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ABSTRACT
Several aspects of today’s Grids are based on centralized or hierarchical services.

However, as Grids increase their size from tens to thousands of hosts, functionalities
should be decentralized to avoid bottlenecks and guarantee scalability. A way to ensure
Grid scalability is to adopt Peer-to-Peer (P2P) models and techniques to implement non-
hierarchical decentralized Grid services and systems. Pure decentralized P2P protocols
based on a pervasive exchange of messages, such as Gnutella, appear to be inadequate
for OGSA Grids, where peers communicate among them through Grid Services mecha-
nisms. On the other hand, this class of protocols offers useful properties in dealing with
Grid resources heterogeneity and dynamicity. This paper proposes a modified Gnutella
discovery protocol, named Gridnut, which makes it suitable for OGSA Grids. In partic-
ular, Gridnut uses appropriate message buffering and merging techniques to make Grid
Services effective as a way to exchange messages in a P2P fashion. We present the design
of Gridnut and compare Gnutella and Gridnut performances under different network and
load conditions.
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1. Introduction

The Grid computing model offers an effective way to build high-performance
computing systems, allowing users to efficiently access and integrate geographically
distributed computers, data, and applications. Many aspects of today’s Grids are
based on centralized or hierarchical services. However, as Grids used for complex
applications increase their size from tens to thousands of nodes, we should decen-
tralize their functionalities to avoid bottlenecks and ensure scalability. As argued
in [1] and [2], a way to provide Grid scalability is to adopt Peer-to-Peer (P2P)
models and techniques to implement nonhierarchical decentralized Grid systems.

In the latest years the Grid community has undertaken a development effort to
integrate key Grid technologies [3] with Web Services [4]. The Open Grid Services



Architecture (OGSA) defines Grid Services as an extension of Web Services and lets
developers integrate services and resources across distributed, heterogeneous, dy-
namic environments and communities [5]. OGSA defines standard mechanisms for
creating, naming, and discovering transient Grid Service instances; provides loca-
tion transparency and multiple protocol bindings for service instances; and supports
integration with underlying native platform facilities. OGSA also defines, in terms
of the Web Services Description Language (WSDL) [6], mechanisms required for
creating and composing sophisticated distributed systems, including lifetime man-
agement, change management, and notification.

OGSA adopts a common representation for both real resources, such as proces-
sors, processes, disks, file systems, and logical resources. All are treated as services,
i.e., network-enabled entities that provide some capabilities though the exchange
of messages. This service-oriented view addresses the need for standard interface
definition mechanisms, local and remote transparency, adaptation to local OS ser-
vices, and uniform service semantics [7]. A first specification of the concepts and
mechanisms defined in the OGSA is provided by the Open Grid Services Infras-
tructure (OGSI ) [8], of which the open source Globus Toolkit 3 [9] is the reference
implementation.

Recently, the WS-Resource Framework (WSRF ) was proposed as a refactor-
ing and evolution of OGSI aimed at exploiting new Web Services standards, and
at evolving OGSI based on early implementation and application experiences [10].
WSRF provides the means to express state as stateful resources and codifies the
relationship between Web Services and stateful resources in terms of the implied
resource pattern, which is a set of conventions on Web Services technologies, in par-
ticular XML, WSDL, and WS-Addressing [11]. A stateful resource that participates
in the implied resource pattern is termed a WS-Resource. The framework describes
the WS-Resource definition and association with the description of a Web Service
interface, and describes how to make the properties of a WS-Resource accessible
through a Web Service interface. Despite OGSI and WSRF model stateful resources
differently - as a Grid Service and a WS-Resource, respectively - both provide es-
sentially equivalent functionalities. Both Grid Services and WS-Resources, in fact,
can be created, addressed, and destroyed, and in essentially the same ways [12].

The OGSA model provides an opportunity to integrate P2P models in Grid
environments since it offers an open cooperation model that allows Grid entities
to be composed in a decentralized way. In [13] Fox and colleagues explored the
concept of a Peer-to-Peer Grid designed around the integration of Peer-to-Peer and
OGSA models. A Peer-to-Peer Grid is built in a service model, where a service is a
Web Service that accepts one or more inputs and gives one or more results. These
inputs and results are the messages that characterize the system. All the entities
in the Grid (i.e., users, computers, resources, and instruments) are linked by mes-
sages, whose communication forms a distributed system integrating the component
parts. In a Peer-to-Peer Grid, access to services can be mediated by “servers in
the core”, or by direct Peer-to-Peer interactions between machines “on the edge”.
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The server approach best scales within pre-existing hierarchical organizations, but
P2P approaches best support local dynamic interactions. The Peer-to-Peer Grid
architecture is a mix of structured (Grid-like) and unstructured dynamic (P2P-like)
services, with peer groups managed locally and arranged into a global system sup-
ported by core servers. A key component of a Peer-to-Peer Grid is the messaging
subsystem, that manages the communication among resources, Web Services, and
clients to achieve the highest possible system performance and reliability.

Although Grid Services are appropriate for implementing loosely coupled P2P
applications, they appear to be inefficient to support an intensive exchange of mes-
sages among tightly-coupled peers. In fact, Grid Services operations, as other RPC-
like mechanisms, are subject to an invocation overhead that can be significant both
in terms of activation time and memory consumption. The number of Grid Ser-
vice operations that a peer can efficiently manage in a given time interval depends
strongly on that overhead. For this reason, pure decentralized P2P protocols based
on a pervasive exchange of messages, such as Gnutella [14], are inappropriate on
large OGSA Grids where a high number of communications take place among hosts.
On the other hand, this class of protocols offers useful properties in dealing with
Grid resources heterogeneity and dynamicity.

On a Grid, users and applications need to get information about dynamic re-
sources status such as current CPU load, available disk space, free memory, job
queue length, network bandwidth and load, and other similar information. All this
information is necessary to efficiently configure and run applications on Grids. As
mentioned before, as the Grid size increases, hierarchical approaches to Grid in-
formation systems, such as the Globus MDS-3, do not guarantee scalability and
fault tolerance. A practical approach towards scalable solutions is offered by P2P
models. Recently, some P2P systems for resource discovery in distributed systems
and Grid environments have been proposed (see for instance [15] and [16]).

P2P content sharing systems are generally classified in two categories: unstruc-
tured networks, in which the placement of data is completely unrelated to the net-
work topology, and structured networks, in which the topology is tightly controlled
and pointers to data items are placed at precisely specified locations. Structured
P2P networks make use of a distributed hash table (DHT) to perform mappings
from keys to locations in an entirely distributed manner. Examples of unstructured
networks are Gnutella and Morpheus [17]; examples of structured networks include
Chord [18], CAN [19] and Tapestry [20].

P2P systems based on the structured model offer a scalable solution for exact-
match queries, but generally they are not well-suited when a key of the requested
resource is not known a priori. Recently, a distributed search infrastructure that
integrates DHT-based schemes for supporting also keyword searching has been
proposed [21]. Although this latest approach enlarges the scope of DHT-based
structured systems, it is not suitable to handle decentralized contents about Grid
resources whose values change continuously over the time and that need to be com-
puted when requested. Moreover, the scenario is further complicated because those



values are generally numbers ranging in the continuum (i.e., CPU load percentage
or free memory MBytes). On the other hand, unstructured P2P networks, like
Gnutella, because of pervasive queries use, allow for handling highly dynamic in-
formation available on Grid nodes, at the cost of a high bandwidth requirement for
searching such a network.

To overcome this limitation, we proposed a modified Gnutella protocol, named
Gridnut, which uses appropriate message buffering and merging techniques that
make Grid Services effective as a way for exchanging messages among Grid nodes
in a P2P fashion. Gnutella defines both a protocol to discover hosts on the network,
based on the Ping/Pong mechanism, and a protocol for searching the distributed
network, based on the Query/QueryHit mechanism. Here we discuss only the Grid-
nut discovery protocol, even if we are also designing the Gridnut search protocol.
The main focus of this work is on exploiting P2P decentralized unstructured mod-
els for Grid Services invocation for dealing with discovery of up-to-date dynamic
information and, at the same time, controlling the bandwidth consumption rate.

The remainder of the paper is organized as follows. Section 2 discusses the per-
formance of Grid Services in supporting the exchange of messages among tightly-
coupled applications. Section 3 presents the design of the Gridnut protocol focusing
on message routing and buffering rules. Section 4 compares the performance of Grid-
nut and Gnutella protocols under different network and load conditions. Finally,
Section 5 concludes the paper.

2. Grid Services Performances

As mentioned before, Grid Services operations are subject to an invocation over-
head that can be significant both in terms of activation time and memory/processing
consumption [22].

The goal of this section is to evaluate, in particular, the efficiency of Grid Services
in supporting the exchange of messages among tightly-coupled applications. To this
end we developed a Grid Service S and a client application C:

• S exports one operation, called deliver, which receives in input an array of
messages to be delivered to it.

• C invokes the deliver operation to deliver one or more messages to S.

The client C was executed on a node Nc, while the service S was executed on a
node Ns using the Globus Toolkit 3.

We measured both the network traffic generated and the execution time needed
to complete a deliver operation with a different number of input messages. In
particular, tests have been performed with a number of messages per operation
ranging from 1 to 1024, where each message has a length of 100 bytes. Each
experiment was run 100 times. The traffic and time values reported in the following
are computed as an average of the values measured in the replications of each test.
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Table 1. Network traffic generated by a deliver operation for different number of messages.

Number of Mean traffic per Mean traffic
messages per deliver operation per message

deliver operation (byte) (byte)
1 2613 2613.0
2 2740 1370.0
4 2995 748.75
8 3635 454.38
16 4652 290.75
32 6948 217.13
64 11408 178.25
128 20330 158.83
256 37840 147.81
512 72134 140.89
1024 140988 137.68

Table 1 reports the network traffic measured between Nc and Ns when the
deliver operation of S is invoked by C. The second column reports the mean
traffic per operation, whereas the third column reports the mean traffic per message
delivered. The values in the third column are obtained by dividing the mean traffic
per operation by the number of messages per operation.

The traffic per operation is the sum of a fixed part (of about 2500 bytes) and a
variable part that depends from the number of messages. For instance, the delivery
of a single message (100 bytes) generates 2613 bytes of traffic, while the delivery
of two messages (2 × 100 bytes) requires 2740 bytes. The fixed overhead is mainly
due to the Grid Service invocation mechanism, which uses SOAP [23] messages
for requests to the server and responses to the client. Note that Web Services
allow also the use of different transport protocols as an alternative to SOAP (e.g.,
binary protocols). Here we refer to a standard Grid Service implementation, based
on a Globus Toolkit 3 deployment, thus SOAP is assumed as default transport
protocol. Obviously, by increasing the number of messages per operation it decreases
the traffic per message, since a single SOAP envelope is used to transport more
application-level messages. In particular, the mean traffic per message passes from
2613 bytes for one message to 137.68 bytes for 1024 messages, as shown in Table 1.

Table 2 reports the time needed to complete a deliver operation, measured in
two configurations:

• LAN : Nc and Ns are connected by a 100 Mbps direct link, with an average
RTT (Round Trip Time) equal to 1.41 msec.

• WAN : Nc and Ns are connected by a WAN network, with a number of hops
equal to 10, bottleneck bandwidth equal to 1.8 Mbps, and an average RTT
equal to 28.3 msec.

For each configuration, execution times are reported in Table 2 both per opera-
tion and per message delivered.



Table 2. Execution time of a deliver operation for different number of messages.

LAN WAN
Number of Mean time per Mean time Mean time per Mean time

messages per deliver operation per message deliver operation per message
deliver operation (msec) (msec) (msec) (msec)

1 5.60 5.60 62.68 62.68
2 5.71 2.86 65.34 32.67
4 5.88 1.47 67.44 16.86
8 6.25 0.781 70.12 8.765
16 7.12 0.445 75.63 4.727
32 8.33 0.260 90.05 2.814
64 11.25 0.176 113.21 1.769
128 16.71 0.131 144.93 1.132
256 28.90 0.113 197.14 0.770
512 55.70 0.109 291.07 0.568
1024 107.38 0.105 558.86 0.546

In the LAN configuration the execution time of a deliver operation ranges
from 5.60 msec for one message to 107.38 msec for an array of 1024 messages,
whereas in the WAN configuration the execution time passes from 62.68 msec for
one message to 558.86 msec for 1024 messages. As before, the execution time is the
sum of a fixed part - that includes the network latency - and a variable part. As the
number of messages per operation increases, the mean time per message decreases,
ranging from 5.60 msec for one message to 0.105 msec for 1024 messages in the
LAN configuration. This is even more evident in the WAN configuration, in which
the mean execution time ranges from 62.68 msec for one message to 0.546 msec for
1024 messages.

To better evaluate the performances of Grid Services in supporting the delivery
of messages, we can compare two opposite cases: i) n deliver operations are exe-
cuted to deliver n messages (one message per operation); ii) one deliver operation
is executed to deliver n messages (n messages per operation).

In the following, the term serial time indicates the sum of the times needed to
execute n operations in sequence, and parallel time indicates the time needed to
complete n operations executed concurrently. All the execution times are referred
to the LAN configuration.

For instance, considering n = 16 messages to be delivered, we have the following
performances:

• one message per operation: the overall traffic is 2613× 16 = 41808 bytes; the
serial time is 5.60× 16 = 89.6 msec; the parallel time is 65.43 msec.

• n messages per operation: the overall network traffic is 4652 bytes (37156 bytes
less than the first case, saving the 88.9% of traffic); the overall execution time
is 7.12 msec (58.31 msec less than the parallel time of the first case, saving
the 89.1% of time).

Moreover, considering n = 64 we have:
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• one message per operation: the overall traffic is 2613×64 = 167232 bytes; the
serial time is 5.60× 64 = 358.4 msec; the parallel time is 186.6 msec.

• n messages per operation: the overall network traffic is 11408 bytes (saving the
93.2% of traffic); the overall execution time is 11.25 msec (saving the 94.0%
of time).

Tests results show that by decreasing the number of processed Grid Service
operations (for a given number of messages to be delivered), both the overall traffic
generated and the delivery time are substantially reduced. The Gridnut protocol,
described in the next section, makes use of message buffering and merging techniques
that produce significant performance improvements, both in terms of number and
distribution of Grid Service operations processed, as discussed in Section 4.

3. Gridnut Design

The two basic principles of the Gridnut protocol that make it different from
Gnutella are

(i) Message buffering : to reduce communication overhead, messages to be deliv-
ered to the same peer are buffered and sent in a single packet at regular time
intervals.

(ii) Collective Pong : when a peer B must respond to a Ping message received
from A, it waits to receive all the Pong messages from its neighbors, then
merge them with its Pong response and send back the Pong collection as a
single message to A.

Since the Gridnut protocol is derived from the Gnutella discovery protocol, we
adopt here the Gnutella terminology. Each Grid node executes a Gridnut servent,
i.e., an application that performs both client and server Gridnut tasks. A Gridnut
servent is composed of three logical components (see Figure 1):

• Peer Service: a Grid Service through which remote Gridnut servents can
connect and deliver messages to this servent.

• Client Interface: an interface through which local users and applications can
issue Grid nodes discovery requests and get results.

• Network Module: a component that interacts with remote Gridnut servents
on the basis of the Peer Service and Client Interface input.

3.1. Peer Service

The Peer Service is a persistent Grid Service, activated at the Gridnut servent’s
startup and terminated when the servent leaves the network. Each Peer Service is
assigned a globally unique name, the Grid Service Handle (GSH ), that distinguishes
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Fig. 1. Gridnut servent components.

a specific Grid Service instance from all other Grid Service instances. This handle
is used within a Gridnut network to uniquely identify both the Peer Service and
the associated Gridnut servent. For instance, a valid handle could be:

http://p1.deis.unical.it:8080/ogsa/services/p2p/PeerService

The Peer Service supports three main operations:

• connect: used by a remote servent to connect this servent. The operation
receives the handle of the requesting servent and returns a reject response if
the connection is not accepted (for instance, when the maximum number of
connections has been reached).

• disconnect: used by a remote servent to disconnect this servent. The oper-
ation receives the handle of the requesting servent.

• deliver: used by a connected servent to deliver messages to this servent.
The operation receives the handle of the requesting servent and an array of
messages to be delivered to this servent.

3.2. Messages

A servent connects itself to the Gridnut network by establishing a connection
with one or more servents currently in the network (a discussion of the connection
and disconnection phases can be found in [24]). Once a servent joined successfully
the Gridnut network, it communicates with other servents by sending and receiving
Ping and Pong messages:

• A Ping is used to discover available nodes on the Grid; a servent receiving a
Ping message is expected to respond with a Pong message.

• A Pong is a response to a Ping; it includes the URL of a set of reachable
Gridnut servents, each one representing an available Grid node.

The logical structure of Ping and Pong messages is shown in Figure 2.
The meaning of fields in Figure 2 is the following:
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Ping: Pong:Hops TTLGUID GUID TTL Hops Handles 

Fig. 2. Structure of Gridnut messages.

• GUID (Global Unique Identifier): a string identifying the message on the
network.

• TTL (Time To Live): the number of times the message will be forwarded by
servents before it is removed from the network.

• Hops: the number of times the message has been forwarded by servents.

• Handles: an array of zero, one or more reachable Gridnut servents’ URLs.

For the purposes of this paper, Pong messages do not include further information
because here we use the discovery protocol to locate all the active nodes on the Grid.
The search protocol we are designing (not discussed in the paper) will be used for
host characterization, discovery of needed services, etc.

3.3. Data Structures

Each Gridnut servent uses a set of data structures to perform its functions.
A connection list (CL) is used to maintain a reference to all directly connected

servents (i.e., references to the connected servents’ Peer Services). Entries into the
CL are updated by the connect and disconnect operations.

A routing table (RT ) is used to properly route messages through the network.
The RT contains a set of records having a structure [GUID, Handle], used to route
messages with a given GUID to a servent with a given Handle.

The results of the discovery tasks are stored into a result set (RS ), that users
and applications can access for their purposes.

Finally, each Gridnut servent uses a set of internal transmission buffers, in which
messages are stored and processed before to deliver them to the proper servent.
In particular, a servent S0 uses two separated transmission buffers for each of its
neighbors:

• A pong buffer (Bp), in which Pong messages with the same GUID are merged
before the delivery. The notation Bp(Sk) indicates the pong buffer in which
S0 inserts Pong messages directed to a servent Sk.

• A fast buffer (Bf ), used for Ping and Pong messages that are to be fast
delivered to a given servent. We use the notation Bf (Sk) to indicate the fast
buffer in which S0 inserts messages directed to a servent Sk.



A thread Tk is associated to each couple of buffers Bp(Sk) and Bf (Sk). Tk

periodically delivers the buffered messages to Sk, on the basis of the rules described
below.

3.4. Routing Rules

In Gridnut, like in Gnutella, Ping messages are forwarded to all directly con-
nected servents, whereas Pong messages are sent along the same path that carried
the incoming Ping message. The Hops value is increased each time a Ping is for-
warded, and whenever a Pong is sent in response to a Ping, the Hops value is
assigned to the TTL field, so that the TTL will hold the number of hops to reach
the source of the Ping. Hence, the TTL will be 0 when the result reaches the source
of the discovery message.

However, there are two main differences between Gnutella and Gridnut message
routing and transmission modalities:

(i) In Gnutella implementations, messages are sent as a byte stream over TCP
sockets, whereas Gridnut messages are sent through a Grid Service invocation
(by means of the deliver operation).

(ii) In standard Gnutella implementations (based on version 0.4 of the proto-
col [14]), each message is forwarded whenever it is received, whereas Gridnut
messages, as mentioned before, are buffered and merged to reduce the number
of Grid Service invocations and routing operations executed by each servent.

Consider a servent S0 having a set of neighbors S1...Sn. When a neighbor deliv-
ers an array of messages to S0, each message is processed separately by S0 as spec-
ified below. Let us suppose that S0 received from Sk the message Ping[GUID=g,
TTL=t, Hops=h] (this notation means that g, t, and h are the actual values of
GUID, TTL and Hops of this Ping); S0 performs the following operations:

t = t - 1; h = h + 1;

if (RT contains a record with GUID=g)

insert a Pong [GUID=g, TTL=h, Hops=0, Handles=Ø] into Bf (Sk);

else if (t == 0)

insert a Pong [GUID=g, TTL=h, Hops=0, Handles=S0] into Bf (Sk);

else {
insert a record [GUID=g, Handle=Sk] into RT;

insert a Pong[GUID=g, TTL=h, Hops=0, Handles=S0] into Bp(Sk);

for (i:1..n; i 6= k)

insert a Ping [GUID=g, TTL=t, Hops=h] into Bf (Si);

}

First of all - as shown above - the TTL and Hops values of this message are updated.
Then, if the message is a duplicated Ping (since the routing table already contains
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its GUID), a “dummy Pong” (i.e., having Handles=Ø) is fast delivered to Sk. Else,
if this Ping terminated its TTL, it is not further forwarded, and a Pong response
is fast delivered to Sk. In the last case, first the routing table is updated, then a
Pong response is inserted into the pong buffer, and finally the Ping is forwarded to
all the neighbors, except the one from which it was received.

Let us suppose that S0 received from Sk the message Pong[GUID=g, TTL=t,
Hops=h, Handles=H] (where H is a set of servents’ handles); the following opera-
tions are performed by S0:

t = t - 1; h = h + 1;

if (t == 0)

insert H into RS;

else if (RT contains a record R with GUID=g) {
Sr = value of the Handle field of R;

insert a Pong [GUID=g, TTL=t, Hops=h, Handles=H] into Bp(Sr);

}

As before, the TTL and Hops fields are updated. Then, if this Pong terminated
its TTL (and so this servent is the final recipient), its handles are inserted into the
result set. Else, the Pong is forwarded, through the corresponding pong buffer, to
the proper servent, as specified by the routing table.

Finally, to start a new discovery task, S0 must perform the following operations:

clear RS;

g = globally unique string;

t = initial TTL;

insert the record [GUID=g, Handle=S0] into RT;

for (i:1..n)

insert a Ping [GUID=g, TTL=t, Hops=0] into Bf (Si);

As described above, the result set is reset before anything else. Then, a Ping
message is created (with a new GUID and a proper TTL) and forwarded to all the
neighbors through the corresponding fast buffers. The discovery task is completed
when the result set contains the handles of all the reachable servents in the network.

3.5. Buffering Rules

Consider again a servent S0 connected to a set of N servents S1...Sn. Within a
pong buffer Bp(Sk), a set of counters are used. A counter Cg counts the number of
Pong messages with GUID=g till now inserted in Bp(Sk).

When a Pong P1 = Pong[GUID=g, TTL=t, Hops=h, Handles=H1] is inserted
into Bp(Sk), the following operations are performed:



Cg = Cg + 1;

if (Bp(Sk) contains a Pong P0 with GUID=g) {
add H1 to the current Handles set of P0;

if (Cg ≥ N)

mark Pong P0 as ready;

}
else {

insert Pong P1 into Bp(Sk);

if (Cg ≥ N)

mark Pong P1 as ready;

}

Whenever a Pong message is marked as ready, it can be delivered to the servent Sk.
To avoid blocking situations due to missed Pong messages, a Pong could be marked
as ready also if a timeout has been reached. In the following we do not consider
failure situations, therefore no timeouts are used.

Differently from a pong buffer, messages inserted into a fast buffer Bf (Sk) are
immediately marked as ready to be delivered to Sk.

As mentioned before, a thread Tk is used to periodically deliver the buffered
messages to Sk. In particular, the following operations are performed by Tk every
time it is activated:

get the set of ready messages M from Bp(Sk) and Bf (Sk);

deliver M to Sk through a single deliver operation;

The time interval Ia between two consecutive activations of Tk is a system pa-
rameter. In the worst case, exactly a deliver operation can be invoked by S0 for
each of its N neighbors. Therefore, the maximum number of deliver operations
invoked by S0 during an interval of time I is equal to (I ÷ Ia) × N . Obviously,
increasing the value of Ia the number of deliver operations can be reduced, but
this could produce a delay in the delivery of messages. In our prototype we use Ia

= 5 msec.

4. Performance Evaluation

In this section we compare some experimental performance results of Gridnut
and Gnutella protocols. To perform our experiments we developed a Java pro-
totype of a Gridnut servent, which can also work as a standard Gnutella servent
for comparison purposes. In our prototype the Peer Service is an object accessed
through Remote Method Invocation (RMI). The goal of our tests is to verify how
significantly Gridnut reduces the workload - number of Grid Service operations -
of each peer. In doing this, we compared Gridnut and Gnutella by evaluating two
parameters:
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(i) ND, the average number of deliver operations processed by a servent to
complete a discovery task. In particular, ND = P ÷ (N × T ), where: P is
the total number of deliver operations processed in the network, N is the
number of servents in the network, and T is the overall number of discovery
tasks completed.

(ii) ND(d), the average number of deliver operations processed by servents that
are at distance d from the servent S0 that started the discovery task. For in-
stance: ND(0) represents the number of deliver operations processed by S0;
ND(1) represents the number of deliver operations processed by a servent
distant one hop from S0.

Both ND and ND(d) have been evaluated considering seven different network
topologies. We distinguish the network topologies using a couple of numbers {N, C},
where N is the number of servents in the network, and C is the number of servents
directly connected to each servent (i.e., each servent has exactly C neighbors). The
network topologies we experimented are characterized by {N, C} respectively equal
to {10,2}, {10,4}, {30,3}, {30,4}, {50,4}, {70,4} and {90,4}. Notwithstanding the
limited number of used servents, the number of exchanged messages among servents
was extremely high and performance trends are evident.

Resulting networks were connected graphs, that is each servent can reach any
other servent in the network in a number of steps lower or equal than TTL.

4.1. Number of Deliver Operations

For each network topology, we measured ND under four load conditions. We
use R to indicate the number of discovery tasks that are initiated in the network
at each given time interval. The following values for R have been used: 1, 3, 5 and
10. In particular,

• R = 1 indicates that, at each time interval, only one discovery task is initiated,
therefore only messages with a given GUID are simultaneously present in the
network;

• R = 10 indicates that, at each time interval, ten discovery tasks are initiated,
therefore messages with up to ten different GUID are simultaneously present
in the network.

Table 3 and Table 4 report the ND measured in Gnutella and Gridnut networks,
respectively. ND values are measured for network topologies ranging from {10,2}
to {90,4}, under load conditions ranging from R = 1 to R = 10.

In Gnutella (see Table 3), ND is not influenced by the R factor, apart from little
variations due to measurements errors. This is because in Gnutella no buffering
strategies are adopted, and one deliver operation is executed to move exactly one
message in the network. Obviously, the value of ND increases with the size of the



Table 3. ND in Gnutella networks.

{10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4}
R=1 3.60 4.53 4.91 5.49 6.00 6.27 6.52
R=3 3.61 4.54 4.95 5.48 6.01 6.32 6.53
R=5 3.61 4.55 4.96 5.47 6.01 6.35 6.54
R=10 3.60 4.54 4.99 5.49 6.02 6.35 6.53

Table 4. ND in Gridnut networks.

{10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4}
R=1 2.12 5.91 3.86 5.74 5.75 5.72 5.73
R=3 1.96 4.54 3.48 4.81 4.76 4.70 4.89
R=5 1.85 3.98 3.11 4.28 4.22 4.16 4.03
R=10 1.70 2.93 2.52 3.19 3.22 3.10 2.91

network, ranging from an average value of 3.61 in a {10,2} network, to an average
value of 6.53 in a {90,4} network.

In Gridnut (see Table 4), ND depends from both network topology and load
condition. For a given value of R, ND mainly depends from the value of C (number
of connections per servent), whereas it varies a little with the value of N (number
of servents). For instance, if we consider the value of ND for R = 1, we see that it
varies in a small range (from 5.72 to 5.91) for all the networks with C = 4.

If we consider networks with the same value of N , we see that ND decreases
when the value of C is lower. For instance, the ND for a network {10,2} is lower
than the ND for a network {10,4}, with any value of R. Moreover, because a
single deliver operation is performed to deliver more buffered messages, for a
given topology the value of ND decreases when R increases.
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Fig. 3. ND versus the network topology.
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Figure 3 compares the values of ND in Gridnut and Gnutella in five network
topologies: {10,2}, {30,3}, {50,4}, {70,4} and {90,4}. For Gridnut networks the
values of ND when R = 1, 3, 5, and 10 are represented, whereas for Gnutella
networks the average of the ND values measured when R = 1, 3, 5, and 10 is
represented.

We can see that the number of deliver operations is lower with Gridnut in all
the considered configurations. In particular, when the number of discovery tasks
increases, the Gridnut strategy maintains the values of ND significantly low in
comparison with Gnutella.

4.2. Distribution of Deliver Operations

Table 5 and Table 6 report the value of ND(d) measured in Gnutella and Gridnut
networks, respectively. Notice that in the {10,4} network the maximum distance
between any couple of servents is 2, therefore no values have been measured for
d > 2. For analogous reasons, there are no values for d > 4 in {30,3}, {30,4} and
{50,4} networks.

Table 5. ND(d) in Gnutella networks.

{10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4}
d=0 9.00 9.00 29.00 29.00 49.00 69.00 89.00
d=1 4.50 4.08 9.67 7.82 12.44 17.28 22.50
d=2 3.50 4.00 4.39 4.32 5.53 6.72 8.20
d=3 2.50 - 3.04 4.00 4.11 4.41 4.46
d=4 2.00 - 3.00 4.00 4.00 4.01 4.02
d=5 2.00 - - - - 4.00 4.00

In Gnutella (see Table 5) the value of ND(0) is always equal to N − 1. This
is because S0 receives, through its neighbors, a Pong message from each of other
servents in the network, and each of those messages are delivered to S0 by means
of a separated deliver operation. ND(1) is always greater or equal than ND(0)
divided by C. The equality is obtained only for networks in which C is sufficiently
little compared to N , as in {10,2} and {30,3} networks. In general, the value of
ND(d) decreases when d increases, and it reaches the minimum value, equal to C,
on the servents more distant from S0.

Table 6. ND(d) in Gridnut networks.

{10,2} {10,4} {30,3} {30,4} {50,4} {70,4} {90,4}
d=0 2.00 4.00 3.00 4.00 4.00 4.00 4.00
d=1 2.00 5.35 3.00 4.51 4.07 4.04 4.22
d=2 2.00 6.76 3.07 5.40 5.20 4.89 4.52
d=3 2.01 - 4.05 6.40 5.84 5.61 5.50
d=4 2.34 - 4.80 6.82 6.65 6.32 6.26
d=5 2.82 - - - - 6.78 6.67

In Gridnut (see Table 6) the value of ND(0) is always equal to C, because S0



must process exactly a deliver operation for each servent directly connected to
it. The value of ND(d) increases slightly with d, reaching its maximum on the
servents more distant from S0. ND(d) increases with d because the number of
“dummy Pong” messages increase moving away from S0. Anyway, the value of
ND(d) remains always of the order of C, even for d equal to TTL.

Figure 4 compares the values of ND(d) in Gridnut and Gnutella in five network
topologies, with d ranging from 0 to 2.
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We can see that Gridnut implies a much better distribution of deliver oper-
ations among servents in comparison with Gnutella. In Gnutella, the servent that
started the discovery task and its closest neighbors must process a number of Grid
Service operations that becomes unsustainable when the size of the network in-
creases to thousands of nodes. In Gridnut, conversely, the number of Grid Service
operations processed by each servent remains always in the order of the number of
connections per peer. This Gridnut behavior results in significantly lower discovery
times since communication and computation overhead due to Grid Services invo-
cations are considerably reduced as shown in Figure 4. For example, considering a
{90,4} network with R ranging from 1 to 10, Gnutella discovery experimental times
vary from 2431 to 26785 msec, whereas Gridnut times vary from 2129 to 8286 msec.
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5. Conclusions

Peer-to-Peer systems and Grids are two distributed computing methods that
share significant features useful in the implementation of geographically distributed
applications. Although P2P computing and Grid computing are still considered two
different research areas, an integrated approach based on the merging of these two
models will be profitable for the development of distributed systems and applica-
tions. As Grids become very large and pervasive, the use of P2P approaches can
permit to achieve scalability. As an example of this approach, we designed Gridnut
by adapting a pure decentralized P2P protocol to make it suitable for OGSA Grids.

The Gridnut protocol modifies the Gnutella discovery protocol by using appro-
priate message buffering and merging techniques that make Grid Services effective
as a way for exchanging messages among Grid nodes in a P2P fashion. We com-
pared Gridnut and Gnutella performance considering different network topologies
and load conditions. Experimental results show that appropriate message buffer-
ing and merging strategies produce significant performance improvements, both in
terms of number and distribution of Grid Service operations processed.

As a future work, we are extending Gridnut to support also distributed search
by modifying the original Query/QueryHit Gnutella mechanism. In doing this, the
buffering mechanism is maintained, whereas the collection mechanism is modified
since the number of responding nodes will be limited by the query constraints.

The Gridnut approach can be an effective way to discover active nodes and
support resource discovery in OGSA Grids. Currently we are developing a frame-
work for resource discovery that adopts a P2P approach to extend the model of the
Globus Toolkit 3 information service [24]. In particular, a P2P Layer of specialized
Grid Services, working as Gridnut servents, is defined to support discovery queries
on multiple virtual organizations, allowing users and schedulers to efficiently locate
resources and support the execution of distributed applications in dynamic Grid
environments.
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