
Parallel execution of space-aware applications
in a Cloud environment

Franco Cicirelli, Agostino Forestiero, Andrea Giordano, Carlo Mastroianni, Giandomenico Spezzano
ICAR-CNR, Rende (CS), Italy

Email: {cicirelli,forestiero,giordano,mastroianni,spezzano}@icar.cnr.it

Abstract—This paper analyzes and evaluates the strategies and
implications related to the execution of parallel algorithms on a
distributed Cloud infrastructure, with the focus on an important
class of applications for which the execution is performed on
spatial data, dislocated on a bidimensional territory. Applications
of interest cover a wide spectrum ranging from Internet of Things
to social sciences, geology, swarm-inspired computation etc. The
territory is partitioned into regions, and regions are assigned to
parallel computational nodes to speed up the execution. Parallel
nodes are aligned through the exchange of messages in order to
ensure a coherent and efficient execution. The paper offers an
analysis of the parallelization cost in this context, especially in
terms of communication overhead, which is essential to estimate
the impact of porting the computation onto a Cloud environment.
More in particular, the paper evaluates two different strategies
for space partitioning, i.e., linear partitioning and bidimensional
partitioning, with a specific focus on scalability analysis, and
compares the two strategies when both options are exploitable.

Keywords—space-aware applications; communication over-
head; Cloud; Internet of Things; parallel computation; multi-
agent algorithms

I. INTRODUCTION

In the last few years, increasing attention is devoted to
the field of the so called “Internet of Things” (IoT), an
emerging paradigm built upon the research and development
advances in a wide range of key areas including wireless and
sensor networks, mobile and distributed computing, embedded
systems, agent technologies, autonomic communication, Cloud
computing. The variety of involved application domains is
wide [1]: transportation and logistics, smart electrical grids,
big data and business analytics, intelligent management of
“smart cities”, social sciences, etc.

The basic idea of the IoT is a pervasive presence around
us of a variety of things or objects such as RFID tags,
sensors, actuators, mobile phones, etc. which, through unique
addressing schemes, are able to interact with each other and
cooperate with their neighbors to reach common goals [2]. One
of the most important issues of the IoT is the huge amount of
data generated from the devices: Gartner study forecasts that
the IoT will reach about 26 billion of objects by 2020 [3].

This paper is partially financed by the MIUR project PON03PE 00050 2,
“Sistemi Domotici per il servizio di brokeraggio energetico cooperativo”

Due to the very nature of these domains, data and objects
are often strictly related to the space or territory on which they
are defined and used: for example, environmental information
extracted from sensors, data inherent to the neighborhoods
and residential units in a city, data generated by Internet
geographical domains, etc. It is then natural to manage such
data through the use of computing entities distributed in the
territory, in order to perform computation as close as possible
to data sources and increase the performance.

Many space-aware applications require massive data stor-
age, huge processing speed and large broadband networks to
enable real-time decision making. Cloud computing provides
an ideal back-end solution for handling the data deluge and the
unprecedented number of entities. In general it is not feasible
or convenient to bring computation to a single Cloud infras-
tructure, e.g., a big centralized data center. A better support to
tackle mobility and geo-distribution of data, embrace location
awareness and ensure low latency, can be provided by a variant
of Cloud, referred to as Fog Computing [4] [5], which is
composed by a number of distributed Cloud facilities located
close to data sources, i.e., a cloud close to the ground.

A large number of parallel applications, and almost all those
related to space-aware domains and the IoT paradigm, cannot
be addressed by “embarrassingly parallel” computation [6], for
which the parallel tasks do not need to exchange data during
computation. For example, a smart city application typically
requires that the events occurred in a city neighborhood are
frequently communicated to the adjacent neighborhoods.

The objective of this paper is to quantify the communication
burden of space-aware parallel applications. We analyze the
very frequent case in which the territory is partitioned into
regions. The regions, along with the corresponding entities,
data and computation, are assigned to distributed nodes of a
Cloud/Fog infrastructure. Two alternative solutions for space
partitioning are considered in this work, i.e., linear partitioning
and bidimensional partitioning, and the communication burden
is analyzed when varying some basic parameters, e.g., the
number of regions and the type of horizontal and vertical cuts
of the territory. Beyond analyzing the two scenarios separately,
we also compare the performances of linear and bidimensional
partitioning, in order to help individuate the most efficient
option when both solutions are admissible.



This paper tackles the mentioned issues for a general and
widely adoptable context, and the outcome will also be used in
the specific scenario addressed by the Italian project “Cooper-
ative Energy Brokerage Services”, financed by MIUR, whose
main objective is to build a Cloud infrastructure, integrated
with a sensor network, that will help improve the efficiency
of electricity and gas distribution in a urban context.

The rest of the paper is organized as follows: Section II
discusses some relevant state-of-the-art on the efficient execu-
tion of parallel applications in a Cloud environment, with a
specific focus on communication issues. Section III introduces
the issues related to territory partitioning, and discusses the
methodologies used to ensure the correctness and efficiency
of parallel computation in this context. Section IV illustrates
how the communication burden is related to the size of border
areas that overlap adjacent regions, analyzes and compares
the burdens related to the cases of linear and bidimensional
partitioning. Finally, Section V concludes the paper.

II. RELATED WORK

The transmission of data, based both on the network fabric
and its efficient support in the virtualization layer, heavily
influences the scalability of parallel applications on Cloud
infrastructures [7], and the estimation of the amount of data
that needs to be transmitted among the computing nodes is of
paramount importance [8].

Although the issue of inter-node communication in parallel
Cloud applications is topical, especially for the types of
application discussed in this paper, the field has not been
the object of many research works so far. The execution of
parallel/distributed applications on Cloud/Fog platforms has
been analyzed by many recent papers, most of which are,
however, focused on the case of embarrassingly parallel appli-
cations [6]. Such applications can be tackled by master/slave
paradigms such as MapReduce, and implemented through
Cloud technologies such as Hadoop, Dryad, DryadLINQ and
CGL-MapReduce. In [9], it is recognized that communication
is an important issue for parallel Cloud applications, and
different communication patterns are evaluated. However, the
authors notice that none of the major Cloud providers offer
information about the specific network interconnections used
among the machines, and it is impossible to determine the
network latency or distance between nodes. This can provide
challenges to communication-intensive applications, and it
is a major disadvantage compared to on-premises clusters.
Moreover, the lack of precise information on this aspect may
hinder the accurate estimation of the impact and costs of
porting a parallel application to the Cloud.

In Cloud environments that span multiple data centers or
sites, applications may experience performance degradation
due to high latency and low bandwidth data transmission
induced by the use of communication links of wide area
networks. This degradation is mainly caused by non-optimal
implementations of the mechanisms adopted for message

exchange. In [10] a new approach is proposed to increase the
performance and scalability of distributed Cloud applications,
based on an optimized algorithm that refines the Open MPI
standard. Other research efforts [11] [12] aim to minimize the
total traffic in a data center by allocating virtual machines
(VMs) that experience high inter-traffic on the same host or
cluster. The goal is to improve the initial placement of the
VMs that host the tasks belonging to a parallel application.
The approach illustrated in [13] focuses on the case that
the demand for bandwidth and the communication patterns
of parallel applications are highly dynamic, and proposes
a communication-aware and energy-efficient scheduling to
reactively reschedule the placement of VMs in real time.
In particular, the approach aims to reallocate the VMs that
generate the largest amount of network traffic. The issue is also
tackled by [14] through the adoption of the public/subscribe
paradigm: Azure’s storage services are used to transfer data,
while a broker relays notifications to interested parties.

The state of the art in this field, of which this section
has offered an excerpt, clearly shows a growing interest
on addressing the issues related to the execution of non
embarrassingly parallel applications on a Cloud environment.
Unfortunately, the analysis and design of the aspects associated
with the exchange of data among parallel nodes is in general a
difficult task, and cannot be tackled with universally applicable
solutions. However, specific approaches can be tailored to
harness the peculiar characteristics of different application
domains. This paper focuses on an important class of applica-
tions, i.e., space-aware applications. A general methodology is
presented for parallelizing the execution by associating com-
putational nodes with the portions of the involved territory, and
the communication burden related to different parallelization
strategies is analyzed in detail.

III. PARALLELIZING EXECUTION THROUGH SPACE

PARTITIONING

Many problems related to several application domains,
ranging from the Internet of Things to geology, biology and
social sciences, require the explicit definition and management
of bidimensional data structures representing and reproducing
physical spaces or territories. In this paper, the territory is
managed as a bidimensional grid of cells. Each cell has a
position and can contain active and passive entities. An active
entity, also referred to as agent in the following, is able to
perform autonomous computation, explore and modify the
territory and move around it. Passive entities represent the
data upon which active entities perform the computation. The
abstraction adopted here, consisting of a territory populated
by active and passive entities, is very general and allows
to support different kinds of computing paradigm like mo-
bile agents [15]–[17], cellular-based automata [18] and bio-
inspired computation [19]–[21].

The operational radius – referred to as r in the follow-
ing – delimits the boundary of agents operations, i.e., the



Territory

Region 1
(Node1)

Region 2
(Node 2)

Region 4
(Node 4)

Region 3
(Node 3)

Region 1
(Node1)

Region 2
(Node 2)

Region 4
(Node 4)

Region 3
(Node 3)

agent
passive entity

Linear
Partitioning

Bidimensional
Partitioning

Figure 1. The territory partitioned into regions which are associated with parallel computing nodes. Two alternative types of partitioning are shown, linear
and bidimensional.

operational area. Hence, an agent can perceive and perform
modifications only within the portion of the territory included
in its operation area, centered in the position of the agent.

A natural way of parallelizing the execution of algorithms
working on spatial data is to partition the territory into regions
and assign each region, along with the contained entities, to
a computing node that will be in charge of performing the
associated computation. Partitioning favors system scalability
in that as the size of the territory increases, more computing
nodes can be used to speed up the execution. A territory can be
partitioned through either a linear or a bidimensional schema,
as shown in Figure 1.

In some application scenarios, the computation related to
each region evolves independently from other regions. In such
cases, the application is defined as “embarrassingly parallel”
[6]. In the scenario considered here, a space-aware application
results to be embarrassingly parallel when the operational area
of each agent is completely contained in a single region and
agents do not migrate among regions. These conditions ensure
that nodes do not exchange data during computation, and
that the computation carried out in a node does not affect
the computation at any other node. In most cases, however,
applications are not embarrassingly parallel. Therefore, inter-
node communication is required and a proper alignment policy
is needed, i.e., a policy that aligns the computation on the
nodes and ensures a coherent execution of the application in
the parallel context. For the sake of simplicity, we consider
the frequent case in which the computation is step-based, i.e.,
the nodes align among each other at each step. However, the
outcomes of our study can also be applied when different
alignment policies are adopted.

Figure 2 shows a scenario where the operational area of an
active entity falls into two different adjacent regions (if linear
space partitioning is adopted) or into four different adjacent
regions (in the case of bidimensional space partitioning). In
such cases, the application is not embarrassingly parallel,
because an agent may require to access and/or manipulate
remote data, i.e., data located in different computational nodes.

Access to remote data must be correct and efficient. Cor-
rectness, in this context, means that agents always work with
updated information. For example, a correctness violation

Territory

Linear
Partitioning

Bidimensional
Partitioning

agent
passive entity
operational area

Figure 2. Partitioning of a territory and of an operational area

occurs when a piece of data is modified at steps t1 and t2,
with t2 > t1, and an agent, at a successive step, accesses the
piece of data in its t1 version. To avoid such an incorrect
access to data, a step-by-step duplication mechanism can
be adopted, which consists in replicating the edge areas of
adjacent regions. Such areas, referred to as borders, are kept
aligned by exchanging at each step update messages between
the adjacent computing nodes, i.e., the nodes that manage the
corresponding adjacent regions. This data exchange ensures
that data is always updated at the last step. Replication of
borders data is a valuable solution also from the efficiency
point of view, as it ensures that active entities access data
only through local operations. Indeed, agents work with local
replicas of data and do not need to engage network operations
to access remote data. This increases the efficiency of opera-
tions on data and helps to reduce inter-node communications,
thus improving performances.

The border area of a region is composed of two distinct
parts: the local border and the mirror border. Figure 3 and
Figure 4 show the borders in the cases of linear and bidimen-
sional space partitioning. The local border is managed by the
local node and its content, i.e., the active and passive entities,
is replicated in the mirror border of the adjacent nodes. At
each step, all the modifications occurred in a local border are
gathered and transmitted to the adjacent nodes. For example,
information about the updates occurred in the local border of
Node 1 of Figure 3 are sent to Node 2, which applies the
updates in its mirror border. Analogously, information in the
mirror border of Node 1 is aligned with the updates occurred
in the local border of Node 2. In the case of bidimensional
partitioning, see Figure 4, an update message may be sent to
more than one adjacent nodes. Figures 3 and 4 also show that



Borders

agent

{{

Local Border

Mirror Border

Local Border

Mirror Border

Node 1

Node 2

Node 1 Node 2

phantom agent
passive entity

Figure 3. Border areas of two adjacent nodes in the case of linear partitioning

agent

phantom agent
passive entity

Node 1 Node 2

Node 3 Node 4

Local Borders

Mirror BorderMirror Border

Node 1 Node 2

Node 3 Node 4

Local Borders

Figure 4. Border areas of four adjacent nodes in the case of bidimensional
partitioning

the agents located in a border area are mirrored by means of
phantom agents (i.e., agents that hold the same information of
original agents but are not allowed to perform computation),
while passive entities are simply duplicated.

It should be noticed that territory partitioning may also
originate concurrency issues, when active entities allocated
on adjacent regions operate concurrently on the same passive
entities. A methodology to cope with such issues has been
presented in [17] and [22].

IV. ANALYSIS OF THE COMMUNICATION BURDEN

In this section we analyze the amount of data that is involved
in the execution of non embarrassingly parallel applications
on a Cloud platform. As explained in the previous section,
we cope with the frequent case in which the parallelization
is achieved by partitioning a territory into regions, assigned
to different computational nodes, which need to exchange
data during execution. We first analyze the case of linear
partitioning, then the case of bidimensional partitioning, and
then we provide a comparison of the two approaches when
both options are available.

Data must be exchanged to keep regions informed about
the updates occurred in the adjacent regions, more specifically
in the region borders, as illustrated in Section III. Therefore,

the area of the borders are a good proxy variable a for the
estimation of the communication burden. Indeed, if data and
updates are uniformly distributed over the territory, the border
area is proportional to the amount of data that is updated
and needs to be exchanged. In cases where the distribution
is not uniform, the communication burden can be derived by
considering both the border areas and the type of data and
updates distribution.

The scenario under consideration consists of a toroidal
rectangular territory with horizontal size equal to L space
units and vertical size equal to H space unitsb. The territory
is partitioned into N regions through a number of horizontal
cuts, Cl, and a number of vertical cuts, Ch. Each region has
horizontal size l = L/Ch and vertical size h = H/Cl, and is
assigned to an associated computational node for execution.

While in this paper we focus on the communication burden,
of course the time needed for parallel execution is also of out-
most importance. The execution time of a parallel application
computed on N nodes, TN , can be expressed as [23]:

TN =
T1

N
+ TO =

T1

N
+ Tcomm + Tidle + Tconf (1)

where T1 is the sequential time, i.e., the time to execute the
computation on a single node, and TO is the overhead time
added by parallelization. The overhead time is the sum of three
main contributions related, respectively, to the time needed for
building and transmitting data between nodes (T comm), the
idle time experienced by faster nodes that need to wait for
slower nodes (Tidle) and the time needed to solve conflicts,
i.e., manage contentions on shared data (Tconf ).

In the type of scenario considered in this paper, the compo-
nent Tcomm is often the most important because it is necessary
to exchange, among computational nodes, a significant amount
of data related to the different regions in which the territory
is partitioned. Of course, Tcomm is strictly related to the
communication burden discussed and analyzed in this section.
In particular, Tcomm is related to the time needed by a single
node to transmit update messages to its adjacent nodes. Since
update messages are concurrently exchanged at each step of
the computation, Tcomm is given by the maximum value of
the communication times experienced by single nodes. In
general, a reduction of the amount of exchanged data implies
a reduction of Tcomm. The detailed analysis of the overhead
time, which must include also the evaluation of the other two
components, Tidle and Tconf , is out of scope of this paper.
This issue is currently under analysis.

aFor the sake of clearness, here we consider the meaning of the term
“proxy” as it is used in statistics, i.e., as a variable that helps to estimate
another variable which is more complex to compute.

bDepending on the specific application, a space unit can be a meter, a
kilometer etc.



A. Linear space partitioning

To analyze the case of linear space partitioning we assume,
without loss of generality, that the space is partitioned through
vertical cuts. Let us consider the sum of the areas of the left
and right borders of a single region, shown in dark grey in
Figure 5. This quantity, denoted as B l and measured in squared
space units (s2u), is taken as a proxy variable for the commu-
nication burden in charge of a single node. For the sake of
simplicity, we refer to this quantity simply as “communication
burden”, but it is implicitly taken into account that, to compute
the actual amount of exchanged communication, the amount
of data transmitted per space unit must be considered. For the
case of linear space partitioning, the communication burden
of a single node is equal to Bl = 2hr = 2Hr. The overall
communication burden, denoted as B tot

l , is defined as the sum
of the burdens of the N nodes, and is equal to:

Btot
l = 2HrN (2)

It is noticed that Bl and Btot
l depend on the vertical size H ,

while they do not depend on the horizontal size L. Therefore,
to minimize the value of the communication burden, it is
convenient to consider the shorter side of the territory as the
vertical side, so that H <= L. Moreover, the communication
burden of a single node, Bl, does not depend on the number
of involved computational nodes. From the point of view
of the analysis of the execution time, this means that using
more nodes allows to decrease the parallel time, i.e., the first
component of the execution time in expression (1), T 1/N ,
whereas the communication overhead Tcomm is not affected.

L

H

r
l

h=

Figure 5. Linear space partitioning.

As an illustrative example, Figure 6 shows the value of the
overall communication burden B tot

l vs. the number of nodes
in a scenario where the value of H is equal to 200 space units.

B. Bidimensional space partitioning

In the case of bidimensional space partitioning, not all the
borders are replicated on a single adjacent region, as in the
linear case: some borders must be replicated on two or more
regions, depending on how the space is partitioned.

 0

 100

 200

 300

 400

 500

 600

 2 4  8  16  32  64

ov
er

al
l b

ur
de

n 
B

lto
t   (

x 
10

00
) 

[s
u2 ]

no. of nodes

r=2
r=5

r=10
r=20

Figure 6. Linear space partitioning: overall burden vs. the number of
nodes/regions, for different values of the operational radius.

For example, Figure 7 pictures a grid-like space partitioning.
The borders of the central region are distinguished and labeled
with numbers “1” and “3”, depending if the corresponding area
is replicated on one or three adjacent regions, respectively. In
this scenario, the communication burden should be computed
by properly weighing the contributions of the two kinds of
border area. Specifically, the sum of the four areas labeled with
“3”, denoted as A3, is equal to A3=4r2. The sum of the areas
labeled with “1”, denoted as A1, is equal to A1=2r(l+h)−8r2.
When computing the communication burden, the quantity A 3

is multiplied by three, since the corresponding areas must be
replicated on three regions. The communication burden of a
single region is then given by:

Bb = A1 + 3A3 = 2(l + h)r + 4r2

and the overall communication burden for the N regions is:

Btot
b = 2N(l+ h)r + 4Nr2 (3)

1

L

H

r

3 1 3

1

1 33

l

h

Figure 7. Grid-like bidimensional space partitioning.

Another option for bidimensional space partitioning is pic-
tured in Figure 8. In this case, thanks to the different geo-
metrical alignment of regions, border areas must be replicated



H

r

11

2 22 2

2 22 21 1

1 1

l

h

L

Figure 8. Bidimensional space partitioning with an alternative alignment of
regions.

on only one or two adjacent regions; such border areas are
labeled with “1” and “2” in the figure. For each region, the
sum of the areas that must replicated on two adjacent regions
is equal to A2 = 8r2, while the sum of the areas replicated
on a single adjacent region is equal to A1 = 2r(l+h)−12r2.
The communication burden of a single region is defined by
properly weighing the two components:

Bb = A1 + 2A2 = 2(l+ h)r + 4r2

and the overall communication burden is:

Btot
b = 2N(l+ h)r + 4Nr2

A bit surprisingly, it results that the communication burden
does not depend on which bidimensional space partitioning
is adopted, i.e., the one depicted in Figure 7 or the one
shown in Figure 8. Hence, the following analysis, focused on
communication and data transmission aspects, does not depend
on the chosen option. Nevertheless, it should be remarked
here that the choice of space partitioning does have an impact
on the execution time, and specifically on the time needed
to synchronize the regions among each other, referred to as
Tidle in expression (1). Indeed, in synchronization phases the
computation on a region must wait until the updates from the
adjacent regions (more specifically from the corresponding
borders) have been received. In the scenario of Figure 7, a
region must synchronize with eight adjacent regions, while
in the scenario of Figure 8 synchronization is limited to six
regions. From this point of view, the second option should
then be preferred.

In the case of bidimensional space partitioning, as opposed
to the linear partitioning scenario, it is worth analyzing both
the single node burden and the overall burden, as the two
quantities impact differently on different metrics, as explained
in the following. Figure 9 shows the communication burden
of a single node in a scenario where a 200x200 territory is
partitioned into a number of nodes ranging from 4 to 64,
assuming Ch=Cl. Different curves correspond to different
values of the operational radius r. The figure shows that the
single node communication burden decreases when the number
of regions increases. Therefore, using more nodes allows to

decrease not only the parallel time, i.e., the first component
of the execution time in expression (1), T1/N , but also the
second component, i.e., the communication overhead T comm.
The reason for the latter outcome is that the amount of data
transmitted between two adjacent regions decreases, since the
involved border areas are smaller, and the time needed to
exchange such data decreases as well.

On the other hand, Figure 10 shows that the overall commu-
nication burden increases with the number of nodes, because
the sum of the border areas increases. As a consequence, it is
possible to tune the appropriate number of nodes depending
on the performance goals and/or the costs imposed by the
Cloud provider. A larger number of nodes may be convenient
if the main objective is to reduce the execution time or when
the main cost is related to the time interval for which Cloud
resources are rented. Conversely, it may be convenient to limit
the number of nodes when the amount of transmitted data is
the main cost or it is bounded by bandwidth constraints.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 4  8  16  32  64

no
de

 b
ur

de
n 

B
b 

(x
 1

00
0)

 [
s u

2 ]

no. of nodes

r=2
r=5

r=10
r=20

Figure 9. Bidimensional space partitioning: node burden vs. the number of
nodes/regions, for different values of the operational radius.

 0

 50

 100

 150

 200

 250

 2 4  8  16  32  64

ov
er

al
l b

ur
de

n 
B

bto
t   (

x 
10

00
) 

[s
u2 ]

no. of nodes

r=2
r=5

r=10
r=20

Figure 10. Bidimensional space partitioning: overall burden vs. the number
of nodes/regions, for different values of the operational radius.

In the following, we focus on the impact that the shape
of the regions (i.e., how stretched the rectangles are) has on
the communication burden. In fact, for a given territory, while
the area of a region only depends on the number of regions



N , the communication burden B tot
b explicitly depends on the

semiperimeter (l+ h), see expression (3), then on the regions
shape. In the following it is shown that the minimum overhead
is obtained when regions are square-shaped.

We express Btot
b in terms of l, by using the substitution

h = S
l , where S = l · h is the area of the region. We obtain:

Btot
b (l) = 2N(l+

S

l
)r + 4Nr2

We derive the expression and obtain:

dBtot
b (l)

dl
=

l2 − S

l2
· 2Nr

The minimum of B tot
b (l) is obtained by setting the deriva-

tive equal to zero, which gives:

l =
√
S.

Since the second derivative at l =
√
S is positive, the

minimum communication burden is achieved when the region
has a squared shape. This can be obtained when the number
of vertical and horizontal partitionsc of the territory are pro-
portional to the respective sizes of the overall territory, i.e.,
Cl/Ch=H/L. Of course, the admissible options for the space
partitioning also depend on the number of nodes N , since
there is the constraint N = Cl · Ch.

Figure 11 shows the overall communication burden for a
200x200 territory, partitioned in 64 regions through different
combinations of vertical and horizontal partitions. The figure
confirms that the minimum communication burden is achieved
when regions are square-shaped, i.e., when C l=Ch=8. Further-
more, it is noticed that in the case that cuts are exclusively hor-
izontal (Cl=64) or exclusively vertical (Cl=1, that is, Ch=64),
the communication burden is more than doubled with respect
to the optimal case. In Figure 12 we consider a different
scenario: a rectangular territory, with L=300 and H=200,
partitioned in 96 regions, again with different combinations
of horizontal and vertical cuts. In this case the minimum is
achieved when the ratio of Cl to Ch is proportional to the
ratio of H to L, i.e., Cl=8 and Ch=12, since this way of
partitioning the space produces square-shaped regions. It is
also noticed that in the case of square-shaped territory the
curves of communication burden are symmetrical with respect
to the optimal value of Cl (Figure 11), while they are not in
the case of rectangular territory (Figure 12).

C. Comparison of linear and bidimensional partitioning

In several cases, the type of space partitioning, linear or bidi-
mensional, is driven by constraints related to the application
domain, e.g., the type of data that needs to be processed, the
territorial distribution of sensors, etc. In other cases, however,
there is more freedom to choose the more convenient territory

cIt may be useful to notice that, in a toroidal space, the number of horizontal
partitions is equal to the number of vertical cuts, and vice versa.

 0

 100

 200

 300

 400

 500

 600

 700

 1  2  4  8  16  32  64

ov
er

al
l b

ur
de

n 
B

bto
t   (

x 
10

00
) 

[s
u2 ]

number of horizontal cuts, Cl

r=2
r=5

r=10
r=20

Figure 11. Bidimensional space partitioning: overall burden vs. the number
of horizontal cuts Cl, with 64 regions, for different values of the operational
radius. N = 64 = Cl · Ch. The x axis is in log scale.

 0

 500

 1000

 1500

 2000

 2500

 3000

 2  4  6  8  12  16  24  48

ov
er

al
l b

ur
de

n 
B

bto
t   (

x 
10

00
) 

[s
u2 ]

number of horizontal cuts, Cl

r=2
r=5

r=10
r=20

Figure 12. Bidimensional space partitioning: overall burden vs. the number
of horizontal cuts Cl, with 96 regions, for different values of the operational
radius, in the case of rectangular territory. N = 96 = Cl ·Ch. The x axis is
in log scale.

partitioning. Therefore, it is interesting to compare the com-
munication burdens corresponding to linear and bidimensional
space partitioning, to see if one of the two options is more
efficient than the other, and in which cases. Specifically, we
do the comparison in a scenario where the sizes L and H are
given. Moreover, in the case of bidimensional partitioning we
consider the case of square-shaped regions, since this proved
to be the choice that minimizes the communication burden, as
discussed in Section IV-B.

The bidimensional partitioning has an equal or lower over-
head when the ratio of expression (3) to expression (2) is equal
or lower than one:

Btot
b

Btot
l

=
2r(l + h) + 4r2

2rH
<= 1 (4)

Using the equalities l=h and Cl/Ch = H/L, which corre-
spond to square-shaped regions, and considering that the value
of the operational radius r is typically much lower than the
height of the entire territory H , the inequality (4) is solved



 1

 10

 100

 1000

 0  10  20  30  40  50  60

bu
rd

en
 B

bto
t   v

s.
  B

lto
t   (

x 
10

00
) 

[s
u2 ]

no. of nodes

Bl
tot   r=2

Bb
tot   r=2

Bl
tot   r=5

Bb
tot   r=5

Bl
tot r=10

Bb
tot r=10

Figure 13. Linear vs. bidimensional space partitioning: overall burden vs.
the number of nodes/regions, for different values of the operational radius.

for Cl >= 2 and Ch >= 2 · L/H . It also corresponds to
the inequality N >= 4 · L/H . This means, for the case
of square-shaped territory (i.e., L=H), that the bidimensional
partitioning is a better choice when the number of nodes is
equal or larger than 4, and the convenience increases with
larger numbers of nodes. This is confirmed in Figure 13,
which compares the communication burden of linear and
bidimensional partitioning in the case of a 200x200 territory,
for different numbers of regions and different values of r.
If the territory is rectangular, the minimum number of nodes
that makes the bidimensional case more convenient increases
as the territory is more and more stretched. For example, this
minimum number is equal to N=16 if L=4H . Indeed, it is
intuitive that the linear partitioning becomes more efficient
when the territory extends mostly on one dimension.

V. CONCLUSION AND FUTURE WORK

This paper has presented an evaluation of the amount of
data that needs to be transferred when executing a wide class
of applications on a Cloud infrastructure, i.e., applications
that operate on spatial data dislocated in a territory and
that exploit the possibility of partitioning such territory to
parallelize and speed up the computation. We evaluated dif-
ferent strategies for space partitioning, i.e., mono-dimensional
slicing and two types of bidimensional partitioning. We found
that the convenience of bidimensional partitioning, in terms
of the involved communication burden, increases with the
number of adopted computational nodes. We also proved
that bidimensional partitioning exhibits its best performances
when regions are square-shaped. The outcome of this work
will be used by an industrial project that aims to improve
the efficiency of electricity and gas distribution in a urban
environment. Current work is focusing on the evaluation of
the overall execution time in the mentioned scenarios, and on
the techniques for dynamically balancing the computational
load of different regions.

REFERENCES

[1] I. Lee and K. Lee, “The internet of things (iot): Applications, invest-
ments, and challenges for enterprises,” Business Horizons, 2015.

[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] Gartner, “Gartner says the internet of things will transform
the data center,” 2014, March 19. [Online]. Available:
http://www.gartner.com/newsroom/id/2684616

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[5] Y. N. Krishnan, C. N. Bhagwat, and A. P. Utpat, “Fog computing-
network based cloud computing,” in Electronics and Communication
Systems (ICECS), 2015 2nd International Conference on. IEEE, 2015,
pp. 250–251.

[6] J. Ekanayake and G. Fox, “High performance parallel computing with
clouds and cloud technologies,” in Cloud Computing. Springer, 2010,
pp. 20–38.

[7] R. R. ExpóSito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo,
“Performance analysis of hpc applications in the cloud,” Future Gener-
ation Computer Systems, vol. 29, no. 1, pp. 218–229, 2013.

[8] A. Gupta and D. Milojicic, “Evaluation of hpc applications on cloud,”
in Open Cirrus Summit (OCS), 2011 Sixth. IEEE, 2011, pp. 22–26.

[9] E. Roloff, M. Diener, A. Carissimi, and P. O. A. Navaux, “High
performance computing in the cloud: Deployment, performance and cost
efficiency,” in Cloud Computing Technology and Science (CloudCom),
2012 IEEE 4th International Conference on. IEEE, 2012, pp. 371–378.

[10] R. Hassani, G. Chavan, and P. Luksch, “Optimization of communication
in mpi-based clusters,” in International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC). IEEE,
2014, pp. 143–149.

[11] N. Bansal, K.-W. Lee, V. Nagarajan, and M. Zafer, “Minimum con-
gestion mapping in a cloud,” in Proceedings of the 30th annual ACM
SIGACT-SIGOPS symposium on Principles of distributed computing.
ACM, 2011, pp. 267–276.

[12] B. Zhang, Z. Qian, W. Huang, X. Li, and S. Lu, “Minimizing com-
munication traffic in data centers with power-aware vm placement,” in
6th Int. Conf. on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS). IEEE, 2012, pp. 280–285.

[13] I. Takouna, R. Rojas-Cessa, K. Sachs, and C. Meinel, “Communication-
aware and energy-efficient scheduling for parallel applications in virtu-
alized data centers,” in Proc. of the 2013 IEEE/ACM Int. Conf. on Utility
and Cloud Computing, 2013, pp. 251–255.

[14] J. Ekanayake, J. Jackson, W. Lu, R. Barga, and A. S. Balkir, “A scalable
communication runtime for clouds,” in Cloud Computing (CLOUD),
2011 IEEE International Conference on. IEEE, 2011, pp. 211–218.

[15] M. Wooldridge, An introduction to multi-agent systems. John Wiley &
Sons, Ltd., 2002.

[16] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence. Addison Wesley Longman, 1999.

[17] F. Cicirelli, A. Giordano, and L. Nigro, “Efficient environment man-
agement for distributed simulation of large-scale situated multi-agent
systems,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 3, pp. 610–632, 2015.

[18] I. Blecic, A. Cecchini, G. A. Trunfio, and E. Verigos, “Urban cellular
automata with irregular space of proximities,” Journal of Cellular
Automata, vol. 9, no. 2-3, pp. 241–256, 2014.

[19] M. Pedemonte, S. Nesmachnow, and H. Cancela, “A survey on parallel
ant colony optimization,” Applied Soft Computing, vol. 11, no. 8, pp.
5181 – 5197, 2011.

[20] A. Forestiero and C. Mastroianni, “A swarm algorithm for a self-
structured P2P information system,” IEEE Transactions on Evolutionary
Computation, vol. 13, no. 4, pp. 681–694, August 2009.

[21] A. Forestiero, C. Mastroianni, and G. Spezzano, “QoS-based dissemina-
tion of content in grids,” Future Generation Computer Systems, vol. 24,
no. 3, pp. 235–244, 2008.

[22] F. Cicirelli, A. Forestiero, A. Giordano, and C. Mastroianni, “An ap-
proach for scalable parallel execution of ant algorithms,” in International
Conference on High Performance Computing & Simulation (HPCS
2014), Bologna, Italy, July 2014.

[23] A. Y. Grama, A. Gupta, and V. Kumar, “Isoefficiency: Measuring
the scalability of parallel algorithms and architectures,” IEEE Parallel
Distrib. Technol., vol. 1, no. 3, pp. 12–21, Aug. 1993.


