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Abstract Real-time analysis of distributed data
streams is a challenging task since it requires scal-
able solutions to handle streams of data that are
generated very rapidly by multiple sources. This
paper presents the design and the implementation
of an architecture for the analysis of data streams
in distributed environments. In particular, data
stream analysis has been carried out for the com-
putation of items and itemsets that exceed a fre-
quency threshold. The mining approach is hybrid,
that is, frequent items are calculated with a sin-
gle pass, using a sketch algorithm, while frequent
itemsets are calculated by a further multi-pass
analysis. The architecture combines parallel and
distributed processing to keep the pace with the
rate of distributed data streams. In order to keep
computation close to data, miners are distrib-
uted among the domains where data streams are
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generated. The paper reports the experimental re-
sults obtained with a prototype of the architecture,
tested on a Grid composed of three domains each
one handling a data stream.

Keywords Distributed data mining - Frequent
items - Frequent itemsets - Grid - Stream mining

1 Introduction

Mining data streams is a very important research
topic and has recently attracted a lot of attention,
because in many cases data is generated by exter-
nal sources so rapidly that it may be unfeasible
to store and analyze it offline. Moreover, in some
cases streams of data must be analyzed in real time
to provide information about trends, outlier val-
ues or regularities that must be signaled as soon as
possible. The need for online computation is a no-
table challenge with respect to classical data min-
ing algorithms [2, 19]. Important application fields
for stream mining are as diverse as financial appli-
cations, network monitoring, security problems,
telecommunication networks, Web applications,
sensor networks, analysis of atmospheric data, etc.

A further difficulty occurs when streams are
distributed, and mining models must be derived
not only from a single stream, but from multiple
and heterogeneous data streams [11]. This sce-
nario can occur in all the application domains
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mentioned before. For example, in a Content Dis-
tribution Network, user requests delivered to a
Web system can be forwarded to any of several
servers located in different and possibly distant
places, in order to serve requests more efficiently
and balance the load. In such a context, the
analysis of user requests, for example to discover
frequent patterns, must be performed with the
inspection of data streams detected by different
servers. Another notable application field is the
analysis of packets processed by routers of an IP
network. In any distributed scenario, it is essential
that miners are located as close to data sources
as possible, in order to limit the overhead of data
communication. When there is the need for per-
forming multiple passes on data, the presence of
data cachers can help, provided that they are also
appropriately distributed.

Sometimes the rate of a single data stream can
be so fast that a single computing node can have
difficulties to keep the pace with the generation
of data. In these cases, it can be useful to sam-
ple the data stream instead of processing all the
data [15], but of course this can lower the accuracy
of derived models, depending on the sampling
frequency and the adopted algorithm. A different,
or complementary, solution is to partition a data
stream among a set of miners, so that each miner
processes only a fraction of data. This solution can
be achieved by parallelizing the computation over
the nodes of a cluster or a high-speed computer
network, or can also be implemented by exploit-
ing the multiple CPUs/GPUs offered by modern
multicore and manycore machines.

Two important and recurrent problems regard-
ing the analysis of data streams are the computa-
tion of frequent items and frequent itemsets from
transactional datasets. The first problem is very
popular both for its simplicity and because it is
often used as a subroutine for more complex prob-
lems. The goal is to find, in a sequence of items,
those whose frequency exceeds a specified thresh-
old. When the items are generated in the form of
transactions—sets of distinct items—it is also use-
ful to discover frequent sets of items. A k-itemset,
i.e., a set of k distinct items, is said to be fre-
quent if those items concurrently appear in a given
fraction of transactions. The discovery of fre-
quent itemsets is essential to cope with many data
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mining problems, such as the computation of asso-
ciation rules, classification models, data clusters,
etc. This task can be severely time consuming,
since the number of candidates is combinatorial
with their allowed size. The usually adopted tech-
nique is to first discover frequent items, and then
build candidate itemsets incrementally, exploiting
the Apriori property [4], which states that an i-
itemset can be frequent only if all of its subsets are
also frequent. While there are some proposals in
the literature to mine frequent itemsets in a single
pass, it is recognized that in the general case, in
which the generation rate is fast, it is very difficult
to solve the problem without allowing multiple
passes on the data stream [22].

The architecture we designed and present in
this paper addresses the issues mentioned above
by exploiting the following main features:

— it combines the parallel and distributed para-
digms, the first one to keep the pace with the
rate of a single data stream, by using multiple
miners (processors or cores), the second one
to cope with the distributed nature of data
streams. Miners are distributed among the do-
mains where data streams are generated, in
order to keep computation close to data.

— the computation of frequent items is per-
formed through sketch algorithms. These algo-
rithms maintain a matrix of counters, and each
item of the input stream is associated with a
set of counters, one for each row of the table,
through hash functions. The statistical analysis
of counter values allows item frequencies to
be estimated with the desired accuracy. Sketch
algorithms compute a linear projection of the
input: thanks to this property, sketches of
data can be computed separately for different
stream sources, and can then be integrated to
produce the overall sketch [13].

— the approach is hybrid, meaning that frequent
items are calculated online, with a single pass,
while frequent itemsets are calculated by a fur-
ther multi-pass analysis. This approach allows
important information to be derived on the fly
without imposing too strict time constraints on
more complex tasks, such as the extraction of
frequent k-itemsets, as this could excessively
lower the accuracy of models.
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Moreover, the hybrid approach improves the
flexibility of the architecture, which can be
used both when the computation of frequent
itemsets is required and when only frequent
items are needed.

— to support the mentioned hybrid approach,
the architecture exploits the presence of data
cachers on which recent data can be stored.
In particular, miners can turn to data cachers
to retrieve the statistics about frequent items
and use them to identify frequent sets of items.
To avoid excessive communication overhead,
data cachers are distributed and placed close
to stream sources and miners.

To the best of our knowledge, this is one of
the first attempts to combine the four mentioned
characteristics. In particular, we are not aware of
attempts to combine the parallel and distributed
paradigms in stream mining, nor of implemented
systems that adopt the hybrid single-pass/multi-
pass approach, though this kind of strategy is sug-
gested and fostered in the recent literature [31].
The major advantages of the proposed architec-
ture are its scalability and flexibility. Indeed, the
architecture can efficiently exploit the presence
of multiple miners, when this is required by the
amount of computation and the generation rate of
stream data. And the model can be easily adapted
to the requirements of specific scenarios: (i) the
pull approach allows the algorithm to work with
any set of miners, as it is the miners that declare
their availability to perform part of the work;
(ii) the use and degree of parallelism can be ad-
justed depending on the stream rate and miners’
capabilities; (iii) the model can be quickly adapted
to the cases in which only frequent items are to be
computed, or both frequent items and itemsets are
needed.

Beyond presenting the architecture, we de-
scribe an implemented prototype and discuss a set
of experiments performed in a Grid environment
composed of three domains each one handling
a data stream. In this scenario, we computed
frequent items and itemsets for two well known
datasets, Kosarak and WebDocs, and analyzed the
processing time changing the number of miners
available in each domain and the rate of the data
streams.

This work extends the contribution presented
in [7] and offers deeper insights concerning the
scalability properties, the amount of exchanged
data and the computational efficiency of the de-
veloped architecture. The results of experiments
on a real distributed platform are reported to
analyze the mentioned aspects. The paper is struc-
tured as follows: Section 2 summarizes the main
issues regarding the mining of data streams and
illustrates the most common algorithms for the
computation of frequent items and itemsets; Sec-
tion 3 describes the proposed parallel/distributed
architecture for mining data streams and discusses
the adopted hybrid approach; Section 4 presents
the prototype and the testbed scenario, and re-
ports the related results; Section 5 discusses re-
lated work and Section 6 concludes the paper.

2 Mining Frequent Items and Frequent Itemsets
in Distributed Data Streams

Data stream analysis is often performed with ran-
domized and approximated algorithms, since ex-
act and deterministic algorithms would require
too much computing time and memory space. Ac-
cordingly, data mining algorithms for data stream
analysis are generally evaluated with respect to
three metrics [13]:

— Processing time needed to update the data
structures and the mining models after the
arrival of new stream items;

— Storage space used by the algorithm;

— Accuracy of the approximated algorithm, in
general specified through two parameters set
by the user: the accuracy parameter ¢ and
the failure probability §, which means that the
estimation error is at most € with probability
(1 = 8). Of course, processing time and storage
size strongly depend on these parameters.

As mentioned, the discovery of frequent items [12]
is a very important task, consisting of identifying
the items whose frequency in a stream exceeds
a specified fraction o of the overall stream size.
This problem has a huge number of applications
in a variety of scenarios: frequent items can be the
most popular destinations of IP packets, the most
frequent queries submitted to a search engine,
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the most common values observed by sensors in
a wireless environment, etc. Moreover, frequent
items are often used as the basis for more complex
analysis processes.

The problem is formalized as follows [13]:

Problem Statement Given a stream S of n items
el, ..., en, where the frequency of an itemiis f; =
I{jle;j =i}|, and a frequency threshold o, the e-
approximate-frequent-items problem consists of
finding the set F of items such that: F = {i| f; >
(0 —e)n}

Two basic categories of algorithms can be used
to solve this problem: the Counter-Based and the
Sketch-Based algorithms. The algorithms of the
first type maintain counters for a subset of ele-
ments, and counters are updated every time one
of these elements is observed in the stream. If
the observed element has no associated counter,
the algorithm must choose whether to ignore the
element or replace an existing counter with a
counter for the new item. At the end of the first
pass, frequent items will surely be among those
associated with counters, but the inverse is not
true, which requires at least a second pass to verify
which counters actually correspond to frequent
items. Some of the most used Counter-Based al-
gorithms are the SpaceSaving algorithm [28] and
the LossyCounting algorithm [26].

Conversely, Sketch-Based algorithms [12] do
not monitor a subset of elements but provide,
with a given accuracy, an estimation of the fre-
quency for all stream elements using a matrix of
counters C with d rows and w columns. A set
of d hash functions #,, ..., hy are chosen among
a family of pairwise-independent functions, and
are associated to the different matrix rows. Each
item i observed in the stream is mapped, for
each row r, to the matrix element C[r, &, (i)]. This
counter is then modified depending on the specific
sketch algorithm: in the sketch-based CountMin
algorithm [14], at the arrival of a new item i, the
counter is incremented as follows (see Fig. 1):

forrell,dl — Clr,h,()]+ =1

The number of counters in a row, w, is
lower than the number of elements, so there are
conflicts, because several distinct elements will be
mapped by a hash function to the same counter.
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Fig. 1 CountMin algorithm. A new item is associated,
for each row, to a different entry—computed with a hash
function—which is then incremented

However, different elements are in conflict for
different rows, which enables the adoption of sta-
tistical techniques to estimate the actual frequen-
cies of elements. In CountMin, collisions always
cause extra increments of counters, therefore the
best estimation for the frequency f; of element i is
the minimum value of the counters associated to i:

fi = min, (C[r, h,()1)

Of course, the accuracy of sketch algorithms
increases with the size of the matrix, since a
larger matrix reduces the frequency of collisions
of different elements on the same counter. In
CountMin, setting d=[In}| and w = [¢] en-
sures that f;, in a stream with n elements, has error
at most en with probability of at least 1 — §. The
spatial complexity is O(¢1n ) while the time for
update is O(In 5).

More details about CountMin can be found
in [14]. Here it is worth recalling that this algo-
rithm, as all the sketch algorithms, has the impor-
tant property that the sketch is a linear projection
of the input. This means that the overall sketch
of multiple streams can be computed by adding
the sketches of single streams. This is the main
reason why we decided to adopt CountMin: in a
distributed architecture, it would be prohibitive to
transmit source data to a central processing node,
while the mere transmission of sketch summaries
allows communication overhead to be drastically
reduced.

The computation of frequent itemsets can ei-
ther be performed directly, or by exploiting the
statistics of frequent items. The direct computa-
tion in a single pass is feasible only if the stream
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rate is moderate, due to the large number of can-
didate frequent itemsets. For example, in [22] a
hybrid approach is used: first, a counter-based al-
gorithm computes the candidate 2-itemsets, then a
second pass is necessary to eliminate the false can-
didates, finally the Apriori property is exploited to
find the frequent i-itemsets, for i > 2. The merit
of hybrid approaches is that they try to combine
the best of single-pass and multiple-pass algo-
rithms [31], and can be particularly efficient in a
distributed scenario. In our architecture, frequent
items are computed on the fly with CountMin, and
the results, stored in distributed data cachers, are
used to compute frequent itemsets.

3 A Hybrid Multi-Domain Architecture

This section presents the stream mining archi-
tecture that aims at solving the problem of
computing frequent items and frequent item-
sets from distributed data streams, exploiting a
hybrid single-pass/multiple-pass strategy. We as-
sumed that stream sources, though belonging to
different domains, are homogenous, so that it is
useful to extract knowledge from their union. Typ-
ical cases are the analysis of the traffic experi-
enced by several routers of a wide area network,
or the analysis of client requests forwarded to
multiple web servers. Miner nodes are located
close to the streams, so that data transmitted be-
tween different domains only consists of models
(sketches), not raw data.

The architecture, depicted in Fig. 2, includes
the following components:

— Data Streams (DS), located in different
domains.

— Miners (M). They are placed close to the re-
spective Data Streams, and perform two ba-
sic mining tasks: the computation of sketches
for the discovery of frequent items, and the
computation of the support count of candidate
frequent itemsets. If a single Miner is unable
to keep the pace of the local DS, the stream
items can be partitioned and forwarded to a
set of Miners, which operate in parallel. Each
Miner computes the sketch only for the data it
receives, and then forwards the results to the

data stream data stream

// AN // (AN
N \\\//

Network

Fig. 2 Distributed architecture for data stream mining

local Stream Manager. Parallel Miners can be
associated to the nodes of a cluster or a high
speed computer network, or to the cores of a
manycore machine.

— Stream Managers (SM): in each domain, the
Stream Manager collects the sketches com-
puted by local miners, and derives the sketch
for the local DS. Moreover, each SM cooper-
ates with the Stream Manager Coordinator to
compute global statistics, valid for the union
of all the Data Streams.

— Stream Manager Coordinator (SMC): this
node collects mining models from different
domains and computes overall statistics re-
garding frequent items and frequent itemsets.
The SMC can coincide with one of the Stream
Managers, and can be chosen with an election
algorithm. In the figure, the SM of the domain
on the left also takes the role of SMC.

— Data Cachers (DC) are essential to enable
the hybrid strategy and the computation of
frequent itemsets, when this is needed. Each
Data Cacher stores the statistics about fre-
quent items discovered in the local domain.
These results are then re-used by Miners to
discover frequent itemsets composed of in-
creasing numbers of items.

The algorithm for the computation of frequent
items, outlined in Fig. 3, is performed continu-
ously, for each new block of data generated by
the data streams. A block is defined here as the
set of transactions that are generated in a time
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Fig. 3 Schema of the algorithm for mining frequent items

interval P. The algorithm includes the following
steps, also shown in the figure:

1. a filter is used to partition the block into as
many sub-blocks as the number of available
Miners;

2. each Miner computes the sketch related to the
received sub-block;

3. the Miner transmits the sketch to the SM,
which overlaps the sketches, thanks to the lin-
earity property of sketch algorithms, and ex-
tracts the frequent items for the local domain;

4. two concurrent operations are executed:
every SM sends the local sketch to the SMC
(step 4a), and the Miners send the most
recent blocks of transactions to the local Data
Cacher (step 4b). The last operation is only
needed when frequent itemsets are to be
computed, otherwise it can be skipped;

5. the SMC aggregates the sketches received by
SMs and identifies the items that are frequent
for the union of data streams.

Frequent items are computed for a window
containing the most recent W blocks. This can be
done easily thanks to the linearity of the sketch
algorithm: at the arrival of a new block, the sketch
of this block is added to the current sketch of
the window, while the sketch of the least recent
block is subtracted. The window-based approach
is common because most interesting results are
generally related to recent data [16].
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Sketch-based algorithms are only capable of
computing frequent items. To discover frequent
itemsets, it is necessary to perform multiple
passes on data. Candidate k-itemsets are con-
structed starting from frequent (k—I)-itemsets.
More specifically, at the first step candidate 2-
itemsets are all the possible pairs of frequent
items: Miners must compute the support for these
pairs to determine which of them are frequent. In
the following steps, a candidate k-itemset is ob-
tained by adding any frequent item to the frequent
(k—1I)-itemsets. Thanks to the Apriori property,
candidates can be pruned by checking if all the
k—1 subsets are frequent: a k-itemset can be fre-
quent only if all the subsets are frequent.

The approach allows us to compute both item-
sets that are frequent for a single domain and
those that are frequent for the union of distrib-
uted streams. Figure 4 shows an example of how
frequent 3-itemsets are computed. The top part
of the figure reports items and 2-itemsets that
are frequent for the two considered domains and
for the whole system. The candidate 3-itemsets,
computed by the two SMs and by the SMC, are
then reported, before and after the pruning based
on the Apriori property. In the bottom part, the
figure reports the support counts computed for
the two domains and for the whole system. Fi-
nally, the SMs check which candidates exceed the
specified threshold (in this case, set to 10 %):
notice that the {abc} itemset is frequent globally
though it is locally frequent in only one of the
two domains. In general, it can happen that an
itemset occurs frequently for a single domain and
infrequently globally, or vice versa: therefore, it is
necessary to separately perform the two kinds of
computations.

The schema of the algorithm for mining fre-
quent itemsets is illustrated in Fig. 5, which as-
sumes that the steps indicated in Fig. 3 have al-
ready been performed.

The successive steps are:

6. each SM builds the candidate k-itemsets for
the local domain (6a), and the SMC also
builds the global candidate k-itemsets (6b);

7. the SMC sends the global candidates to the
SMs for the computation of their support at
the different domains;
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Fig. 4 Ex.ample of the Frequent items and 2-itemsets:
computation of frequent
3-itemsets At Domain 1: At Domain 2: Globally:
items {a,b,c,d,f} items {a,b,c,d,e} items {a,b,c,d}
2-itemsets{ab,ac,bc} 2-itemsets{ac,aebc,ce}  2-itemsets {ab,ac ad bc}
Candidate 3-itemsets:

After pruning:
atdomain 1:  {abc,abd,abf bed bef,acd,acf} {abc}
at domain 2:  {abc,acd,ace,abe,ade,bed bee cde} =3 {ace}
globally : {abc,abd,acd,bed} {abc}

Support count resulit:
At Domain 1: At Domain 2: —p  Globally:
abc: 14% abc: 6% abc: 10%
ace: 9%
Frequent 3-itemsets (with support threshold = 10%):
At Domain 1: At Domain 2: Globally:
{abc} 0 {abc}

8. SMs send both local and global candidates to
the Miners;

9. Miners turn to the Data Cacher to retrieve
the transactions included in the current win-
dow (this operation is performed only at
the first iteration of the algorithm). Then,
the Miners compute the support count for
all the candidates, using the window-aware
technique presented in [20];

10. Miners transmit the results to the local SM;

11. the SM aggregates the support counts re-
ceived by Miners and selects the k-itemsets
that are frequent in the local domain;

12. analogously, the SMs send the SMC the sup-
port counts of the global candidates;

data stream data stream

_Aa/ﬁ/ :\}m ﬁ{/:\}a«—‘%
7> \\ /4
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Network

Fig. 5 Schema of the algorithm for mining frequent
itemsets

13. the SMC computes the itemsets that are fre-
quent over the whole system. At this point,
the algorithm restarts from step 6 to find
frequent itemsets with increasing numbers
of items. The cycle stops either when the
maximum allowed size of itemsets is reached
or when no frequent itemset was found in the
last iteration.

4 Prototype and Performance Evaluation

The architecture described in the previous sec-
tion was implemented starting from the Min-
ing@Home system. Mining@Home, a Java-based
framework partly inspired by the Public Com-
puting paradigm, was adopted to perform sev-
eral classes of data mining computations, among
which the analysis of astronomical data to search
for gravitational waves [27], and the discovery
of closed frequent itemsets with parallel algo-
rithms [24]. The main features of the stream min-
ing prototype inherited from Mining@Home, are
the pull approach (Miners are assigned jobs on
the basis of their availability) and the adoption of
Data Cachers to store reusable data. Moreover,
some important modifications were necessary to
adapt the framework to the stream mining sce-
nario. For example, the selection of the Miners
that are the most appropriate to perform the min-
ing tasks is subject to vicinity constraints, because
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in a streaming environment it is very important
that the analysis of data be performed close to the
data source. Another notable modification is the
adoption of the hybrid approach for the single-
pass computation of frequent items and the multi-
pass computation of frequent itemsets.
Experiments were performed on a Grid com-
posed of two remote ICAR networks (ICAR-CS
located in Cosenza and ICAR-NA in Naples, 300
kilometers away) and one network owned by the
University of Calabria (UNICAL), in Cosenza.
The topology of the Grid, as well as the inter-
domain and intra-domain transfer rates, are de-
picted in Fig. 6. The Miners and the Stream Man-
agers were installed on the nodes of clusters while
the Data Sources and the Data Cachers were
put on different nodes, external to the clusters.
The UNICAL cluster has twelve Cpu Intel Xeon
E5520 nodes with four 2.27 GHz processors and
24 GB RAM; the ICAR-CS cluster has twelve
Intel Itanium nodes with two 1.5 GHz CPU and
4 GB RAM,; finally, the ICAR-NA cluster is an
HP XC6000 with 64 nodes equipped with two
1.4 GHz CPU and 8 GB RAM. All the nodes run

Linux, and the software components are written
in Java.

To assess the prototype, we used the trans-
actional datasets published by the FIMI Reposi-
tory [18]. Some of these datasets are originated
by data streams, so they are appropriate for our
analysis. In particular:

e The “kosarak” dataset contains a list of click-
streams generated by users of an online portal.
The analysis of user visits can be useful to
identify the most popular sections of the por-
tal, the preferences and requirements of users,
etc.;

e the “webDocs” dataset is generated from a set
of Web pages. Each page, after the application
of a filtering algorithm, is represented with
a set of significant words included in it. The
analysis of most frequent words, or sets of
words, can be useful to devise caching policies,
indexing techniques, etc.

Basic information about the two datasets is
summarized below:

Dataset MB No. of No. of distinct  Size of tuples
tuples items (no. of items)
min  med  max
kosarak 30.5 990002 41270 1 8 2498
webDocs 1413 1692082 5267656 1 177 71472

The parameters used to assess the prototype
are listed below:

—  P: the time interval to receive a block of data.
This interval determines the average number
of transactions generated within a block, de-
noted as V;, and the average size of a block in
bytes, B;

— Nuyp: the number of available miners per do-
main. In our experiments, this number is the
same for the three domains;

— Ny the total number of available miners in
the Grid, equal to 3 - Nyp;

—  Fcpy: the fraction of CPU time reserved on
miners for the experiments, set to 30 %.
This setting was used to make the results
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independent from the execution of other
processes on the same nodes.!

— §: the support threshold used to determine
frequent items and itemsets;

— W: the size of the sliding window, i.e., the
number of consecutive blocks of data on which
computation is performed;

— Cy: the capacity of the miner buffer. Unless
otherwise stated, it is equal to the size of a data
block B.

— € and §, the accuracy parameters of the sketch
algorithm, which are both set to 0.01.

Ithe fraction of CPU is tuned using the program “cpulimit”,
http://cpulimit.sourceforge.net.
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Fig. 6 Topology of the
Grid used for
experimental evaluation

UNICAL
(942 KB\s)

— the maximum size of candidate itemsets, set to
5 for Kosarak and to 8 for Webdocs.

Prior to the experiments, the datasets are re-
trieved and stored on the Data Source nodes of
the three domains. During the experiments, data
is sent to local Miners with a specified transfer
rate, to reproduce the original data stream. The
transmission rate is adjusted by setting the para-
meter N,, the number of transactions generated
during the time interval P.

The main performance index assessed during
the experiments is the execution time, defined as
the time interval between the transmission of a
new block of stream data and the time at which the
analysis of this block has been completed by the
Stream Manager Coordinator (SMC). If this value
is not longer than the time interval P, it means
that the system is able to keep the pace with data
production.

4.1 Experiments with the Dataset Kosarak

The experiments were executed assuming a time
period P equal to 15 s. The generation rates
were compatible with the Web sites of Wikipedia,
Microsoft and Ebay, as estimated using the Web
site http://www.webtraffic24.com. These rates cor-
respond, respectively, to values of N, equal to
about 40,000, 30,000 and 20,000 transactions per
block. The generation rates were equally parti-
tioned between the three domains. These are very
high generation rates, and allowed the prototype
to be tested in challenging conditions.

Figures 7 and 8 report the execution time ex-
perienced for the computation of frequent items
exclusively (I), and for the computation of both
frequent items and itemsets (I4IS), vs. the total
number of miners Ny, The execution time was
averaged over 20 time periods in order to have a
more robust statistical relevance. In these experi-
ments, S was set to 0.02, the Miner cache size Cy,
was set to the average size of a block B, and the

(197 KB\s)

(221 KB\s) ICAR-NA

(932 KB\s)

ICAR-CS
(918 KB\s)

window size W was set to 5. Plots are reported
for three different values of N,. Both figures show
that the processing time decreases as the number
of miners increases, which is a sign of the good
scalability of the architecture. Scalable behavior is
ensured by two main factors: the linearity prop-
erty of the sketch algorithm, and the placement of
Data Cachers close to the miners. In this evalua-
tion the value Ny, = 3 (or Ny p = 1) corresponds
to the case in which the mining computation is
sequential on each domain, i.e., it is performed by
a single node.

The system is stable when the execution time
is lower than the time period P (15 s): in such a
case, the system is able to keep the pace with the
generation of stream data. This condition is always
verified when the system is only asked to compute
frequent items, as is clear from Fig. 7. On the
other hand, the computation of frequent itemsets
is much more time consuming. The dashed line
depicted in Fig. 8 corresponds to the time period
P, and it is shown to easily check in which cases
the system is stable. Results show that a single
miner per domain is not sufficient: depending on
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Fig.7 Analysis of Kosarak: execution time for the compu-

tation of frequent items (I), vs. the number of miners, for
different values of the number of transactions per block, N,
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Fig. 8 Analysis of Kosarak: execution time for the com-
putation of frequent items (I) and itemsets (IS), vs. the
number of miners, for different values of the number of
transactions per block, N,

the generation rate, three, five, or six miners per
domain are needed to keep the processing time
below the period length P.

To better assess the system behavior it is use-
ful to analyze the data traffic involved in the
computation. Figure 9 shows the amount of data
transmitted over the network at the generation
of a new block of data, for different numbers of
miners per domain. In these experiments, N, was
set to 30,000 while the other parameters were
set as detailed before. The first three groups of
bars show the overall amount of data transferred

between nodes of type A to nodes of type B in
a single domain, denoted as A— B. For example,
DS— M is the amount of data transmitted by the
Data Source to the Miners of a single domain
at every time period. The values of DS— M and
M— DC are equal since each Miner sends to the
local DC the data received from the DS. The
forth group reports D Tpomain, the overall amount
of data transferred within a single domain, com-
puted as the sum of the contributions of the first
three groups (the contribution of the first group
is considered twice). The contribution SM— SMC
is the amount of data transferred between remote
domains, i.e., between the Stream Managers and
the Stream Manager Coordinator. Finally, the last
group of bars reports the amount of data trans-
ferred over the whole network, D7Tne. This is
computed as the term D Tpomain times the num-
ber of domains—in this case 3—plus the term
SM—SMC.

It is interesting to notice that the contribution
DC— M decreases when the number of miners
per domain increases, and becomes null when
Nyp is equal or greater than 5. This can be
explained by considering that each miner must
compute the frequency of items and itemsets over
a window of 5 time periods, and possesses a cache
that can contain one complete block of data. If
there is only one miner per domain, this miner can
store one block and must retrieve the remaining
four blocks from the local Data Cacher. As the
number of miners increases, each Miner needs to

Fig. 9 Data traffic per T T T T d b
each block of data 7000F  Nyp=l c— ]
generated by the Data EMD; g
Streams. In this 6000 | Nizgz — T
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request less data from the Data Cacher, and needs
no data when Ny, p equals or exceeds the window
size. Indeed, with Ny;p miners per domain, each
miner receives from the Data Source an amount of
data approximately equal to B/ Ny p (because the
block is partitioned and distributed to the Miners),
and then can store the data corresponding to Nyp
consecutive blocks, since the size of such data
amounts to B.

Conversely, the component M— SM slightly in-
creases with the number of miners, because every
miner sends the local SM a set of results (the
sketch and the support counts of itemsets) having
approximately the same size. However, as the
contribution of DC— M has a larger weight than
M— SM, the overall amount of data exchanged
within a domain decreases as N p increases from
1 to 5. For larger values of Nyp, D Toomain Starts
to increase, because M— SM slightly increases
and DC— M gives no contribution. A similar
trend is observed for the values of D Tnet.

An efficiency analysis was performed in ac-
cordance with the study of parallel architectures
presented in [21]. Specifically, we extracted the
overall computation time 7¢, i.e., the sum of the
computation times measured on the different min-
ers, and the overall overhead time T, defined as
the sum of all the times spent in other activities,
which practically coincide with the transfer times.
These two indexes are shown in Fig. 10 using a
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Fig. 10 Analysis of Kosarak: overall computing time (7¢)
and overhead time (7o), vs. the number of miners, for
different values of the number of transactions per block, N,

logarithmic scale. Not surprisingly, the overhead
time follows a similar trend as the overall amount
of transferred data, D Tnet, reported in Fig. 9. The
overall computation time 7¢, on the other hand,
has a nearly constant trend.

The efficiency of the computation can be
defined as the fraction of time that the miners
actually devote to computation with respect to
the sum of computation and overhead time: E =
%. Figure 11 reports efficiency values, which
are very high, always larger than 0.9. It is ap-
preciated that efficiency increases as the number
of miners per domain increases up to 5, i.e., the
window size. This effect is induced by the use of
caching, as explained in [21]. Specifically, when
Ny p increases up to the window size, each miner
needs to request less data from the Data Cacher,
because more data can be stored in the local
cache: this leads to a higher efficiency. For larger
values of Nyp, this effect does not hold any-
more and the efficiency slightly decreases, being
still very high. Moreover, it is noticed that the
efficiency increases with the rate of data streams.
This means that the distributed architecture is
increasingly convenient when the problem size in-
creases, which is a another sign of good scalability
properties.

Figure 12 shows the execution time measured
when setting the value of N; to 30,000 and vary-
ing the support threshold S. This parameter does

1
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Fig. 11 Analysis of Kosarak: efficiency vs. the number of

miners, for different values of the number of transactions
per block, N,
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Fig. 12 Analysis of Kosarak: execution time for the com-
putation of frequent items and itemsets vs. the number of
miners per domain, for different values of the threshold S.
The value of N, is set to 30,000

not influence the time to execute the frequent
items algorithm, which is executed in a single
pass: therefore the figure reports the total execu-
tion times regarding the combined computation
of frequent items and frequent itemsets (I+IS).
As expected, a lower value of the threshold leads
to an increase of the processing time, since the
number of frequent itemsets, computed at each
step of the algorithm (see Fig. 5), is larger. Again,
when computation is more demanding the ab-
solute processing time increases, but the system is
more efficient. This is visible in Fig. 13: the trend
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Fig. 13 Analysis of Kosarak: efficiency vs. the number of

miners per domain, for different values of the threshold S.
The value of N, is set to 30,000
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of curves is similar, but efficiency is higher with
lower values of the support threshold.

4.2 Experiments with the Dataset Webdocs

A second set of experiments was performed tak-
ing the dataset Webdocs as input of the data
stream. As the dataset contains representative
words of Web pages filtered by a search engine,
the data rate was set to typical values registered by
servers of Google and Altavista, again using the
site http://www.webtraffic24.com to do the estima-
tion. The considered values for N, were 1000, 3000
and 6000 transactions, with the time period P set
to 15 s. A single transaction contains on average
many more items than the typical Kosarak trans-
action, so the block size is larger: for example, with
N, = 3000, the value of B is about 750 KBytes,
while it was about 150 Kbytes in Kosarak exper-
iments. As for the previous set of tests, the fre-
quency threshold S was set to 0.02 and the window
size to 5 blocks.

Figure 14 shows the average time needed to
compute frequent items and itemsets after the ar-
rival of a new block. Owing to the higher complex-
ity of the dataset—in particular, the larger num-
ber of items per transaction—the computation of
frequent itemsets is more challenging. To perform
this task, 15 miners are sufficient if the data rate
is equal to 1000 transactions per time period, but
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Fig. 14 Analysis of Webdocs: execution time for the com-
putation of frequent items and itemsets (I+IS), vs. the
number of miners, for different values of the number of
transactions per block, N;
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as many as 30 miners are needed when N, is equal
to 6000. It is worth noting that in this scenario any
centralized architecture would have few chances
to keep pace with data, which means that the
computation of frequent itemsets would have to
be done offline, while the architecture proposed
here can achieve the goal of online processing by
using an appropriate degree of parallelism.

Figure 15 reports the amount of data exchanged
within single domains and in the whole network.
It can be noticed that the absolute amount of
transmitted data is higher than that experienced
with Kosarak, and reported in Fig. 9.
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Fig. 16 Analysis of Webdocs: efficiency vs. the number of
miners per domain, for different values of the number of
transactions per block, N;

Connection Type (From->To)

Figure 16 displays the values of efficiency for
the same experiments. Trends are very similar to
those obtained with the Kosarak data, but here
absolute values of efficiency are higher. The rea-
son is that, although more data must be trans-
mitted in the Webdocs scenario, the increase in
computation complexity is even more remarkable.
Overall, the fraction of computation time is higher
with respect to the total time than in the Kosarak
scenario, therefore efficiency is higher. As done
for Kosarak, also for Webdocs we analyzed the
architecture behavior with varying support thresh-
old and window size. These experiments took us
to very similar conclusions, so related results are
not reported here.

5 Related Work

The increase in the data produced by large-scale
scientific and commercial applications necessi-
tates innovative solutions for efficient transfer and
analysis of data [32]. The analysis of data streams
has recently attracted a lot of attention owing to
the wide range of applications for which it can
be extremely useful. Important challenges arise
from the necessity of performing most computa-
tion with a single pass on stream data, because
of limitations in time and memory space. Stream
mining algorithms deal with problems as diverse
as clustering and classification of data streams,

@ Springer



E. Cesario et al.

change detection, stream cube analysis, indexing,
forecasting, etc [1].

For many important application domains previ-
ously mentioned in this paper, a major need is to
identify frequent patterns in data streams, either
single frequent elements or frequent sets of items
in transactional databases. A rich survey of algo-
rithms for discovering frequent items is provided
by Cormode and Hadjieleftheriou [13]. In their
paper, discussion focuses on the two main classes
of algorithms for finding frequent items. Counter-
based algorithms have their foundation on some
techniques proposed in the early 80s to solve the
Majority problem [17], i.e., the problem of finding
a majority element in a stream, using a single
counter. Variants of this algorithm were devised,
sometimes decades later, to discover items whose
frequencies exceed any given threshold. Lossy-
Counting is perhaps the most popular algorithm
of this type [26].

The second class of algorithms compute a
sketch, i.e., a linear projection of the input, and
provide an approximated estimation of item fre-
quencies using limited computing and memory
resources. Popular algorithms of this kind are
CountSketch [8] and CountMin [14], and the latter
is adopted in this paper. Advantages and limi-
tations of sketch algorithms are discussed in [3].
Important advantages are the notable space effi-
ciency (required space is logarithmic in the num-
ber of distinct items), the possibility of naturally
dealing with negative updates and item deletions,
and the linear property, which allows sketches of
multiple streams to be computed by overlapping
the sketches of single streams. The main limitation
is the underlying assumption that the domain size
of the data stream is large, however this assump-
tion holds in many significant domains.

Even if modern single-pass algorithms are ex-
tremely sophisticated and powerful, multi-pass al-
gorithms are still necessary either when the stream
rate is too rapid, or when the problem is inherently
related to the execution of multiple passes, which
is the case, for example, of the frequent itemsets
problem [9]. Single-pass algorithms can be forced
to check the frequency of 2- or 3-itemsets, but
this approach cannot be generalized easily, as the
number of candidate k-itemsets is combinatorial,
and it can become very large when increasing the
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value of k [22]. Therefore, a very promising av-
enue could be to devise hybrid approaches, which
try to combine the best of single- and multiple-
pass algorithms. A strategy of this kind, discussed
in [31], is adopted in the mining architecture pre-
sented in this paper.

The analysis of streams is even more challeng-
ing when data is produced by different sources
spread in a distributed environment, an ever more
frequent case. For example, NASA [5] produces
many terabytes of data per month through thou-
sands of observation instruments located at multi-
ple and distant data centers, and needs to extract
information from this massive amount of stream
data using efficient data mining applications. An-
other example comes from the multiplicity of data
streams occurring in complex scientific workflows
or in large-scale distributed collaborations exac-
erbate this problem, particularly when different
streams have different performance require-
ments [6].

A thorough discussion of the approaches cur-
rently used to mine multiple data streams can be
found in [30]. The paper distinguishes between
the centralized model, under which streams are di-
rected to a central location before they are mined,
and the distributed model, in which distributed
computing nodes perform part of the computation
close to the data, and send to a central site only
the models, not the data. Of course, the distrib-
uted approach has notable advantages in terms of
degree of parallelism and scalability.

An interesting approach for the continuous
tracking of complex queries over collections of
distributed streams is presented in [11]. To re-
duce the communication overhead, the adopted
strategy combines two technical solutions: (i) re-
mote sites only communicate to the coordinator
concise summary information on local streams (in
the form of sketches); (ii) even such communi-
cations are avoided when the behavior of local
streams remains reasonably stable, or predictable:
updates of sketches are only transmitted when a
certain amount of change is observed locally. The
success of this strategy depends on the level of
approximation on the results that is tolerated. A
similar approach is adopted in [29]: here stream
data is sent to the central processor after being
filtered at remote data sources. The filters adapt
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to changing conditions to minimize stream rates
while guaranteeing that the central processor still
receives the updates necessary to provide answers
of adequate precision.

In [25], the problem of finding frequent items
in the union of multiple distributed streams is
tackled by setting a hierarchical communication
topology in which streams are the leaves, a cen-
tral processor is the root, and intermediate nodes
can compress data flowing from the leaves to the
root. The amount of compression is dynamically
adapted to make the tolerated error (difference
from estimation and actual frequency of items)
follow a precision gradient: the error must be
very low at nodes close to the sources, but it can
gradually increase as the communication hierar-
chy is climbed. The objective of this strategy is to
minimize load on the central node while providing
acceptable error guarantees on answers.

In [10] authors deal with the problem of mining
closed frequent itemsets from a data stream over a
sliding window using limited memory space. They
propose the Moment algorithm and an efficient
compact data structure, i.e., CET, the Closed Enu-
meration Tree. This structure is aimed at dynami-
cally maintaining a selected set of itemsets over a
sliding window. The number of nodes needed by
CET is shown to be proportional to that of discov-
ered closed frequent itemsets, which guarantees
the compactness of the structure. Another ap-
proach for mining frequent itemsets on streaming
data, claimed as the first one requiring no out-of-
core memory structure, is presented in [23]. The
adopted method, named StreamMining, is based
on two main steps. The first is implemented by
a one-pass algorithm executed on the streaming
data, and has deterministic bounds on the accu-
racy. The second step consists in the execution of a
two-pass algorithm, which improves the accuracy
by pruning possible false negatives detected at the
first step. The algorithm has shown to achieve
good performances, but it tends to degrade when
the average size of frequent itemsets increases.

6 Conclusions

In recent years, the progress in digital data pro-
duction and pervasive computing technology have

made it possible to produce and store large
streams of data. Data mining techniques became
vital to analyze such large and continuous streams
of data for detecting regularities or outlier values
in them. In particular, when data production is
massive and/or distributed, decentralized archi-
tectures and algorithms are needed for its analysis.

The distributed stream mining system pre-
sented in this paper is a contribution in the field
and it aims at solving the problem of computing
frequent items and frequent itemsets from distrib-
uted data streams by exploiting a hybrid single-
pass/multiple-pass strategy. Beyond presenting
the system architecture, we described a prototype
that implements it and discussed a set of experi-
ments performed in a real Grid environment. The
experimental results confirm that the approach is
scalable and can manage large data production
by using an appropriate number of miners in the
distributed architecture.
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