be

designed through visual and script-based formalisms. According to this approach, we

described the Data Mining Cloud Framework (DMCF), a system supporting the scalable

execution of data analysis computations on Cloud platforms. A workflow in DMCF can

be defined using a visual or a script-based formalism, in both cases implementing a

data-driven task parallelism that spawns ready-to-run tasks to Cloud resources.

In this chapter, we presented how the DMCF workflow paradigm has been integrated

with the MapReduce model. In particular, we described how VL4Cloud/JS4Cloud

workflows can include MapReduce algorithms and tools, and how these workflows are

executed in parallel on DMCF to enable scalable data processing on Clouds.

We described a workflow application that exploits the support to MapReduce provided

by DMCF. The goal of this workflow is implementing a predictor of the arrival delay of

scheduled flights due to weather conditions, taking into consideration both implicit

flight information and weather forecast at origin and destination airports. By executing

the workflow on an increasing number of workers, we were able to achieve a nearly

linear speedup, thanks to the combined scalability provided by the DMCF workflows

languages and by the MapReduce framework.

13

References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A.

Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun. ACM, 53(4), pp. 50–58,

April 2010.

[2] D. Talia, P. Trunfio. Service-Oriented Distributed Knowledge Discovery, Chapman & Hall/CRC,

USA, 2012.

[3] F. Marozzo, D. Talia, P. Trunfio. A Cloud Framework for Parameter Sweeping Data Mining

Applications. Proc. of the 3rd International Conference on Cloud Computing Technology and

Science (CloudCom 2011), Athens, Greece, pp. 367-374, 2011.

[4] F. Marozzo, D. Talia, P. Trunfio. Using clouds for scalable knowledge discovery applications. In

Euro-Par 2012: Parallel Processing Workshops, pp. 220-227, 2013.

[5] F. Marozzo, D. Talia, and P. Trunfio. JS4Cloud: Script-based workflow programming for scalable

data analysis on cloud platforms. Concurrency and Computation: Practice and Experience, 2015.

[6] F. Marozzo, D. Talia, and P. Trunfio. A cloud framework for big data analytics workflows on

Azure. In Proc. of the 2012 High Performance Computing Workshop (HPC 2012), 2012.

[7] J. Dean, S. Ghemawat. MapReduce: simplified data processing on large clusters. Communications

of the ACM, 51(1), pp. 107-113, 2008.

[8] C. Chu, S. K. Kim, Y. A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun. Map-reduce for

machine learning on multicore. Advances in neural information processing systems, 19 (2007), pp.

281, 2007.

[9] S. Das, Y. Sismanis, K. S. Beyer, R. Gemulla, P. J. Haas, and J. McPherson. Ricardo: Integrating R

and Hadoop. In Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’10). ACM, New York, NY, USA, pp. 987–998, 2010.

[10] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for Data Intensive Scientific Analyses. In

Proceedings of the 2008 Fourth IEEE International Conference on eScience (ESCIENCE ’08). IEEE

Computer Society, Washington, DC, USA, pp. 277–284, 2008.

[11] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. "big"' web services:

making the right architectural decision. In Proceedings of the 17th international conference on

World Wide Web (WWW '08). ACM, New York, NY, USA, pp. 805-814, 2008 April.

[12] M. Ball, C. Barnhart, M. Dresner, M. Hansen, K. Neels, A. Odoni, E. Peterson, L. Sherry, A. A.

Trani, and B. Zou. Total delay impact study: a comprehensive assessment of the costs and impacts

of flight delay in the United States, 2010.

[13] L. Breiman. Random forests. Machine learning, Springer, 45(1), pp. 5–32, 2001.

[14] L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio. Using Scalable Data Mining for Predicting Flight

Delays. 2015. Under Review

[15] D. Talia, “Workflow systems for science: Concepts and tools,” ISRN Software Engineering, 2013.

[16] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S. Soiland-Reyes, I.

Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la

Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna workflow suite: designing and

executing workflows of Web Services on the desktop, web or in the cloud,” Nucleic Acids Research,

vol. 41, no. W1, pp. W557–W561, July 2013.

[17] V. Podpěcan, M. Zemenova, and N. Lavrač, “Orange4ws environment for service-oriented data

mining,” Comput. J., vol. 55, no. 1, pp. 82–98, Jan. 2012.

[18] J. Demšar, T. Curk, A. Erjavec, Črt Gorup, T. Hočevar, M. Milutinovič, M. Možina, M. Polajnar, M.

Toplak, A. Starič, M. Štajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik, and B. Zupan, “Orange:

Data mining toolbox in python,” Journal of Machine Learning Research, vol. 14, pp. 2349–2353,

2013. [Online]. Available: http://jmlr.org/papers/v14/demsar13a.html

[19] B. Ludscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,M. Jones, E. A. Lee, J. Tao, and Y. Zhao,

“Scientific workflow management and the kepler system,” Concurrency and Computation: Practice

and Experience, vol. 18, no. 10, pp. 1039–1065,2006.

[20] H. Hiden, S. Woodman, P. Watson, and J. Cala, “Developing cloud applications using the e-Science

Central platform,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, vol. 371, no. 1983, January 2013.

[21] J. Kranjc, V. Podpečan, and N. Lavrač, “ClowdFlows: A Cloud Based Scientific Workflow

Platform” in Machine Learning and Knowledge Discovery in Databases, ser. Lecture Notes in

Computer Science. Heidelberg, Germany: Springer, 2012, vol. 7524, pp. 816–819.

[22] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi, G. B.

Berriman, J. Good et al., “Pegasus: A framework for mapping complex scientific workflows onto

distributed systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[23] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman, and P. Maechling, “Data

Sharing Options for Scientific Workflows on Amazon EC2,” in High Performance Computing,

14

Networking, Storage and Analysis (SC), 2010 International Conference for, ser. SC ’10. IEEE,

November 2010, pp. 1–9.

[24] P. Kacsuk, Z. Farkas, M. Kozlovszky, G. Hermann, A. Balasko, K. Karoczkai, and I. Marton, “Ws-

pgrade/guse generic dci gateway framework for a large variety of user communities,” J. Grid

Comput., vol. 10, no. 4, pp. 601–630, Dec. 2012.

[25] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and I. Foster, “Swift: A language for

distributed parallel scripting,” Parallel Computing, vol. 37, no. 9, pp. 633–652, September 2011.

[26] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, P. Shah, Y. Zhang, D. Blankenberg, I. Albert,

W. Miller, W. J. Kent, and A. Nekrutenko, “Galaxy: A platform for interactive large-scale genome

analysis,” Genome Res, vol. 15, pp. 1451–1455, 2005.

[27] K. Maheshwari, A. Rodriguez, D. Kelly, R. Madduri, J. Wozniak, M. Wilde, and I. Foster,

“Enabling multi-task computation on galaxy-based gateways using swift,” in Cluster Computing

(CLUSTER), 2013 IEEE International Conference on, Sept 2013, pp. 1–3.

