
Evaluating and Enhancing the Use of the GridFTP
Protocol for Efficient Data Transfer on the Grid

Mario Cannataro1, Carlo Mastroianni2, Domenico Talia3, Paolo Trunfio3

1 University “Magna Græcia” of Catanzaro, Via T. Campanella 115,
88100 Catanzaro, Italy, cannataro@unicz.it

2 ICAR-CNR, Via P. Bucci 41/c,
87036 Rende, Italy, mastroianni@icar.cnr.it

3 University of Calabria, Via P. Bucci 41/c,
87036 Rende, Italy, {talia, trunfio}@deis.unical.it

Abstract. Grid applications often require large data transfers along
heterogeneous networks having different latencies and bandwidths, therefore
efficient support for data transfer is a key issue in Grid computing. The paper
presents a performance evaluation of the GridFTP protocol along some typical
network scenarios, giving indications and rules of thumb useful to select the
“best” GridFTP parameters. Following some recent approaches that make use
of experimental results to optimize data transfers, the paper presents a simple
algorithm that suggests the “best” GridFTP parameters for a required transfer
session on the basis of historical file transfer data.

1 Introduction

The Grid is an integrated infrastructure for coordinated resource sharing and
problem solving in distributed computing environments. Grid applications often
involve large amounts of data and/or computing, therefore efficient support for data
transfer on networks with different latencies and bandwidths is a key issue.

GridFTP [1] is a protocol, developed within the context of the Globus Toolkit, that
supports the efficient transfer of large amounts of data on Grids, facing high latency
and low bandwidth problems often encountered in geographical networks.

GridFTP is based on the FTP protocol but, opposite to many implementations of
that protocol, it supports and extends a large subset of the features defined in the RFC
969 standard [2]. The major contribution of the GridFTP protocol is the use of the
security services of Globus to assure the authentication of Grid applications. Other
peculiar features of GridFTP are: the manual setting of the TCP buffer size, the use of
multiple parallel streams, the third-party transfer option, and the partial file transfer
option.

Some recent works report performance evaluations of the GridFTP protocol or
propose techniques that make use of experiment results to optimize data transfers. In
[3], GridFTP is compared with the Remote File I/O protocol developed at CERN, and
it is shown that GridFTP is generally more efficient if TCP buffer size and the
number of sockets are properly tuned. In [4], a client library that provides a set of

high level functionalities based on GridFTP and other basic Globus services, is
proposed. Some performance evaluations are also reported for file transfers between
Italy, UK and USA. In [5], the problem of efficient data transfer is tackled within the
context of the Data Grid project. The goal was to predict future data transfer
performances by using statistical functions calculated over past experiments. All file
transfers use 8 parallel streams and a TCP buffer size equal to the theoretical
optimum value (Bandwidth times Round Trip Time). In [6], a method is proposed to
combine active tests (i.e., when test data are sent through the network) and passive
tests (i.e., when useful data are transferred and results are used as test results). That
work proposes to publish summarized test results on the Grid information services, in
particular on the Monitoring and Discovery Service of Globus, to make them
accessible by Grid hosts. Hosts are therefore aware of end-to-end connection
properties before starting a file transfer.

This paper discusses a work that follows the approach suggested by [5] and [6].
After a performance evaluation of the GridFTP protocol along some typical network
scenarios, the paper describes a tool for the collection and summarization of GridFTP
usage data (collected for each transfer session activated on a node), that implements a
simple procedure whose purpose is to suggest the “best” GridFTP parameters for a
required transfer session.

The rest of the paper is organized as follows. Section 2 presents the performance
evaluation of GridFTP through different data transfer scenarios and summarizes the
main results obtained and some possible indications on how to choose the GridFTP
parameters. Section 3 presents a tool that automatically configures the GridFTP
parameters to minimize file transfer times between Globus hosts. Finally, Section 4
concludes the paper.

2 GridFTP performance evaluation

In order to evaluate the performance of the GridFTP protocol in different network
scenarios, we tested GridFTP along three different kinds of connections with the
following tests:
1. Tests on adjacent Local Area Networks (LAN). Files were transferred between two

hosts belonging to different LANs connected through a router.
2. Tests on two different long distance Internet connections; we chose connections

with similar bandwidth characteristics but different latency values.
The pipechar tool [7] was used to evaluate the main characteristics of the

connections, that is the RTT (Round Trip Time) delay and the bottleneck bandwidth
(i.e., the minimum bandwidth measured on the path followed by IP packets).

Transfers were executed during the night to avoid network congestion, and, more
important for the objective of this work, to minimize the effect of the network load
variability during the experiments. The low variance of the measurements we
obtained shows that this goal has been achieved.

We used the globus-url-copy command of the Globus Toolkit version 2.2, with
the following syntax:

globus-url-copy -vb -notpt -tcp-bs <buffer> \
-p <parallel> gsiftp://<source-file> gsiftp://<dest-file>.

Where <buffer> is the TCP buffer size (in Kbytes) and <parallel> is the number of
parallel streams (i.e., the number of sockets used in parallel for the transfers).

The following parameters have been varied in the tests:
• the TCP buffers on sender and receiver, with values from 1 Kbyte to 64 Kbytes,

that is the maximum allowed size on many operating systems;
• the number of parallel streams: tests were made using 1, 2, 4, 8, 16, 32, and 64

sockets;
• the file size, with values from 32 Kbytes to 64 Mbytes.

For each combination of these parameters, we performed 20 file transfers and
calculated the average data transfer value after discarding values that differ more than
20% with respect to the overall average.

2.1 Tests between adjacent LANs

These tests have been performed between a host (telesio.cs.icar.cnr.it) at
ICAR-CNR (Institute for High Performance Networks and Applications) and a host
(griso.deis.unical.it) at University of Calabria. These hosts belong to 100 Mbps
LANs connected through 10 Mbps links to a router.

Preliminary tests run with pipechar showed that for this connection the mean RTT
delay is 31.5 msec, while the bottleneck bandwidth is 4.7 Mbps, with a theoretical
optimum TCP buffer size equal to 18.5 Kbytes (TCP buffer size = RTT × bandwidth).

File transfer experiments confirmed the presence of an optimum TCP buffer, even
if its size is lower than the theoretical one. Figure 1a reports the data transfer rates
obtained with the transfers of a 16 Mbytes file, w.r.t. the TCP buffer size, for
different value of the number of sockets. Figure 1b shows the same performances
w.r.t. the number of sockets, to highlight the effect of using several sockets. From
those figures two considerations arise:

(i) a high number of sockets is not advantageous for a high bandwidth connection
like this, because the amount of time needed to set up and release the connections
outweighs the possible advantage of having many parallel streams; the use of a small
number of sockets (from 4 to 8) seems to be a good choice for all the values of the
TCP buffer size;

(ii) the buffer size that gives the best performance decreases as the number of
sockets increases: while with 1 or 2 sockets a 8 Kbyte buffer is the best choice, with
4, 8 or 16 it is better to use a 4 Kbyte buffer, and an even smaller buffer (2 Kbytes) is
preferable if 32 sockets are used. A motivation can be that, with a high number of
sockets, the operating system is requested to manage a large amount of TCP buffer
memory: e.g., with 32 sockets and a 64 Kbyte buffer, the overall buffer memory is
equal to 2 Mbytes.

Similar qualitative results were obtained for transfers of larger files. Figure 2
reports a summary of data transfer rates for different file sizes, and confirms that the
use of several sockets is not effective for this kind of connection. We also can note
that, as expected, the transfer data rate increases when the file size increases, due to
the lower relative impact of connection set up and release phases. Figure 2 also shows
that it is not necessary to test transfers of very large files, since curves tend to get to a
saturation.

Fig. 1a. Data transfer rates for a 16 Mbyte file, versus the TCP buffer, for different values of
the number of parallel streams.

Fig. 1b. Data transfer rates for a 16 Mbyte file, versus the number of sockets, for different
values of the TCP buffer size.

2.2 Tests on Internet connections – case A

GridFTP tests were also made from an ICAR-CNR host (icarus.cs.icar.cnr.it) to
a host at the University of Calabria (griso.deis.unical.it). Differently from the
case analyzed in Section 2.1, routers were configured so that the LANs were not
directly linked, but IP packets followed a path along the Italian high-bandwidth
GARR network (with a number of hops equal to 8). The resulting bottleneck

bandwidth is about 1.6 Mbps, while the mean RTT delay is 80 milliseconds, with a
theoretical optimum TCP buffer size equal to about 16 Kbytes.

Fig. 2. Data transfer rates versus the file size, for different values of the number of sockets. The
TCP buffer size is set to 32 Kbytes.

Figure 3a depicts data transfer rates obtained with a 16 Mbyte file. It appears that

when the number of sockets increases, the larger potential transfer rate is balanced by
the longer connection procedures: a good trade-off seems to be reached when the
number of streams is between 16 and 32.

For what concerns the TCP buffer size, the most convenient size strongly depends
on the number of sockets: with only 1 socket, a 64 Kbyte buffer is to be chosen, while
with 32 or 64 sockets a 8 Kbyte buffer gives the best performance. With 8 or 16
sockets the performance obtained with different buffer sizes is similar. As a
consequence, we may note that a non optimal choice of the buffer size would not
cause a notable performance degradation.

Figure 3b shows the performance obtained transferring a 64 Mbyte file. The larger
file size causes two remarkable phenomena: (i) performance does not worsen when
the number of sockets increases, and (ii) the buffer size influence is very small with a
large number of sockets. Therefore, it results that transfers of 64 Mbytes or larger
files should be made with 32 or 64 sockets, while the choice of the buffer size is
almost ineffective.

Figure 4 shows that a number of sockets ranging from 4 to 8 gives the best
performance, w.r.t. to lower or larger numbers of sockets, with almost the considered
file sizes. When using a higher number of sockets (e.g., 32), we also may obtain good
performance if the file size exceeds 32 Mbytes, but experiment poorer performance
when transferring smaller files.

Fig. 3a. Data transfer rates for a 16 Mbyte file, versus the number of sockets, for different
values of the TCP buffer size.

Fig. 3b. Data transfer rates for a 64 Mbyte file, versus the number of sockets, for different
values of the TCP buffer size.

2.3 Tests on Internet connections – case B

These tests were performed between an ICAR-CNR host (icarus.cs.icar.cnr.it)
and a host at the CNUCE-CNR institute in Pisa (novello.cnuce.cnr.it). The path
between these two nodes includes both inter-LAN connections and Internet links.
With respect to the connection discussed in Section 2.2, this connection has a similar
bottleneck bandwidth (about 1.7 Mbps), but a higher RTT delay (125 msec). These
parameters lead to a theoretical optimum TCP buffer equal to about 26.5 Kbytes.

Fig. 4. Data transfer rates versus the file size, for different values of the number of sockets. The
TCP buffer size is set to 32 Kbytes.

We experimented that, due to the higher latency, performance figures show some

remarkable differences when they are compared to the figures reported in Section 2.2,
though the maximum data rates that are achievable with both connections are similar.

Fig. 5. Data transfer rates for a 16 Mbyte file, versus the number of sockets, for different
values of the TCP buffer size.

In Figure 5 we see that, when transferring a 16 Mbyte file, performance increases
with the number of sockets for all values of the TCP buffer. Furthermore, a high TCP
buffer is advantageous with any number of sockets, though the advantage decreases

as that number increases. Therefore, with this file size, the best choice is to have a
number of sockets and a TCP buffer size as large as possible.

This is not true for all file sizes. Figure 6 shows performances w.r.t. the file size,
with a 32 Kbyte TCP buffer: we see that a high number of sockets is beneficial only
for big-sized files, while for small files 1 or 2 sockets are preferable. Note that curves
related to different numbers of sockets get crossed in the range between 512 Kbytes
and 2 Mbytes.

Fig. 6. Data transfer rates versus the file size, for different values of the number of sockets. The
TCP buffer size is set to 32 Kbytes.

2.4 Summary results

On the basis of the experiments presented along the paper, we can draw some
conclusions on performance trends obtained by varying the file size, the TCP buffer
and the number of sockets:

1. The optimal number of sockets strongly depends on the type of connection,
particularly on the latency value: for low-latency connections, a small number
of sockets is sufficient, while as the latency increases the use of more sockets
can lead to a significant advantage;

2. The file size has also an impact on the choice of the number of sockets: a high
number of sockets becomes convenient only for files whose sizes exceed a
certain value. This cross value depends on the Grid connection and decreases as
the latency increases: for example for the Internet connection reported in
Section 2.2 (lower latency), the cross value is about 32 Mbytes, while for the
connection reported in Section 2.3 (higher latency), the cross value is about 2
Mbytes.

3. The optimal TCP buffer size depends on the network connection (latency and
bandwidth), the file size, and the number of sockets. Dependencies are complex

but a rule of thumb can be the following: large TCP buffers are advantageous
with high RTT × BW products and for transfers of large files; but the use of a
high number of sockets often requires small TCP buffers.

In summary, supposing to know the network characteristics (latency and bandwidth)
and given the file size, a possible approach to choose the GridFTP parameters could
start finding the number of sockets, on the basis of latency and file size, and then
finding the TCP buffer size.

3 A tool for enhanced GridFTP file transfers

In Section 2 we reported some of the performance results we obtained with
GridFTP tests on three different types of network connections.

At completion of this work, we built a tool, written in Java and executable on
machines running the Globus Toolkit, that uses the GridFTP protocol to perform
efficient file transfer on a Globus-based Grid.

Such tool has two main goals:
• to build a file transfer log, by collecting the performance data about the

executed file transfers;
• to enhance the file transfer, by automatically setting the GridFTP parameters

(TCP buffer and number of sockets) to those values that are supposed to
minimize the transfer time for a given file on a given Grid connection.

The automatic setup of the GridFTP parameters is made on the basis of the
experience, i.e., of the transfer times obtained in previous file transfers and stored in
the file transfer log.

In particular, when a file transfer between hosts A and B is requested, the
following steps are executed:

(i) the tool tries to determine the type of Grid connection, in order to select the
historical data that can be useful. For example, if nodes A and B belong to Internet
domains for which historical data are already available, the tool will refer to those
data. The connection type can also be derived by measurements on network
parameters (RTT, BW) made with the pipechar tool. If data are available for another
connection with similar parameter values, those data can be referred. If none of those
cases applies, the tool generates a new connection type and suggests the user to
perform a set of tests that can be used in the future.

(ii) once the reference historical data have been chosen, the tool determines the
GridFTP parameter values that are the most convenient on the basis of the
experience.

(iii) the file transfer is executed with the chosen parameters, and the transfer times
are used to update the historical data for the connection type under consideration.

To transfer a very large file, it can be convenient to split the file in several parts
and separately transfer those parts. In this way, GridFTP parameters could be adapted
on the fly to network conditions that may vary between transfers of file parts.

The tool provides a graphical interface allowing a user to navigate in the file
systems of the Grid hosts and to execute transfers of one or more files with intuitive
drag and drop operations. Before starting the transfer, the tool proposes to the user
the convenient parameters (that she/he can modify) and shows the estimated transfer

time. Moreover, the tool automatically manages the Globus authentication procedures
needed prior to start the GridFTP transfers.

4. Conclusions and Future Work

In this paper we discussed a performance evaluation of the Globus GridFTP
protocol along some typical network scenarios. We obtained some indications and
rules of thumb useful to choice the GridFTP parameters if main network
characteristics are known. The high variability of network conditions makes it hard to
find analytical, close formulas to find such parameters.

Following some recent approaches that make use of experimental results to
optimize data transfers, we built a Java tool executable on Globus-based machines,
whose objective is to allow the user to perform efficient data transfers on the Grid by
means of a user-friendly graphical interface. Such tool suggests the “best” GridFTP
parameters for a required transfer session on the basis of historical data. Currently,
the finding of stored historical data exploitable for the requested file transfer to be
optimized is obtained through a simple similarity function. However, we are
designing a tool extension that will make use of data mining techniques, such as
clustering and classification techniques, that will produce a categorization of Grid
connections and will allow a more effective selection of historical data exploitable for
the current file transfer. In the next future we will offer the file transfer tool to
interested users through the Web.

Acknowledgments

We acknowledge the CNUCE-CNR Institute (now ISTI-CNR), for kindly
providing the access to their Grid hosts and allowing the execution of our GridFTP
tests.

This work has been partially funded by the project ”MIUR Fondo Speciale SP3:
GRID COMPUTING: Tecnologie abilitanti e applicazioni per eScience”.

References

1. The Globus Project: the GridFTP protocol, http://www.globus.org/datagrid/gridftp.html
2. RFC 969: NETBLT: A Bulk Data Transfer Protocol, http://www.faqs.org/rfcs/rfc969.html
3. Kalmady, R., Tierney, B.: A Comparison of GSIFTP and RFIO on a WAN. Technical

Report for the Work Package 2 of the European DataGrid project, http://edg-
wp2.web.cern.ch/edg-wp2/publications.html (2001)

4. Aloisio, G., Cafaro, M., Epicoco, I.: Early experiences with the GridFTP protocol using the
GRB-GSIFTP library. Future Generation Computer Systems 18 (2002)

5. Vazhkudai, S., Schopf, J. M., Foster, I.: Predicting the Performance of Wide Area Data
Transfers. Proc. International Parallel and Distributed Processing Symposium (2002)

6. The European Datagrid Project: DataGrid Network Monitoring Scheme Proposal, document
DataGrid-07-TED-nnnn-0_1 (2001)

7. The Pipechar Tool: http://www-didc.lbl.gov/pipechar

