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Abstract

MapReduce is a programming model for parallel data processing widely used in Cloud computing environ-
ments. Current MapReduce implementations are based on centralized master-slave architectures that do not
cope well with dynamic Cloud infrastructures, like a Cloud of clouds, in which nodes may join and leave the
network at high rates. We have designed an adaptive MapReduce framework, called P2P-MapReduce, which
exploits a peer-to-peer model to manage node churn, master failures, and job recovery in a decentralized
but effective way, so as to provide a more reliable MapReduce middleware that can be effectively exploited
in dynamic Cloud infrastructures. This paper describes the P2P-MapReduce system providing a detailed
description of its basic mechanisms, a prototype implementation, and an extensive performance evaluation
in different network scenarios. The performance results confirm the good fault tolerance level provided by
the P2P-MapReduce framework compared to a centralized implementation of MapReduce, as well as its
limited impact in terms of network overhead.
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1. Introduction

MapReduce is a system and method for efficient large-scale data processing presented by Google in
2004 [1] to cope with the challenge of processing very large input data generated by Internet-based applica-
tions. Since its introduction, MapReduce has proven to be applicable to a wide range of domains, including
machine learning and data mining, log file analysis, financial analysis, scientific simulation, image retrieval
and processing, blog crawling, machine translation, language modelling, and bioinformatics [2]. Today,
MapReduce is widely recognized as one of the most important programming models for Cloud computing
environments, being it supported by leading Cloud providers such as Amazon, with its Elastic MapReduce
service [3], and Google itself, which recently released a Mapper API for its App Engine [4].

The MapReduce abstraction is inspired by the map and reduce primitives present in Lisp and other
functional languages [5]. A user defines a MapReduce application in terms of a map function that processes
a (key, value) pair to generate a list of intermediate (key, value) pairs, and a reduce function that merges
all intermediate values associated with the same intermediate key. Current MapReduce implementations,
like Google’s MapReduce [6] and Hadoop [2], are based on a master-slave architecture. A job is submitted
by a user node to a master node that selects idle workers and assigns a map or reduce task to each one.
When all the tasks have been completed, the master node returns the result to the user node. The failure
of a worker is managed by re-executing its task on another worker, while master failures are not explicitly
managed as designers consider failures unlikely in reliable computing environments, such as a data center
or a dedicated Cloud.
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On the contrary, node churn and failures - including master failures - are likely in large dynamic Cloud
environments, like a Cloud of clouds, which can be formed by a large number of computing nodes that
join and leave the network at very high rates. Therefore, providing effective mechanisms to manage such
problems is fundamental to enable reliable MapReduce applications in dynamic Cloud infrastructures, where
current MapReduce middleware could be unreliable. We have designed an adaptive MapReduce framework,
called P2P-MapReduce, which exploits a peer-to-peer model to manage node churn, master failures, and job
recovery in a decentralized but effective way, so as to provide a more reliable MapReduce middleware that
can be effectively exploited in dynamic Cloud infrastructures.

This paper describes the P2P-MapReduce system providing a detailed description of its basic mecha-
nisms, a prototype implementation, and an extensive performance evaluation in different network scenarios.
The experimental results show that, differently from centralized master-server implementations, the P2P-
MapReduce framework does not suffer from job failures even in presence of very high churn rates, thus
enabling the execution of reliable MapReduce applications in very dynamic Cloud infrastructures. In an
early version of this work [7] we presented a preliminary architecture of the P2P-MapReduce framework,
while in a more recent paper [8] we introduced its main software modules and a preliminary evaluation.
This paper significantly extends our previous work by providing a detailed description of the mechanisms
at the base of the P2P-MapReduce system, as well as an extensive evaluation of its performance in different
scenarios.

The remainder of this paper is organized as follows. Section 2 provides a background on the MapReduce
programming model and discusses related work. Section 3 introduces the system model and presents the
general architecture of the P2P-MapReduce framework. System 4 describes the system mechanisms, while
Section 5 discusses its implementation. Section 6 evaluates the performance of P2P-MapReduce compared
to a centralized implementation of MapReduce. Finally, Section 7 concludes the paper.

2. Background and Related Work

This section provides a background on the MapReduce programming model and discusses related work.

2.1. The MapReduce Programming Model

As mentioned before, MapReduce applications are based on a master-slave model. This section briefly
describes the various operations that are performed by a generic application to transform input data into
output data according to that model.

Users define a map and a reduce function [5]. The map function processes a (key, value) pair and returns
a list of intermediate (key, value) pairs:

map (k1,v1) → list(k2,v2).

The reduce function merges all intermediate values having the same intermediate key:

reduce (k2, list(v2)) → list(v3).

As an example, let’s consider the creation of an inverted index for a large set of Web documents [1]. In
its basic form, an inverted index contains a set of words (index terms), and for each word it specifies the
IDs of all the documents that contain that word. Using a MapReduce approach, the map function parses
each document and emits a sequence of (word, documentID) pairs. The reduce function takes all pairs for a
given word, sorts the corresponding document IDs, and emits a (word, list(documentID)) pair. The set of
all output pairs generated by the reduce function forms the inverted index for the input documents.

In general, the whole transformation process performed in a MapReduce application can be described
through the following steps (see Figure 1):
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Figure 1: Execution phases of a generic MapReduce application.

1. A master process receives a job descriptor which specifies the MapReduce job to be executed. The job
descriptor contains, among other information, the location of the input data, which may be accessed
using a distributed file system or an HTTP/FTP server.

2. According to the job descriptor, the master starts a number of mapper and reducer processes on
different machines. At the same time, it starts a process that reads the input data from its location,
partitions that data into a set of splits, and distributes those splits to the various mappers.

3. After receiving its data partition, each mapper process executes the map function (provided as part
of the job descriptor) to generate a list of intermediate key/value pairs. Those pairs are then grouped
on the basis of their keys.

4. All pairs with the same keys are assigned to the same reducer process. Hence, each reducer process
executes the reduce function (defined by the job descriptor) which merges all the values associated
with the same key to generate a possibly smaller set of values.

5. The results generated by each reducer process are then collected and delivered to a location specified
by the job descriptor, so as to form the final output data.

Distributed file systems are the most popular solution for accessing input/output data in MapReduce
systems, particularly for standard computing environments like a data center or a cluster of computers.
On the other hand, distributed file systems may be ineffective in large-scale dynamic Cloud environments
characterized by high levels of churn. Therefore, we assume that data are moved across nodes using a file
transfer protocol like FTP or HTTP as done, for example, by the MISCO MapReduce Framework [9].

2.2. Related Work

Besides the original MapReduce implementation by Google [6], several other MapReduce implemen-
tations have been realized within other systems, including Hadoop [2], GridGain [10], Skynet [11], Map-
Sharp [12], Twister [13], and Disco [14]. Another system sharing most of the design principles of MapReduce
is Sector/Sphere [15], which has been designed to support distributed data storage and processing over large
Cloud systems. Sector is a high-performance distributed file system; Sphere is a parallel data processing
engine used to process Sector data files.

Some other works focused on providing more efficient implementations of MapReduce components, such
as the scheduler [16] and the I/O system [17], while others focused on adapting the MapReduce model to
specific computing environments, like shared-memory systems [18], volunteer computing environments [19],
Desktop Grids [20], and mobile environments [9].

Zaharia et al. [16] studied how to improve the Hadoop’s scheduler in heterogeneous environments, by
designing a new scheduling algorithm, called LATE, which significantly improves response times in hetero-
geneous settings. The LATE algorithm uses estimated finish times to efficiently schedule speculative copies
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of tasks (also called “backup” tasks in MapReduce terminology) to finish the computation faster. The main
policy adopted by LATE is to speculatively execute the task that is thought to finish farthest into the future.

The Hadoop Online Prototype (HOP) [17] modifies the Hadoop MapReduce framework to support online
aggregation, allowing users to see early returns from a job as it is being computed. HOP also supports con-
tinuous queries, which enable MapReduce programs to be written for applications such as event monitoring
and stream processing. HOP extends the applicability of the MapReduce model to pipelining behaviors,
which is useful for batch processing. In fact, by pipelining both within and across jobs, HOP can reduce the
time to job completion.

Phoenix [18] is an implementation of MapReduce for shared-memory systems that includes a program-
ming API and a runtime system. Phoenix uses threads to spawn parallel map or reduce tasks. It also uses
shared-memory buffers to facilitate communication without excessive data copying. The runtime sched-
ules tasks dynamically across the available processors in order to achieve load balance and maximize task
throughput. Overall, Phoenix proves that MapReduce is a useful programming and concurrency manage-
ment approach also for multi-core and multi-processor systems.

MOON [19] is a system designed to support MapReduce jobs on opportunistic environments. It extends
Hadoop with adaptive task and data scheduling algorithms to offer reliable MapReduce services on a hybrid
resource architecture, where volunteer computing systems are supplemented by a small set of dedicated
nodes. The adaptive task and data scheduling algorithms in MOON distinguish between different types of
MapReduce data and different types of node outages in order to place tasks and data on both volatile and
dedicated nodes.

Another system that shares some of the key ideas behind MOON is that proposed by Tang et al. [20].
The system is specifically designed to support MapReduce applications in Desktop Grids, and exploits
the BitDew middleware [21], which is a programmable environment for automatic and transparent data
management on Desktop Grids. BitDew relies on a specific set of metadata to drive key data management
operations, namely life cycle, distribution, placement, replication and fault-tolerance with a high level of
abstraction.

Finally, Misco [9] is a framework for supporting MapReduce applications on mobile systems. Although
Misco follows the general design of MapReduce, it does vary in two main aspects: task assignment and data
transfer. The first aspect is managed through the use of a polling strategy. Each slave polls the master each
time it becomes available. If there are no tasks to execute, the slave will idle for a period of time before
requesting a task again. For data transfer, instead of a distributed file system that is not practical in a
mobile scenario, Misco uses HTTP to communicate requests, task information and transfer data.

Even though P2P-MapReduce shares some basic ideas with some of the systems discussed above (in
particular, [19, 20, 9]), it also differs from all of them for its use of a peer-to-peer approach both for job
and system management. Indeed, the peer-to-peer mechanisms described in Section 4 allows nodes to
dynamically join and leave the network, change state over time, manage nodes and job failures in a way
that is completely transparent both to users and applications.

3. System Model and Architecture

As mentioned before, the goal of P2P-MapReduce is to enable a reliable execution of MapReduce appli-
cations in Cloud environments characterized by high levels of churn. To achieve this goal, P2P-MapReduce
adopts a peer-to-peer model in which a wide set of autonomous nodes (peers) can act either as a master or
as a slave. At each time, a limited set of nodes is assigned the master role, while the others are assigned the
slave role. The role assigned to a given node can change dynamically over time, so as to ensure the presence
of the desired master/slave ratio for reliability and load balancing purposes.

To prevent loss of work in the case of a master failure, each master can act as a backup for other masters.
The master responsible for a job J , referred to as the primary master for J , dynamically updates the job
state (e.g., the assignments of tasks to nodes, the status of each task, etc.) on its backup nodes, which
are referred to as the backup masters for J . To prevent excessive overhead, the update does not contain
whole job information, but only that part of information that has changed. If a primary master fails (or,
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equivalently, it abruptly leaves the network), its place is taken by one of its backup masters in a way that
is transparent both to the user who submitted the job, and to the job itself.

The overall system behavior, as well as its features (resilience to failures, load balancing), are the result
of the behavior of each single node in the system. The node behavior will be described in detail in Section 4
as a state diagram that defines the different states a node can assume, and all the events that determine
transitions from state to state. The remainder of this section describes the system model and the general
architecture of the P2P-MapReduce framework.

3.1. System Model

The model introduced here provides abstractions for describing the characteristics of jobs, tasks, users,
and nodes. For the reader’s convenience, Figure 2 illustrates the system model entities and their interrela-
tionships using the UML Class Diagram formalism.

Job

jobId : JobIdType
code : String

input [*] : URL
output [*] : URL
M : int
R :int

Task

taskId : TaskIdType
jobId : JobIdType
type : TaskType

code : String
input : URL
output : URL

userId : UserIdType

userJobList : UserJobType

User

job : Job
userId : UserIdType

jobStatus : JobStatusType
jobTaskList : JobTaskType
backupMasterList [*] : NodeIdType

PrimaryJobType

JobTaskType

task : Task

slaveId : NodeIdType
taskStatus : TaskStatusType

BackupJobType

job : Job
userId : NodeIdType
jobStatus : JobStatusType

jobTaskList : JobTaskType
backupMasterList [*] : NodeIdType
primaryId : NodeIdType

SlaveTaskType

task : Task
primaryId : NodeIdType
taskStatus : TaskStatusType

nodeId : NodeIdType

role : RoleType
primaryJobList : PrimaryJobType
backupJobList : BackupJobType
slaveTaskList : SlaveTaskType

Node

job : Job
primaryId : NodeIdType
jobStatus : JobStatusType

UserJobType

*

*

*

*

1

1

1

*

*

1

1

Figure 2: System model described through the UML Class Diagram formalism.

3.1.1. Jobs and tasks

A job is modelled as a tuple of the form:

job = ⟨jobId, code, input, output, M, R⟩

where jobId is a job identifier, code includes the map and reduce functions, input (resp., output) is the
location of the input (output) data of the job, M is the number of map tasks, and R is the number of reduce
tasks.

A task is modelled as a tuple:

task = ⟨taskId, jobId, type, code, input, output⟩

where taskId is a task identifier, jobId is the identifier of the job the task belongs to, type can be either MAP
or REDUCE, code includes the map or reduce function (depending on the task type), and input (output) is
the location of the input (output) data of the task.

3.1.2. Users and nodes

A user is modelled as a pair of the form:

user = ⟨userId, userJobList⟩
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which contains the user identifier (userId) and the list of jobs submitted by the user (userJobList). The
userJobList contains tuples of a userJobType defined as:

userJobType = ⟨job, primaryId, jobStatus⟩

where job is a job descriptor, primaryId is the identifier of the node that is managing the job as the primary
master, and jobStatus represents the current job status.

A node is modelled as a tuple:

node = ⟨nodeId, role, primaryJobList, backupJobList, slaveTaskList⟩

which contains the node identifier (nodeId), its role (MASTER or SLAVE), the list of jobs managed by this
node as the primary master (primaryJobList), the list of jobs managed by this node as a backup master
(backupJobList), and the list of tasks managed by this node as a slave (slaveTaskList). Note that prima-
ryJobList and backupJobList are empty if the node is currently a slave, while slaveTaskList is empty if the
node is acting as a master.

The primaryJobList contains tuples of a primaryJobType defined as:

primaryJobType = ⟨job, userId, jobStatus, jobTaskList, backupMasterList⟩

where job is a job descriptor, userId is the identifier of the user that has submitted the job, jobStatus is the
current status of the job, jobTaskList is a list containing dynamic information about the tasks that compose
the job, and backupMasterList is a list containing the identifiers (backupId) of the backup masters assigned
to the job. The jobTaskList contains tuples of a jobTaskType, which is defined as follows:

jobTaskType = ⟨task, slaveId, taskStatus⟩

where task is a task descriptor, slaveId is the identifier of the slave responsible for the task, and taskStatus
represents the current task status.

The backupJobList contains tuples of a backupJobType defined as:

backupJobType = ⟨job, userId, jobStatus, jobTaskList, backupMasterList, primaryId⟩

that differs from primaryJobType for the presence of an additional field, primaryId, which represents the
identifier of the primary master associated with the job.

Finally, the slaveTaskList contains tuples of a slaveTaskType, which is defined as:

slaveTaskType = ⟨task, primaryId, taskStatus⟩

where task is a task descriptor, primaryId is the identifier of the primary master associated with the task,
and taskStatus contains its status.

3.2. Architecture

The P2P-MapReduce architecture includes three types of nodes, as shown in Figure 3: user, master and
slave. Master nodes and slave nodes form two logical peer-to-peer networks referred to as M-net and S-net,
respectively. As mentioned earlier in this section, computing nodes are dynamically assigned the master
or the slave role, thus M-net and S-Net change their composition over time. The mechanisms used for
maintaining the infrastructure will be described in Section 4.

User nodes submit their MapReduce jobs to the system through one of the available masters. The choice
of the master to which to submit the job may be done on the basis of the current workload of the available
masters, i.e., the user may choose the master that is managing the lowest number of jobs.

Master nodes are at the core of the system. They perform three types of operations: management,
recovery and coordination. Management operations are those performed by masters that are acting as the
primary master for one or more jobs. Recovery operations are executed by masters that are acting as backup
master for one or more jobs. Coordination operations are performed by the master that is acting as the
network coordinator. The coordinator has the power of changing slaves into masters, and viceversa, so as to
keep the desired master/slave ratio.
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Each slave executes the tasks that are assigned to it by one or more primary masters. Task assignment
may follow various policies, based on current workload, highest reliability, and so on. In our implementation
tasks are assigned to the slaves with the lowest workload, i.e., with the lowest number of assigned tasks.

Jobs and tasks are managed by processes called Job Managers and Task Managers, respectively. Each
primary master runs one Job Manager thread per managed job, while each slave runs one Task Manager
thread per managed task. Moreover, masters use a Backup Job Manager for each job they are responsible
for as backup masters.
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Figure 3: General architecture of P2P-MapReduce.

Figure 3 shows an example scenario in which three jobs have been submitted: one job by User1 (Job1 )
and two jobs by User2 (Job2 and Job3 ). Focusing on Job1, Node1 is the primary master, and two backup
masters are used (Node2 and Node3 ). Job1 is composed by five tasks: two of them are assigned to Node4,
and one each to Node7, Node9 and Node11.

If the primary master Node1 fails before the completion of Job1, the following recovery procedure takes
place:

• Backup masters Node2 and Node3 detect the failure of Node1 and start a distributed procedure to
elect the new primary master among them.

• Assuming that Node3 is elected as the new primary master, Node2 continues to play the backup
function and, to keep the desired number of backup masters active (two, in this example), another
backup node is chosen by Node3. Then, Node3 binds to the connections that were previously associated
with Node1, and proceeds to manage the job using its local replica of the job state.

As soon as the job is completed, the (new) primary master notifies the result to the user node that
submitted the managed job.

The system mechanisms sketched above are described in detail in Section 4, while Section 5 will provide
a description of the system implementation.
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4. System Mechanisms

The behavior of a generic node is modelled as a state diagram that defines the different states that a
node can assume, and all the events that determine the transitions from a state to another state. Figure 4
shows such state diagram modelled using the UML State Diagram formalism.
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MASTER

PRIMARY
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Task2
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Figure 4: Behavior of a generic node described by an UML State Diagram.

The state diagram includes two macro-states, SLAVE and MASTER, which describe the two roles that can
be assumed by each node. The SLAVE macro-state has three states, IDLE, CHECK MASTER and ACTIVE, which
represent respectively: a slave waiting for task assignment; a slave checking the existence of at least one
master in the network; a slave executing one or more tasks. The MASTER macro-state is modelled with three
parallel macro-states, which represent the different roles a master can perform concurrently: possibly acting
as the primary master for one or more jobs (MANAGEMENT); possibly acting as a backup master for one or
more jobs (RECOVERY); coordinating the network for maintenance purposes (COORDINATION).

The MANAGEMENTmacro-state contains two states: NOT PRIMARY, which represents a master node currently
not acting as the primary master for any job, and PRIMARY, which, in contrast, represents a master node
currently managing at least one job as the primary master. Similarly, the RECOVERY macro-state includes
two states: NOT BACKUP (the node is not managing any job as backup master) and BACKUP (at least one job
is currently being backed up on this node). Finally, the COORDINATION macro-state includes four states:
NOT COORDINATOR (the node is not acting as the coordinator), COORDINATOR (the node is acting as the
coordinator), WAITING COORDINATOR and ELECTING COORDINATOR for nodes currently participating to the
election of the new coordinator, as specified later.

The combination of the concurrent states [NOT PRIMARY, NOT BACKUP, NOT COORDINATOR] represents the
abstract state MASTER.IDLE. The transition from master to slave role is allowed only to masters in the
MASTER.IDLE state. Similarly, the transition from slave to master role is allowed to slaves that are not in
ACTIVE state.

The events that determine state transitions are shown in Table 1. For each event message the table
shows: the event parameters; whether it is an inner event; the sender’s state; the receiver’s state.

In the following we describe in detail the algorithmic behavior of each node, using Table 1 as a reference
for the events that are exchanged among system entities. We proceed as follows. Section 4.1 describes
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data structures and high-level behaviors of slave and master nodes. Section 4.2 focuses on job and tasks
management, by describing the algorithms that steer the behavior of Job Managers, Tasks Managers, and
Backup Job Managers. Finally, Section 4.3 describes the behavior of user nodes.

Table 1: Description of the event messages that can be exchanged by P2P-MapReduce nodes

Event Parameters Inner event Sender’s state Receiver’s state

becomeMaster no COORDINATION SLAVE

becomeSlave no COORDINATION MANAGEMENT

jobAssigned Job, UserIdType no USER MANAGEMENT

jobReassigned BackupJobType yes BACKUP JOB MANAGER MANAGEMENT

jobCompleted JobIdType, JobStatusType
yes JOB MANAGER MANAGEMENT
no MANAGEMENT USER

backupJobAssigned PrimaryJobType, NodeIdType no JOB MANAGER RECOVERY

jobUpdate
JobIdType, List<NodeIdType>,

no JOB MANAGER RECOVERY
List<JobTaskType>

backupJobCompleted JobIdType
yes BACKUP JOB MANAGER RECOVERY
no MANAGEMENT RECOVERY

taskAssigned List<Task>, NodeIdType no JOB MANAGER SLAVE

taskCompleted TaskIdType, TaskStatusType
yes TASK MANAGER SLAVE
no SLAVE MANAGEMENT

primaryUpdate JobIdType, NodeIdType

no MANAGEMENT USER
no MANAGEMENT RECOVERY
yes RECOVERY BACKUP JOB MANAGER
no MANAGEMENT SLAVE
yes SLAVE TASK MANAGER

4.1. Node Behavior

Figure 5 describes the behavior of a generic node, by specifying the algorithmic details behind the finite
state machine depicted in Figure 4. Each node includes five fields, already introduced in Section 3.1: nodeId,
role, primaryJobList, backupJobList and slaveTaskList.

As soon as a node joins the network, it transits to the SLAVE macro-state (line 8 ). Then, it sets its role
accordingly (line 12 ) and passes to the IDLE state (line 13 ). When a slave is in IDLE state, three events
can happen:

• An internal timeout elapses, causing a transition to the CHECK MASTER state (line 17 ).

• A taskAssigned message is received from the Job Manager of a primary master (line 19 ). The message
includes a list with the tasks to be executed (assignedTaskList), and the identifier of the primary master
(primaryId). For each assigned task, a new slaveTask is created, it is added to the slaveTaskList, and
associated with a TaskManager (lines 20-24). Then, the slave passes to the ACTIVE state (line 25 ).

• A becomeMaster message is received from the coordinator, causing a transition to the MASTER state
(lines 27-28 ).

When a slave is in the CHECK MASTER state, it queries the discovery service to check the existence of at
least one master in the network. In case no masters are found, the slave promotes itself to the master role;
otherwise, it returns to the IDLE state (lines 33-36 ). This state allows the first node joining (and the last
node remaining into) the network to assume the master role. A node in CHECK MASTER state can also receive
taskAssigned and becomeMaster events, which are managed as discussed earlier.

9



1 StateDiagram NODE {
2 NodeIdType nodeId;
3 RoleType role;
4 List <PrimaryJobType > primaryJobList;
5 List <BackupJobType > backupJobList;
6 List <SlaveTaskType > slaveTaskList;
7 entry () {
8 transition to SLAVE;
9 }

10 Sequential Macro -State SLAVE {
11 entry () {
12 role = SLAVE;
13 transition to IDLE;
14 }
15 State IDLE {
16 do() {
17 transition to CHECK_MASTER after a timeout;
18 }
19 on event taskAssigned (List <Task >

assignedTaskList , NodeIdType primaryId) {
20 foreach(Task t in assignedTaskList){
21 SlaveTaskType st(task , primaryId);
22 add st to slaveTaskList;
23 start TaskManager for st;
24 }
25 transition to ACTIVE;
26 }
27 on event becomeMaster () {
28 transition to MASTER;
29 }
30 }
31 State CHECK_MASTER {
32 do() {
33 if(exists a master)
34 transition to IDLE;
35 else
36 transition to MASTER;
37 }
38 on event taskAssigned (List <Task >

assignedTaskList , NodeIdType primaryId) {
39 // same as lines 20 to 25
40 }
41 on event becomeMaster () {
42 transition to MASTER;
43 }
44 }
45 State ACTIVE {
46 on event taskAssigned (List <Task >

assignedTaskList , NodeIdType primaryId) {

47 // same as lines 20 to 24
48 }
49 on event primaryUpdate (JobIdType

updatedJobId , NodeIdType
updatedPrimaryId) {

50 foreach(SlaveTaskType t in slaveTaskList) {
51 if(t.task.jobId = updatedJobId){
52 t.primaryId = updatedPrimaryId;
53 propagate event to TaskManager for t;
54 }
55 }
56 }
57 on inner event taskCompleted (TaskIdType

completedTaskId , TaskStatusType
completedTaskStatus) {

58 SlaveTaskType t = tuple in slaveTaskList
with task.taskId=completedTaskId;

59 stop taskManager for t;
60 propagate event to t.primaryId;
61 if(slaveTaskList does not contain tasks to

execute)
62 transition to IDLE;
63 }
64 }
65 }
66 Concurrent Macro -State MASTER {
67 entry () {
68 role = MASTER;
69 concurrent transition to MANAGEMENT , RECOVERY

and COORDINATION;
70 }
71 on event becomeSlave () {
72 if(MANAGEMENT in NOT_PRIMARY and RECOVERY in

NOT_BACKUP and COORDINATION in
NOT_COORDINATOR)

73 transition to SLAVE;
74 }
75 Sequential Macro -State MANAGEMENT {
76 //see Figure 6
77 }
78 Sequential Macro -State RECOVERY {
79 //see Figure 7
80 }
81 Sequential Macro -State COORDINATION {
82 //see Figure 8
83 }
84 }
85 }

Figure 5: Pseudo-code describing the behavior of a generic node.

Slaves in ACTIVE state can receive three events:

• taskAssigned, which adds other tasks to those already being executed (line 46 ).

• primaryUpdate, which informs the slave that the primary master for a given job has changed (line
49 ). This message, sent by the new primary master, includes the identifier of the job whose primary
master has changed (updatedJobId), and the identifier of the new primary master (updatedPrimaryId).
Each task in the slaveTaskList whose job identifier equals updatedJobId is updated accordingly, and
the associated Task Manager is notified by propagating the event to it (lines 50-55).

• taskCompleted, an inner event sent by the Task Manager of the same node, on completion of a given
task (line 57 ). The event includes the identifier of the completed task (completedTaskId) and its
status (completedTaskStatus). The slave identifies the corresponding tasks in the slaveTaskList, stops
the corresponding Task Manager, and propagates the event to the primary master (lines 58-60 ). If
there are no more tasks being executed, the slave transits to the IDLE state.

A node that is promoted to the MASTER macro-state sets its role accordingly (line 68 ), and concurrently
transits to three parallel states (line 69 ), as depicted in Figure 4 and mentioned earlier in this section:
MANAGEMENT, COORDINATION and RECOVERY. If a master receives a becomeSlave event from the coordinator
(line 71 ), and the internal states of the MANAGEMENT, COORDINATION and RECOVERY concurrent macro-states
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are respectively equal to NOT PRIMARY, NOT BACKUP and NOT COORDINATOR, it transits to the SLAVE state
(lines 72-73 ).

1 Sequential Macro -State MANAGEMENT {
2 entry () {
3 transition to NOT_PRIMARY;
4 }
5 State NOT_PRIMARY {
6 on event jobAssigned (Job job , UserIdType

userId) {
7 PrimaryJobType t(job , userId);
8 add t to primaryJobList;
9 start jobManager for t;

10 transition to PRIMARY;
11 }
12 on inner event jobReassigned (BackupJobType bt)

{
13 PrimaryJobType pt(bt.job , bt.userId ,

bt.jobStatus , bt.jobTaskList ,
bt.backupMasterList);

14 add pt to primaryJobList;
15 foreach(NodeIdType b in pt.backupMasterList)
16 send event primaryUpdate(pt.job.jobId ,

nodeId) to b;
17 foreach(JobTaskType t in pt.jobTaskList)
18 send event primaryUpdate(pt.job.jobId ,

nodeId) to t.slaveId;
19 send event primaryUpdate(pt.job.jobId ,

nodeId) to pt.userId;
20 start jobManager for pt;

21 transition to PRIMARY;
22 }
23 }
24 State PRIMARY {
25 on event jobAssigned (Job job , UserIdType

userId) {
26 // same as lines 7 to 9
27 }
28 on inner event jobReassigned (BackupJobType bt)

{
29 // same as lines 13 to 20
30 }
31 on inner event jobCompleted (JobIdType

completedJobId , JobStatusType
completedJobStatus) {

32 PrimaryJobType t = tuple in PrimaryJobList
with job.jobId=completedJobId;

33 stop jobManager for t;
34 foreach(NodeIdType b in t.backupMasterList)
35 send event

backupJobCompleted(completedJobId) to b;
36 propagate event to t.userId;
37 if(primaryJobList does not contain jobs to

execute)
38 transition to NOT_PRIMARY;
39 }
40 }
41 }

Figure 6: Pseudo-code describing the behavior of a master node performing Management activities.

The MANAGEMENT macro-state is described in Figure 6. Initially, the master transits to the NOT PRIMARY

state, where two events can be received:

• jobAssigned, through which a user submits a job to the master (line 6 ). The message includes the job
to be managed and the identifier of the submitting user (userId). In response to this event, a new
primaryJob is created, it is added to the primaryJobList, and associated with a JobManager (lines
7-9 ). Then, the master transits to the PRIMARY state (line 10 ).

• jobReassigned, an inner event sent by the Backup Job Manager of the same node to notify this master
that it has been elected as the new primary for a backupJob received as parameter (line 12 ). The
following operations are performed: a new primaryJob, created from backupJob, is added to the pri-
maryJobList (lines 13-14 ); all the other backup masters associated with this job are notified about the
primary master change, by sending a primaryUpdated message to them (lines 15-16 ); a primaryUpdate
message is also sent to all the slaves that are managing tasks part of this job (lines 17-18 ), as well as
to the user that submitted the job (line 19 ); finally, a new Job Manager is started for the primaryJob
and the state is changed to PRIMARY.

When a master is in the PRIMARY state, besides the jobAssigned and jobReassigned events, which are
identical to those present in the NOT PRIMARY state, it can receive a jobCompleted inner event from a Job
Manager, on completion of a given job (line 31 ). The event includes the identifier of the completed job
(completedJobId) and its status (completedJobStatus). The master identifies the job in the primaryJobList,
stops the corresponding Job Manager, and sends a backupJobCompleted event to all the backup masters
associated with this job (lines 32-35 ). Then, the event is propagated to the user that submitted the job
(line 36 ) and, if there are no more jobs being managed, the master transits to the NOT PRIMARY state.
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1 Sequential Macro -State RECOVERY {
2 entry () {
3 transition to NOT_BACKUP;
4 }
5 State NOT_BACKUP {
6 on event backupJobAssigned (PrimaryJobType

primaryJob , NodeIdType primaryId) {
7 BackupJobType t(primaryJob , primaryId);
8 add t to backupJobList;
9 start backupJobManager for t;

10 transition to BACKUP;
11 }
12 }
13 State BACKUP {
14 on event backupJobAssigned (PrimaryJobType

primaryJob , NodeIdType primaryId) {
15 // same as lines 7 to 9
16 }
17 on event primaryUpdate (JobIdType updatedJobId ,

NodeIdType updatedPrimaryId) {
18 BackupJobType t = tuple in BackupJobList with

job.jobId=updatedJobId;
19 t.primaryId = updatedPrimaryId;

20 propagate event to backupJobManager for t;
21 }
22 on event jobUpdate(JobIdType updatedJobId ,

List <NodeIdType > updatedBackupMasterList ,
List <JobTaskType > updatedJobTaskList) {

23 BackupJobType bt = tuple in backupJobList
with job.jobId=updatedJobId;

24 bt.backupMasterList = updatedBackupMasterList;
25 if( updatedJobTaskList is not empty)
26 foreach(JobTaskType t in updatedJobTaskList)
27 update t in bt.jobTaskList;
28 }
29 on [inner] event backupJobCompleted (JobIdType

completedJobId) {
30 BackupJobType t = tuple in BackupJobList with

job.jobId=completedJobId;
31 stop backupJobManager for t;
32 if(backupJobList does not contain jobs to

execute)
33 transition to NOT_BACKUP;
34 }
35 }
36 }

Figure 7: Pseudo-code describing the behavior of a master node performing Recovery activities.

Figure 7 describes the RECOVERY macro-state. Masters in the NOT BACKUP state can receive a back-
upJobAssigned event from the Job Manager of another node that is acting as the primary master for a given
job (line 6 ). In this case, the node adds a backupJob to the backupJobList, starts a Backup Job Manager,
and transits to the BACKUP state (line 7-10).

In the BACKUP state four events can be received:

• backupJobAssigned, which is identical to that received in the NOT BACKUP state, except for the absence
of the state transition (lines 14-15 ).

• primaryUpdate, which informs this backup master that the primary master for a given job has changed
(line 17 ). The backupJob in the backupJobList is updated accordingly and the same event is propagated
to the corresponding Backup Job Manager (lines 18-20 ).

• jobUpdate, which is a message sent by the primary master each time a change happens to the infor-
mation associated with a given job (line 22 ). The message includes three fields: the identifier of the
job whose information has changed (updatedJobId); the (possibly updated) list of backup masters as-
sociated with updatedJobId (updatedBackupMasterList); the tasks associated with updatedJobId that
have been updated (updatedJobTaskList). Note that the updatedJobTaskList does not contain whole
tasks information, but only the information that has to be updated. In response to this event, the
backupMasterList and all the relevant tasks in jobTaskList are updated (lines 23-27 ).

• backupJobCompleted, an event that notifies the completion of a given backupJob (line 29 ). In most
cases this messages is sent by the primary master on job completion. In the other cases, it is an inner
event sent by the Backup Job Manager of the same node, because the node has been elected as the
new primary master. In both cases, the Backup Job Manager associated with the job is stopped and,
if the backupJobList does not contain other jobs to execute, the node transits to the NOT BACKUP state
(lines 30-33 ).
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1 Sequential Macro -State COORDINATION {
2 entry (){
3 transition to NOT_COORDINATOR;
4 }
5 State NOT_COORDINATOR {
6 on inner event coordinatorFailure (NodeId

coordinatorId) {
7 transition to ELECTING_COORDINATOR;
8 }
9 // specific events based on the election

algorithm
10 }
11 State ELECTING_COORDINATOR {
12 // specific events based on the election

algorithm
13 }
14 State WAITING_COORDINATOR {
15 // specific events based on the election

algorithm
16 }
17 Sequential Macro -State COORDINATOR {
18 entry () {
19 notify other master nodes that this node is

the coordinator;
20 transition to ACTIVE;
21 }

22 State ACTIVE {
23 entry () {
24 int N = desired #master nodes - current

#master nodes;
25 if(N>0) {
26 List <NodeIdType > idleSlaveList = search for

N idle slave nodes;
27 foreach(NodeIdType s in idleSlaveList)
28 send event becomeMaster () to s;
29 }
30 else if(N<0) {
31 List <NodeIdType > idleMasterList = search

for N idle master nodes;
32 foreach(NodeIdType m in idleMasterList)
33 send event becomeSlave () to m;
34 }
35 transition to IDLE;
36 }
37 }
38 State IDLE {
39 do() {
40 transition to ACTIVE after a timeout;
41 }
42 }
43 }
44 }

Figure 8: Pseudo-code describing the behavior of a master node performing Coordination activities.

Finally, the pseudo-code associated with the COORDINATIONmacro-state is described in Figure 8. Initially,
a master transits to the NOT COORDINATOR state; if a coordinator failure is detected by the network module,
the master transits to the ELECTING COORDINATOR state. Here, a distributed election algorithm starts. In
particular, assuming to use the Bully algorithm [22], the following procedure takes place:

• A node in the ELECTING COORDINATOR state sends an election message to all masters with higher identi-
fier; if it does not receive a response from a master with a higher identifier within a time limit, it wins the
election and passes to the COORDINATORmacro-state; otherwise, it transits to the WAITING COORDINATOR

state.

• A node in the WAITING COORDINATOR waits until it receives a message from the new coordinator, then
it transits to the NOT COORDINATOR state. If it does not receive a message from the new coordinator
before the expiration of a timeout, the node returns to the ELECTING COORDINATOR state.

When a master enters the COORDINATOR macro-state, it notifies all the other masters that it became the
new coordinator, and transits to the ACTIVE state (lines 19-20 ). Whenever the coordinator is ACTIVE, it
performs its periodical network maintenance operations: if there is a lack of masters (i.e., the number of
desired masters is greater than the current number of masters), the coordinator identifies a set of slaves
that can be promoted to the master role, and sends a becomeMaster message to each of them (lines 25-29 );
if there is an excess of masters, the coordinator transforms a set of idle masters to slaves, by sending a
becomeSlave message to each of them (lines 30-34 ).

4.2. Job and Task Management

As described in Section 3.2, MapReduce jobs and tasks are managed by processes called Job Managers
and Task Managers, respectively. In particular, Job Managers are primary masters’ processes, while Task
Managers are slaves’ processes. Moreover, masters run Backup Job Managers to manage those jobs they are
responsible for as backup masters. In the following we describe the algorithmic behavior of Job Managers,
Task Managers and Backup Job Managers.

Figure 9 describes the behavior of a Job Manager. The Job Manager includes only two states: ASSIGNMENT
and MONITORING. As soon as it is started, the Job Managers transits to the ASSIGNMENT state (line 4 ).
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1 StateDiagram JOB_MANAGER {
2 PrimaryJobType managedJob;
3 entry () {
4 transition to ASSIGNMENT;
5 }
6 State ASSIGNMENT {
7 entry () {
8 int B = desired #backup nodes - current

#backup nodes;
9 int S = desired #slave nodes - current #slave

nodes;
10 if(B>0) {
11 List <NodeIdType > backupList = search for B

backup nodes;
12 foreach(NodeIdType b in backupList) {
13 send event backupJobAssigned(managedJob ,

nodeId) to b;
14 add b to managedJob.backupMasterList;
15 }
16 }
17 List <JobTaskType > assignedTaskList = empty

list;
18 if(S>0) {
19 List <NodeIdType > slaveList = search for S

slave nodes;
20 foreach(NodeIdType s in slaveList) {
21 List <Task > taskList = task assignment for s;
22 foreach (Task t in taskList){
23 JobTaskType jt(t, s, ASSIGNED);
24 update jt in managedJob.jobTaskList;
25 add jt to assignedTaskList;
26 }
27 send event taskAssigned(taskList , nodeId)

to s;
28 }
29 }
30 if(B>0 or S>0) {
31 foreach(NodeIdType b in

managedJob.backupMasterList)
32 send event jobUpdate(managedJob.job.jobId ,

managedJob.backupMasterList ,
assignedTaskList) to b;

33 }
34 transition to MONITORING;
35 }
36 }
37 State MONITORING {

38 do() {
39 transition to ASSIGNMENT after a timeout;
40 }
41 on inner event backupMasterFailure (NodeId

backupId) {
42 remove backupId from

managedJob.backupMasterList;
43 transition to ASSIGNMENT;
44 }
45 on inner event slaveFailure (NodeId

failedSlaveId) {
46 foreach(JobTaskType t in

managedJob.jobTaskList)
47 if(t.slaveId = failedSlaveId){
48 t.slaveId = null id;
49 t.taskStatus = NOT ASSIGNED;
50 update t in managedJob.jobTaskList;
51 }
52 transition to ASSIGNMENT;
53 }
54 on event taskCompleted (TaskIdType

completedTaskId , TaskStatusType
completedTaskStatus) {

55 JobTaskType t = tuple in
managedJob.jobTaskList with
taskId=completedTaskId;

56 t.taskStatus = completedTaskStatus;
57 List <JobTaskType > updatedTaskList = empty

list;
58 update t in updatedTaskList;
59 foreach(NodeIdType b in

managedJob.backupMasterList)
60 send event jobUpdate(managedJob.job.jobId ,

managedJob.backupMasterList ,
updatedTaskList) to b;

61 if(completedTaskStatus != SUCCESS)
62 transition to ASSIGNMENT;
63 else if(all tasks in managedJob . jobTaskList

have completed with success)
64 send inner event

jobCompleted(managedJob.job.jobId ,
managedJob.jobStatus) to
NODE.MASTER.MANAGEMENT;

65 }
66 }
67 }

Figure 9: Pseudo-code describing the behavior of a Job Manager.

Briefly, the operations performed by a Job Manager in the ASSIGNMENT state are the following: i) it
calculates the number of backup nodes (B) and slave nodes (S) needed to manage the job (lines 8-9 ); if
B > 0, it identifies (up to) B masters that can be assigned the backup role, and sends a backupJobAssigned
message to them (lines 10-16 ); similarly, if S > 0, it identifies S slaves, and assigns a subset of the tasks to
each of them through a taskAssigned message (lines 18-29 ); finally, if B > 0 or S > 0, a jobUpdate event
is sent to each backup master associated with the managed job (lines 30-35 ). The search for backup and
slave nodes is performed by querying the discovery service.

In the MONITORING state four events can happen:

• An internal timeout elapses, causing a transition to the ASSIGNMENT state (line 39 ). This enforces the
Job Manager to periodically check whether there are backup or slave nodes to be assigned.

• The failure of a backup master is notified by the network module (backupMasterFailure) (line 41 ).
The failed backup master is removed from the backupMasterList and a transition to the ASSIGNMENT

state is performed to find a suitable replacement (lines 42-43 ).

• The failure of a slave is detected (slaveFailure) (line 45 ), and is managed similarly to the backupMas-
terFailure event.

• A taskCompleted event is received from a slave (line 54 ). The event includes the identifier of the
completed task (completedTaskId) and its status (completedTaskStatus). The Job Manager identifies
the corresponding task from the jobTaskList, changes its status, and notifies all the backup masters
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about this update through a jobUpdate message (lines 55-60 ). If the task has not completed with
success, the Job Manager returns to the ASSIGNMENT state to reassign it (lines 61-62 ). Finally, if all
the tasks have completed with success, it sends a jobCompleted message to the MANAGEMENT state.

Figure 10 describes the behavior of a Task Manager. When started, the Task Manager transits to two
concurrent states: EXECUTION and PRIMARY MONITORING (line 4 ). The EXECUTION state executes the assigned
task; on task completion, it sends a taskCompleted message to the SLAVE state (lines 8-10 ).

1 StateDiagram TASK_MANAGER {
2 SlaveTaskType managedTask;
3 entry () {
4 concurrent transition to EXECUTION ,

PRIMARY_MONITORING;
5 }
6 State EXECUTION{
7 do(){
8 executes managedTask .task;
9 managedTask.task.taskStatus = task status;

10 send inner event
taskCompleted(managedTask.task.taskId ,
managedTask.task.taskStatus) to
NODE.SLAVE;

11 }
12 }
13 Sequential Macro -State PRIMARY_MONITORING{
14 entry (){
15 transition to CHECK_PRIMARY;
16 }
17 State CHECK_PRIMARY{
18 on inner event primaryMasterFailure (NodeId

failedPrimaryId) {

19 transition to WAITING_PRIMARY;
20 }
21 }
22 State WAITING_PRIMARY{
23 do() {
24 transition to PRIMARY_UNAVAILABLE after a

timeout;
25 }
26 on inner event primaryUpdate (JobIdType

updatedJobId , NodeIdType
updatedPrimaryId) {

27 transition to CHECK_PRIMARY;
28 }
29 }
30 State PRIMARY_UNAVAILABLE{
31 entry (){
32 send inner event

taskCompleted(managedTask.task.taskId ,
FAILED) to NODE.SLAVE;

33 }
34 }
35 }
36 }

Figure 10: Pseudo-code describing the behavior of a Task Manager.

The PRIMARY MONITORING macro-state allows to monitor the primary master responsible for the job of
the managed task. In the case a failure of the primary master is detected (line 18 ), the Task Manager waits
for the election of a new primary (line 26 ); if the election is not completed within a time limit, the Task
Manager enters a PRIMARY UNAVAILABLE state and sends a taskCompleted event to the SLAVE state (line
32 ).

Finally, the Backup Job Manager pseudo-code is shown in Figure 11. Initially, the Backup Job Manager
enters the CHECK PRIMARY state (line 4 ). If a primary master failure is detected, the backup master passes
to the ELECTING PRIMARY state and a procedure to elect the new primary master begins. This election
algorithm is the same to elect the network coordinator. The new primary transits to the NEW PRIMARY state.

1 StateDiagram BACKUP_JOB_MANAGER {
2 BackupJobType managedBackupJob;
3 entry () {
4 transition to CHECK_PRIMARY;
5 }
6 State CHECK_PRIMARY {
7 on inner event primaryMasterFailure (NodeId

primaryId) {
8 transition to ELECTING_PRIMARY;
9 }

10 // specific events based on the election
algorithm

11 }
12 State ELECTING_PRIMARY {
13 // specific events based on the election

algorithm
14 }
15 State WAITING_PRIMARY {
16 on inner event primaryUpdate (JobIdType

updatedJobId , NodeIdType

updatedPrimaryId) {
17 transition to CHECK_PRIMARY;
18 }
19 // specific events based on the election

algorithm
20 }
21 State NEW_PRIMARY {
22 entry () {
23 notify other backup masters that this node is

the new primary master;
24 remove nodeId from

managedBackupJob.backupMasterList;
25 send inner event

backupJobCompleted(managedBackupJob.
job.jobId) to NODE.MASTER.RECOVERY;

26 send inner event
jobReassigned(managedBackupJob) to
NODE.MASTER.MANAGEMENT;

27 }
28 }
29 }

Figure 11: Pseudo-code describing the behavior of a Backup Job Manager.
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The Backup Job Manager performs the following operations in the NEW PRIMARY state (lines 23-26 ):
informs the other backup masters that this node became the new primary master; removes itself from the
backupMasterList of the managed backupJob; sends a backupJobCompleted message to the RECOVERY state;
sends a jobReassigned message to the MANAGEMENT state.

4.3. User Behavior

1 StateDiagram USER {
2 UserIdType userId;
3 List <UserJobType > userJobList;
4 on user event submitJob(Job submittedJob) {
5 UserJobType t(submittedJob);
6 add t to userJobList;
7 NodeIdType masterId = search for a master node;
8 send event jobAssigned(submittedJob , userId)

to masterId;
9 }

10 on event primaryUpdate (JobId updatedJobId ,
NodeIdType updatedPrimaryId) {

11 UserJobType t = tuple in userJobList with
job.jobId=updatedJobId;

12 t.primaryId = updatedPrimaryId;
13 }
14 on event jobCompleted (JobIdType completedJobId ,

JobStatusType completedJobStatus) {
15 UserJobType t = tuple in userJobList with

job.jobId=completedJobId;
16 t.jobStatus = completedJobStatus;
17 }
18 }

Figure 12: Pseudo-code describing the behavior of a user node.

We conclude this section by describing the behavior of user nodes (see Figure 12). Each user includes
an identifier (userId) and a list of jobs submitted (userJobList). Three events are possible:

• submitJob, a user-generated event (for this reason not listed in Table 1) which requires the submission
of a new job (line 4 ). The job is added to the userJobList ; then, a master is searched and the job
is assigned to it using a jobAssigned message (lines 5-8 ). The search for a master is performed by
querying the discovery service for nodes whose role is MASTER.

• primaryUpdate, which informs the user that the primary master has changed (line 10 ). The message
includes the identifier of the job whose primary master has changed, and the identifier of the new
primary master (updatedPrimaryId). The user identifies the job in the userJobList, and changes its
primaryId to updatedPrimaryId (lines 11-12 ).

• jobCompleted, which notifies the user that a job has completed its execution (line 14 ). The message
includes the identifier of the job and its status (completedJobStatus). The job is identified in the
userJobList, and its status is changed to completedJobStatus (lines 15-16 ).

5. Implementation

We implemented a prototype of the P2P-MapReduce framework using the JXTA framework [23]. JXTA
provides a set of XML-based protocols that allow computers and other devices to communicate and collab-
orate in a peer-to-peer fashion. Each peer provides a set of services made available to other peers in the
network. Services are any type of programs that can be networked by a single or a group of peers.

In JXTA there are two main types of peers: rendezvous and edge. The rendezvous peers act as routers
in a network, forwarding the discovery requests submitted by edge peers to locate the resources of interest.
Peers sharing a common set of interests are organized into a peer group. To send messages to each other,
JXTA peers use asynchronous communication mechanisms called pipes. Pipes can be either point-to-point
or multicast, so as to support a wide range of communication schemes. All resources (peers, services, etc.)
are described by advertisements that are published within the peer group for resource discovery purposes.

All master and slave nodes in the P2P-MapReduce system belong to a single JXTA peer group called
MapReduceGroup. Most of these nodes are edge peers, but some of them also act as rendezvous peers,
in a way that is transparent to the users. Each node exposes its features by publishing an advertisement
containing basic information that are useful during the discovery process, such as its role and workload.
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Each advertisement includes an expiration time; a node must renew its advertisement before expiration;
nodes associated with expired advertisements are considered as no longer present in the network.

Each node publishes its advertisement in a local cache and sends some keys identifying that advertisement
to a rendezvous peer. The rendezvous peer uses those keys to index the advertisement in a distributed
hash table called Shared Resource Distributed Index (SRDI), that is managed by all the rendezvous peers
of MapReduceGroup. Queries for a given type of resource (e.g., master nodes) are submitted to the JXTA
Discovery Service that uses SRDI to locate all the resources of that type without flooding the entire network.
For example, if a user node wants to search for all the available masters, it submits a query to the JXTA
Discovery Service asking for all the advertisements whose field role is equal to MASTER. Note that M-net
and S-net, introduced in Section 3, are “logical” networks in the sense that queries to M-net (or S-net) are
actually submitted to the whole MapReduceGroup but restricted to nodes having their field role equal to
MASTER (or SLAVE) using the SRDI mechanisms.

Pipes are the fundamental communication mechanisms of the P2P-MapReduce system, since they allow
the asynchronous delivery of event messages among nodes. Different types of pipes are employed within the
system: bidirectional pipes are used between users and primary masters to submit jobs and return results,
as well as between primary masters and their slaves to submit tasks and receive results notifications, while
multicast pipes are used by primary masters to send job updates to their backups.

In JXTA pipes it is possible to rebind one endpoint without affecting the other endpoint. We use this
feature when a failure occurs: in fact, the new primary master can bind the pipes that were previously used
by the old primary master, without affecting the entities connected at the other endpoint (i.e., the user node
and the slave nodes).

We conclude this section briefly describing the software modules inside each node and how those modules
interact each other in a P2P-MapReduce network. Figure 13 shows such modules and interactions using the
UML Deployment/Component Diagram formalism.

Node 1

Node 2
Node 3

<<JXTA Pipe>> <<JXTA Pipe>>

Data

store

Network module

Node module

FSM

MapReduce 

module

JXTA 
Discovery 
Service

Figure 13: UML Deployment/Component Diagram describing the software modules inside each node and
the interactions among nodes.

Each node includes three software modules/layers: Network, Node and MapReduce:

• The Network module is in charge of the interactions with the other nodes by using the pipe commu-
nication mechanisms provided by the JXTA framework. When a connection timeout is detected on a
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pipe associated with a remote node, this module propagates the appropriate failure event to the Node
module. Additionally, this module allows the node to interact with the JXTA Discovery Service for
publishing its features and for querying the system (e.g., when looking for idle slave nodes).

• The Node module controls the lifecycle of the node in its various aspects, including network mainte-
nance, job management, and so on. Its core is represented by the FSM component which implements
the logic of the finite state machine described in Figure 4, steering the behavior of the node in response
to inner events or messages coming from other nodes (i.e., job assignments, job updates, and so on).

• The MapReduce module manages the local execution of jobs (when the node is acting as a master) or
tasks (when the node is acting as a slave). Currently this module is built around the local execution
engine of the Hadoop system [2].

While the current implementation is based on JXTA for the Network layer and on Hadoop for the
MapReduce layer, the layered approach described in Figure 13 is thought to be independent from a specific
implementation of the Network and MapReduce modules. In other terms, it may be possible to adopt
alternative technologies for the Network and MapReduce layers without affecting the core implementation
of the Node module.

6. System Evaluation

A set of experiments has been carried out to evaluate the behavior of the P2P-MapReduce framework
compared to a centralized implementation of MapReduce in the presence of different levels of churn. In
particular, we focused on comparing P2P and centralized implementations in terms of fault tolerance,
network traffic, and scalability.

The remainder of this section is organized as follows. Section 6.1 describes the experimental setup and
methodology. Section 6.2 compares fault tolerance capability of P2P and centralized MapReduce imple-
mentations. Section 6.3 analyzes the systems in terms of network traffic. Section 6.4 concentrates on the
scalability of the systems. Finally, 6.5 summarizes the main results of the present evaluation.

6.1. Experimental Setup and Methodology

The evaluation has been carried out by using a custom-made discrete-event simulator that reproduces
the behavior of the P2P-MapReduce prototype described in the previous section, as well as the behavior of
a centralized MapReduce system like that introduced in Section 2.1. While the P2P-MapReduce prototype
allowed us to perform functional testing of the system mechanisms on a small scale, the simulator allowed
us to perform non-functional testing (i.e., performance evaluation) on large networks (thousands of nodes),
which represent our reference scenario.

The simulator models joins and leaves of nodes and job submissions as Poisson processes; therefore,
the interarrival times of all the join, leave and submission events are independent and obey an exponential
distribution with a given rate. This model has been adopted in literature to evaluate several P2P systems
(see, for example, [24] and [25]), for its ability to approximate real network dynamics reasonably well.

Table 2 shows the input parameters used during the simulation.
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Table 2: Simulation parameters

Symbol Description Values

N Initial number of nodes in the network
5000, 7500, 10000, 15000,
20000, 30000, 40000

NM Number of masters (% on N) 1 (P2P only)

NB Number of backup masters per job 1 (P2P only)

LR
Leaving rate: avg. number of nodes that leave the
network every minute (% on N)

0.025, 0.05, 0.1, 0.2, 0.4

JR
Joining rate: avg. number of nodes that join the
network every minute (% on N)

equal to LR

SR
Submission rate: avg. number of jobs submitted
every minute (% on N) 0.01

JT Job type A, B, C (see Table 3)

As shown in the table, we simulated MapReduce systems having an initial size ranging from 5000 to
40000 nodes, including both slaves and masters. In the centralized implementation, there is one master only
and there are not backup nodes. In the P2P implementation, there are 1% masters (out of N) and each job
is managed by one master which dynamically replicates the job state on one backup master.

To simulate node churn, a joining rate JR and a leaving rate LR have been defined. On average, every
minute JR nodes join the network, while LR nodes abruptly leave the network so as to simulate an event
of failure (or a graceless disconnection). In our simulation JR = LR to keep the total number of nodes
approximatively constant during the whole simulation. In particular, we used five values for JR and LR:
0.025, 0.05, 0.1, 0.2 and 0.4, so as to evaluate the system under different churn rates. Note that such values
are expressed as a percentage of N . For example, if N = 10000 and LR = 0.05, there are on average 5 nodes
leaving the network every minute.

Every minute, SR jobs are submitted on average to the system by user entities. The value of such
submission rate is 0.01, expressed, as for JR and LR, as a percentage of N . Each job submitted to the
system is characterized by two parameters: total computing time and number of tasks. To evaluate the
behavior of the system under different loads, we defined three job types (JT ), A, B and C, as detailed in
Table 3.

Table 3: Job types and associated parameters (average values)

Type
Total computing
time (hours) Number of tasks

A 100 200

B 150 300

C 200 400

Hence, the jobs submitted to the system simulator belong either to type A, B or C. For a given submitted
job, the system calculates the amount of time that each slave needs to complete the task assigned to it as the
ratio between the total computing time and the number of tasks required by that job. Tasks are assigned
to the slaves with the lowest workload, i.e., with the lowest number of assigned tasks. Each slave keeps the
assigned tasks in a priority queue. After the completion of the current task, the slave selects for execution
the task that has failed the highest number of times among those present in the queue.

In order to compare the P2P-MapReduce system with a centralized MapReduce implementation, we
analyzed several scenarios characterized by different combinations of simulation parameters (i.e., network
size, leaving rate, job type). For each scenario under investigation, the simulation ends after the completion
of 500 jobs. At the end of the simulation, we collect four performance indicators:

• The percentage of failed jobs, which is the number of jobs failed expressed as a percentage of the total
number of jobs submitted.
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• The percentage of lost computing time, which is the amount of time spent executing tasks that were
part of failed jobs, expressed as a percentage of the total computing time.

• The number of messages exchanged through the network during the whole simulation process.

• The amount of data associated with all the messages exchanged through the network.

For the purpose of our simulations, a “failed” job is a job that does not complete its execution, i.e., does
not return a result to the submitting user entity. The failure of a job is always caused by a not-managed
failure of the master responsible for that job. The failure of a slave, on the contrary, never causes a failure
of the whole job because its task is reassigned to another slave.

6.2. Fault Tolerance

As mentioned earlier, one of the goals of our simulations is to compare the P2P and centralized imple-
mentations in terms of fault tolerance, i.e., the percentage of failed jobs and the corresponding percentage
of lost computing time. The results discussed in this section have been obtained considering the following
scenario: N = 10000 and LR ranging from 0.025 to 0.4. Figure 14 compares the percentage of failed jobs in
such scenario, for each of the job types defined above: (a) JT=A; (b) JT=B; (c) JT=C.
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Figure 14: Percentage of failed jobs in a network with 10000 nodes: (a) JT=A; (b) JT=B; (c) JT=C.

As expected, with the centralized MapReduce implementation the percentage of failed jobs significantly
increases with the leaving rate, for each job type. For example, when JT = B, the percentage of failed
jobs passes from 2.5 when LR = 0.025, to 38.0 when LR = 0.4. Moreover, we can observe that, fixed the
value of LR, the percentage of failed jobs increases from JT=A to JT=B, and from JT=B to JT=C. For
example, with LR=0.1, the percentage of failed jobs is 3.3 for JT=A, 7.8 for JT=B, and 14.2 for JT=C.
This is motivated by the fact that longer jobs (as jobs of type C are compared to jobs of type B and A) are
statistically more subject to be affected by a failure of the associated master.

In contrast to the centralized implementation, the P2P-MapReduce framework is limitedly affected by
job failures. In particular, for any job type, the percentage of failed jobs is 0% for LR ≤ 0.2, while it is
ranges from 0.2% to 0.4% for LR = 0.4, even if only one backup master per job is used. It is worth recalling
here that when a backup master becomes primary master as a consequence of a failure, it chooses another
backup in its place to maintain the desired level of reliability, as discussed in Section 4.

Figure 15 reports the percentage of lost computing time in centralized and P2P implementations related
to the same experiments of Figure 14, for different combinations of network sizes, leaving rates and job
types. The figure also shows the amount of lost computing time, expressed in hours, in correspondence of
each graph point for the centralized and P2P cases.
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Figure 15: Percentage of lost time in a network with 10000 nodes: (a) JT=A; (b) JT=B; (c) JT=C. The
numbers in correspondence of each graph point represent the amount of lost computing time expressed in
hours (some zero values are omitted for readability).

The lost computing time follows a similar trend as the percentage of failed jobs, and it results affected
by the same dependence from the job type. For example, when LR=0.4, the percentage of lost computing
time for the centralized system passes from 9.2 for JT=A to 25.5 for JT=C, while the percentage of time
lost by the P2P system is under 0.1% in the same configurations. The difference between centralized and
P2P is even clearer if we look at the absolute amount of computing time lost in the various scenarios. In
the worst case (LR=0.4 and JT=C), the centralized system loses 57090 hours of computation, while the
amount of lost computing time with the P2P-MapReduce system is only 84 hours.

6.3. Network Traffic

This section compares the P2P and centralized implementations of MapReduce in terms of network
traffic, i.e., the number of messages exchanged through the network during the whole simulation, and the
corresponding amount of data expressed in MBytes. The amount of data is obtained by summing the sizes
of all the messages that are exchanged through the network.

In order to calculate the size of each messages, Table 4 lists the sizes of all the basic components that
may be found in a message.

Table 4: Sizes of message components

Message components Size (Bytes)

Header 260

Identifier (e.g., jobId, taskId) 4

Code (job.code, task.code) 4000

URL (e.g., job.input, job.output) 150

Integer (e.g., job.M, job.R) 4

Status (e.g., task.type, jobStatus) 1

Each message includes a header that represents the fixed amount of traffic each message generates inde-
pendently from the specific payload. Its size has been determined experimentally by measuring the average
amount of traffic generated to transfer an empty message from a host to another host using a TCP socket.
The sizes for identifier, integer and status variables are those used in common system implementations. The
size of the code component is the average code size observed on a set of MapReduce applications; the size
of the URL component has been calculated similarly.

For example, let’s calculate the size of a jobAssigned message. From Table 1, we know that a jobAssigned
message includes three parts: 1) one Job tuple; 2) one UserIdType variable; 3) one header (implicitly present
in each message). While the size of the second and third parts are known (respectively 4 and 260 Bytes),
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the size of the first part must be calculated as the sum of each of its fields. From Section 3.1, a Job tuple
includes the following fields: jobId (4 Bytes), code (4000 Bytes), input (150 Bytes), output (150 Bytes), M
(4 Bytes) and R (4 Bytes), for a total of 4312 Bytes. Therefore, the size of a jobAssigned message is equal
to 4576 Bytes.

The size of messages that include lists, like taskAssigned, is calculated taking into account the actual
number of elements in the list, and the size of each such elements. For the messages generated by the
discovery service and by the election algorithms, we proceeded in the same way. We just mention that most
of such messages are very small since they include only a few fields.

For the purpose of the evaluation presented below, we distinguish four categories of messages:

• Management : messages exchanged among nodes to manage jobs and tasks execution. Referring to Ta-
ble 1, the management messages are those associated with the following (not inner) events: jobAssigned,
jobCompleted, taskAssigned and taskCompleted.

• Recovery : messages exchanged among primary masters and their backups to dynamically replicate job
information (backupJobAssigned, backupJobCompleted, jobUpdate and primaryUpdate), as well as to
elect a new primary in the case of a master failure (messages specific to the election algorithm used).

• Coordination: messages generated by the coordinator to perform network maintenance operations
(becomeMaster and becomeSlave), as well as to elect the new coordinator (specific to the election
algorithm).

• Discovery : messages generated to publish and search information about nodes using the JXTA Dis-
covery Service.

Management messages are present both in the P2P and in the centralized case, since they are generated
by the standard execution mechanisms of MapReduce. In contrast, recovery, coordination and discovery
operations are performed only by the P2P-MapReduce system, therefore the corresponding messages are
not present in the centralized case.

We start focusing on the total traffic generated, without distinguishing the contribution of the different
categories of messages, in order to obtain an aggregate indicator of the overhead generated by the two
systems. As for the previous section, the results presented here are obtained considering a network with
N = 10000 and LR ranging from 0.025 to 0.4. In particular, Figure 16 compares the total number of
messages exchanged for three job types: (a) JT=A; (b) JT=B; (c) JT=C.
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Figure 16: Number of messages exchanged in a network with 10000 nodes: (a) JT=A; (b) JT=B; (c) JT=C.

As shown by the graphs, the total number of messages generated by the P2P system is higher than that
generated by the centralized system in all the considered scenarios. This is mainly due to the presence in
the P2P system of discovery messages, which are not present in the centralized system. We will discuss later
in this section the impact of the different types of messages also in terms of amounts of data exchanged.
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We observe that in both cases - P2P and centralized - the number of messages increases with the leaving
rate. This is due to the fact that by increasing the leaving rate also the number of failed jobs increases; since
failed jobs are resubmitted, a corresponding increase in the number of management messages is produced.
As shown in the figure, such increase is higher with the centralized MapReduce implementation, being higher
the number of failed jobs compared to P2P-MapReduce.

The increase in the number messages is higher for heavy jobs (i.e., JT=B or JT=C), since their failure
requires the reassignment of a greater number of tasks, thus producing a higher number of management
messages. For example, Figure 16c shows that with JT=C, the number of messages for the P2P case passes
from 1.12 millions when LR = 0.025, to 1.23 millions when LR = 0.04, which corresponds to an increase of
about 10%. In contrast, the number of messages for the centralized case passes from 0.43 to 0.86 millions,
which corresponds to an increase of 100%.

Figure 17 shows the amount of data associated with all the messages exchanged through the network.
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Figure 17: Data exchanged (MBytes) in a network with 10000 nodes: (a) JT=A; (b) JT=B; (c) JT=C.

For the P2P case, the amount of data for a given job type increases very little with the leaving rate. In
fact, the few jobs that fail even with the higher leaving rate, produce a relatively little number of additional
management messages and so they have a limited impact in terms of amount of data exchanged. For the
centralized case, the amount of data for a given job type increases significantly with the leaving rate, since
the percentage of failed jobs grows faster than the P2P case.

It is interesting to observe that, in some scenarios, the amount of data exchanged in the centralized
implementation is greater than the amount of data exchanged in P2P-MapReduce. In our simulations this
happens when LR > 0.2 for JT=B (see Figure 17b), and when LR > 0.1 for JT=C (see Figure 17c). In
particular, with LR = 0.4 and JT=C, the amount of data exchanged is equal to 1369 MB for the P2P
system and 2623 MB for the centralized implementation.

We conclude the traffic analysis by showing what is the contribution of the different types of messages
(management, recovery, coordination and discovery) in terms of number of messages and corresponding
amount of data exchanged through the network. Figure 18 presents the results of such analysis for a
network with N = 10000 and JT=C.
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Figure 18: Detailed traffic in a network with N = 10000 and JT=C: (a) number of messages; (b) amount
of data.

As stated earlier, in the centralized case only management messages are generated. Therefore, their
number and corresponding amount of data are the same already shown in Figures 16c and 17c. We just
highlight that, for high values of leaving rate, the number of messages and the amount of data grows
significantly.

For the P2P case, we observe that the management messages represent only one third of the total number
of messages. Discovery messages represent 40% in terms of number of messages, but only 10% in terms of
amount of data. This is due to the fact that the size of discovery messages is very small, as mentioned
earlier, and so they do not produce a significant network overhead. Also recovery and coordination messages
have limited impact on the total network traffic, both in terms of number of messages and amount of data.

6.4. Scalability

We finally conducted a set of simulations to evaluate the behaviors of the P2P and centralized MapReduce
implementations by varying the network size. In particular, Figure 19 compares P2P and centralized systems
with LR = 0.1, JT=C, and N ranging from 5000 to 40000, in terms of: (a) percentage of failed jobs; (b)
percentage (and absolute amount) of lost computing time; (c) number of messages; (d) amount of data
exchanged.
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Figure 19: Comparison of P2P and centralized systems with LR = 0.1, JT=C, and N ranging from 5000
to 40000: (a) percentage of failed jobs; (b) percentage (and absolute amount) of lost computing time; (c)
number of messages; (d) amount of data exchanged.

As shown in Figure 19a, the percentage of failed jobs for the centralized case slightly decreases when
the network size increases. This is due to the fact that jobs complete faster in larger networks, since the
number of slaves increases and the job type is fixed (JT=C in our case), and so they are less affected by
failure events. On the other hand, in the P2P case the percentage is always zero, independently from the
network size. For the percentage of lost computing time (see Figure 19b) a similar trend can be noted.

Regarding network traffic (see Figures 19c and 19d), we observe that, in the P2P case, the number of
messages slightly increases with the number of nodes. This is due to the higher number of discovery and
coordination messages that are generated in larger networks. However, in terms of amount of data this
increment is negligible. Also for the centralized system the variation is not significant passing from 5000 to
40000 nodes.

6.5. Remarks

The results discussed above confirm the fault tolerance level provided by the P2P-MapReduce framework
compared to a centralized implementation of MapReduce, since in all the scenarios analyzed the amount
of failed jobs and the corresponding lost computing time was negligible. The centralized system, on the
contrary, was significantly affected by high churn rates, producing critical levels of failed jobs and lost
computing time.

The experiments have also shown that the P2P-MapReduce system generates more messages than a
centralize MapReduce implementation. However, the difference between the two implementations reduces
as the leaving rate increases, particularly in the presence of heavy jobs. Moreover, if we compare the two
systems in terms of amount of data exchanged, we see that in many cases the P2P-MapReduce system is
more efficient than the centralized implementation.

We have finally assessed the behavior of P2P-MapReduce with different network sizes. The experimental
results showed that the overhead generated by the system is not significantly affected by an increase of the
network size, thus confirming the good scalability of our system.
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In summary, the experimental results show that even if the P2P-MapReduce system consumes in most
cases more network resources than a centralized implementation of MapReduce, it is far more efficient in
job management since it minimizes the lost computing time due to jobs failures.

7. Conclusion

The P2P-MapReduce framework exploits a peer-to-peer model to manage node churn, master failures,
and job recovery in a decentralized but effective way, so as to provide a more reliable MapReduce middleware
that can be effectively exploited in dynamic Cloud infrastructures.

This paper provided a detailed description of the mechanisms that are at the base of the P2P-MapReduce
system, presented a prototype implementation based on the JXTA peer-to-peer framework, and an extensive
performance evaluation of the system in different network scenarios.

The experimental results showed that, differently from centralized master-server implementations, the
P2P-MapReduce framework does not suffer from job failures even in the presence of very high churn rates,
thus enabling the execution of reliable MapReduce applications in dynamic Cloud infrastructures.

The P2P-MapReduce prototype is available as open-source software from http://grid.deis.unical.

it/p2p-mapreduce.
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