
Article

Exploiting Machine Learning For Improving
In-memory Execution of Data-intensive Workflows on
Parallel Machines

Riccardo Cantini1 , Fabrizio Marozzo 1 , Alessio Orsino 1 , Domenico Talia 1,∗ and Paolo
Trunfio 1

1 DIMES, University of Calabria, Rende, Italy
* Correspondence: talia@dimes.unical.it

Version April 29, 2021 submitted to Future Internet

Abstract: Workflows are largely used to orchestrate complex sets of operations required to handle1

and process huge amounts of data. Parallel processing is often vital to reduce execution time when2

complex data-intensive workflows must be run efficiently, and at the same time in-memory processing3

can bring important benefits to accelerate execution. However, optimization techniques are necessary4

to fully exploit in-memory processing avoiding performance drops due to memory saturation events.5

This paper proposes a novel solution, called Intelligent In-memory Workflow Manager (IIWM),6

for optimizing the in-memory execution of data-intensive workflows on parallel machines. IIWM7

is based on two complementary strategies: 1) a machine learning strategy for predicting memory8

occupancy and execution time of workflow tasks; 2) a scheduling strategy that allocates tasks to9

a computing node taking into account the (predicted) memory occupancy and execution time of10

each task, and the memory available on that node. The effectiveness of the machine learning-based11

predictor and the scheduling strategy are demonstrated experimentally using as a testbed Spark,12

a high-performance Big Data processing framework that exploits in-memory computing to speed13

up execution of large-scale applications. In particular, two synthetic workflows have been prepared14

for testing the robustness of IIWM in scenarios characterized by a high level of parallelism and a15

limited amount of memory reserved for execution. Furthermore, a real data analysis workflow has16

been used as a case study, for better assessing the benefits of the proposed approach. Thanks to high17

accuracy in predicting resources used at runtime, IIWM was able to avoid disk writes caused by18

memory saturation, outperforming a traditional strategy in which only dependencies among tasks19

are taken into account. Specifically, IIWM achieved up to 31% and 40% reduction of makespan and a20

performance improvement up to 1.45x and 1.66x on the synthetic workflows and the real case study21

respectively.22

Keywords: Workflow, Data-intensive, In-memory, Machine Learning, Apache Spark, Scheduling.23

1. Introduction24

A data-intensive workflow is the description of a process that usually involves a set25

of computational steps implementing complex scientific functions, such as data acquisition,26

transformation, analysis, storage, and visualization [1]. Parallelism can be achieved by concurrently27

executing independent tasks by trying to make use of all computing nodes, even if, in many cases, it is28

necessary to execute multiple tasks on the same computing node [2]. For example, this occurs when29

the number of tasks is greater than the number of available nodes, or because multiple tasks use a30

dataset located on the same node. These scenarios are prone to memory saturation and moving data to31

disk may result in higher execution times, which leads to the need for a scheduling strategy able to32

cope with this issue [3,4].33

Submitted to Future Internet, pages 1 – 20 www.mdpi.com/journal/futureinternet

http://www.mdpi.com
https://orcid.org/0000-0003-3053-6132
https://orcid.org/0000-0001-7887-1314
https://orcid.org/0000-0002-5031-1996
https://orcid.org/0000-0003-1910-9236
https://orcid.org/0000-0002-5076-6544
http://www.mdpi.com/journal/futureinternet

Version April 29, 2021 submitted to Future Internet 2 of 20

In most cases, distributed processing systems use a-priori policies for handling task execution and34

data management. For example, in the MapReduce programming model used by Hadoop, mappers35

write intermediate results after each computation so performing disk-based processing with partial use36

of memory [5] through the exploitation of the Hadoop Distributed File System (HDFS). On the other37

hand, Apache Spark1, that is a state-of-the-art data analysis framework for large-scale data processing38

exploiting in-memory computing, relies on a Directed Acyclic Graph (DAG) paradigm and is based39

on: i) an abstraction for data collections which enables parallel execution and fault-tolerance, named40

Resilient Distributed Datasets (RDDs) [6]; ii) a DAG engine, that manages the execution of jobs,41

stages and tasks. Besides, it provides different storage levels for data caching and persistence, while42

performing in-memory computing with partial use of the disk. The Spark in-memory approach is43

generally more efficient, but a time overhead may be caused by spilling data from memory to disk44

when memory usage exceeds a given threshold [7]. This overhead can be significantly reduced if45

memory occupancy of a task is known in advance, to avoid running in parallel two or more tasks that46

cumulatively exceed the available memory, thus causing data spilling. For this reason, memory is47

considered a key factor for performance and stability of Spark jobs and Out-of-Memory (OOM) errors48

are often hard to fix. Recent efforts have been oriented towards developing prediction models for the49

performance estimation of Big Data applications, although most of the approaches rely on analytical50

models and only a few recent studies have investigated the use of supervised machine learning models51

[8–10].52

In this work we propose a system, named Intelligent In-memory Workflow Manager (IIWM), specially53

designed for improving application performance through intelligent usage of memory resources. This54

is done by identifying clusters of tasks that can be executed in parallel on the same node, optimizing55

in-memory processing so avoiding the use of disk storage. Given a data-intensive workflow, IIWM56

exploits a regression model for estimating the amount of memory occupied by each workflow task57

and its execution time. This model is trained on a log of past executed workflows, represented in a58

transactional way through a set of relevant features that characterize the considered workflow, such as:59

• Workflow structure, in terms of tasks and data dependencies.60

• Input format, such as the number of rows, dimensionality, and all other features required to61

describe the complexity of input data.62

• Type of the tasks, i.e., the computation performed by a given node of the workflow. For63

example, in the case of data analysis workflows, we can distinguish among supervised learning,64

unsupervised learning, and association rules discovery tasks, and also between learning and65

prediction tasks.66

Predictions made for a given computing node are applicable to all computing nodes of the same67

type (i.e., having the same architecture, processor type, operating systems, memory resources), which68

makes the proposed approach effectively usable on large-scale homogeneous HPC systems composed69

of many identical servers. Given a data-intensive workflow, IIWM exploits the estimates coming70

from the machine learning model for producing a scheduling plan aimed at reducing (and, in most71

cases, avoiding) main memory saturation events, which may happen when multiple tasks are executed72

concurrently on the same computing node. This leads to the improvement of application performance,73

as swapping or spilling to disk caused by main memory saturation may result in significant time74

overhead, which can be particularly costly when running workflows involving very large datasets75

and/or complex tasks.76

IIWM has been experimentally evaluated using as a testbed Spark, which is expected to become the77

most adopted Big Data engine in the next few years [11]. In particular, we assessed the benefits coming78

from the use of IIWM by executing two synthetic workflows specially generated for investigating79

1 https://spark.apache.org/

https://spark.apache.org/

Version April 29, 2021 submitted to Future Internet 3 of 20

specific scenarios related to the presence of a high level of parallelism and a limited amount of memory80

reserved for execution. The effectiveness of the proposed approach has been further confirmed81

through the execution of a real data mining workflow as a case study. We carried out an in-depth82

comparison between IIWM and a traditional blind scheduling strategy, which only considers workflow83

dependencies for the parallel execution of tasks. The proposed approach showed to be the most84

suitable solution in all evaluated scenarios outperforming the blind strategy thanks to high accuracy85

in predicting resources used at runtime, which leads to the minimization of disk writes caused by86

memory saturation.87

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3 describes88

the proposed system. Section 4 presents and discusses the experimental results. Section 5 concludes89

the paper.90

1.1. Problem statement91

The problem addressed in this study consists in the optimization of the in-memory execution92

of data-intensive workflows, evaluated in terms of makespan (i.e., the total time required to process93

all given tasks), and application performance. The main reason behind the drop in performance in94

such workflows is related to the necessity of swapping/spilling data to disk when memory saturation95

events occur. To cope with this issue, we propose an effective way of scheduling a workflow that96

minimizes the probability of memory saturation, while maximizes in-memory computing and thus97

performance.98

A workflowW can be represented using a DAG, described by a set of tasks T = {t1, t2, . . . , tn}99

(i.e., vertices) and dependencies among them A ⊆ (T × T) = {a1, . . . , am}: ai = (ti, tj), ti ∈ T , tj ∈ T100

(i.e., directed edges). Specifically, data dependencies (i.e., all the input data of a task have already been101

made available) have to be considered rather than control dependencies (i.e., all predecessors of a task102

must be terminated before it can be executed), as we refer to data-intensive workflows [12].103

Formally, given a set of q computing resources R = {r1, . . . , rq}, workflow scheduling can be104

defined as the mapping T → R from each task t ∈ T to a resource r ∈ R, so as to meet a set of specified105

constraints which influence the choice of an appropriate scheduling strategy [13]. Workflow scheduling106

techniques are often aimed at optimizing several factors, including makespan and overall cost that107

in turn depend on data transfer and compute cost [14]. In this study, a multi-objective optimization108

has been applied, jointly minimizing execution time and memory saturation. This is achieved by109

using a scheduling strategy that exploits a regression model aimed at predicting the behavior of a110

given workflow, in terms of resource demand and execution time (see Section 3). For the Reader’s111

convenience, Table 1 shows the meaning of the main symbols used in the paper.112

Symbol Meaning

T = {t1, t2, . . . , tn} Set of tasks.
A ⊆ (T × T) = {a1, . . . , am} Dependencies. ai = (ti, tj), ti ∈ T , tj ∈ T .
dt Description of the dataset processed by task t.
W = (T ,A) Workflow.
N in(t) = {t′ ∈ T | (t′, t) ∈ A} In-neighbourhood of task t.
N out(t) = {t′ ∈ T | (t, t′) ∈ A} Out-neighbourhood of task t.
M Regression prediction model.
S = 〈s1, . . . , sk〉 List of stages. si ⊆ T | (tx ‖ ty)∀tx, ty ∈ si.
C Maximum amount of memory available for a computing node.
Cs = C− ∑

t∈s
M.predict_mem(t, dt) Residual capacity of a stage s.

Table 1. Meaning of the main symbols.

Version April 29, 2021 submitted to Future Internet 4 of 20

2. Related work113

Recent studies have shown the effectiveness of machine learning-based prediction modelling in114

supporting code optimization, parallelism mapping, task scheduling, and processor resource allocation115

[10]. Moreover, predicting running times and memory footprint is important for estimating the cost of116

execution and better managing resources at runtime [11]. For instance, in-memory data processing117

frameworks like Spark can benefit from informed co-location of tasks [10]. In fact, if too many118

applications or tasks are assigned to a computing node, such that the memory used on the host exceeds119

the available one, memory paging to disk (i.e., swapping), data spilling to disk in Spark, or OOM120

errors can occur with consequential drops of performance.121

Our work focuses on improving the performance of a Spark application using machine122

learning-based techniques. The challenge is to effectively schedule tasks in a data-intensive workflow123

for improving resource usage and application performance, by inferring the resource demand of each124

task, in terms of memory occupancy and time.125

State-of-the-art techniques aimed at improving the performance of data-intensive applications126

can be divided into two main categories: analytical-based and machine learning-based. For each category,127

the main proposed solutions and their differences with respect to our technique are discussed.128

2.1. Analytical-based129

Techniques in this category use information collected at runtime and statistics in order to tune a130

Spark application, improving its performance as follows:131

• Choosing the serialization strategy for caching RDDs in RAM, based on previous statistics132

collected on different working sets, such as memory footprint, CPU usage, RDDs size,133

serialization costs, etc. [15,16].134

• Dynamically adapting resources to data storage, using a feedback-based mechanism with135

real-time monitoring of memory usage of the application [17].136

• Scheduling jobs by dynamically adjusting concurrency through a feedback-based strategy. Taking137

into account memory usage via garbage collection, network I/O, and Spark RDDs lineage138

information, it is possible to choose the number of tasks to assign to an executor [18,19].139

The aforementioned works use different strategies to improve in-memory computing of Spark that140

exploit static or dynamic techniques able to introduce some information in the choice of configuration141

parameters. However, no prediction models are employed and this may lead to unpredicted behaviors.142

IIWM, instead, uses a prediction regression model to estimate a set of information about a running143

Spark application, exploiting it to optimize in-memory execution. Moreover, unlike real time adapting144

strategies, which use a feedback-based mechanism by continuously monitoring the execution, the145

IIWM model is trained offline, achieving fast and accurate predictions while used for inferring the146

resource demand of each task in a given workflow.147

2.2. Machine learning-based148

These techniques are based on the development of learning models for predicting performance149

(mainly memory occupancy and execution time) of a large set of different applications in several150

scenarios, on the basis of prior knowledge. This enables the adoption of a performance-centric approach151

[8], based on an informed performance improvement, which can be beneficial for the execution of152

data-intensive applications, especially in the context of HPC systems.153

Several techniques use collaborative filtering to identify how well an application will run on a154

computing node. For instance, Quasar [8] uses classification techniques based on collaborative filtering155

to determine the characteristics of the running application in allocating resources and assigning tasks.156

When submitted, a new application is shortly profiled and the collected information is combined with157

the classification engine, based on previous workloads, to support a greedy scheduling policy that158

improves throughput. Application is monitored throughout the execution to adjust resource allocation159

Version April 29, 2021 submitted to Future Internet 5 of 20

and assignment if required, using a single model for the estimation. Adapting this technique to Spark160

can help to assign tasks to computing nodes within the memory constraints and avoid exceeding the161

capacity, thus causing spilling of data to disk. Another approach based on collaborative filtering has162

been proposed by Llull et al. [9]. In this case, the task co-location problem is modelled as a cooperative163

game and a game-theoretic framework, namely Cooper, is proposed for improving resource usage. The164

algorithm builds pairwise coalitions as stable marriages to assign an additional task to a host based165

on its available memory, and the Spark default scheduler is adopted to assign tasks. In particular, a166

predictor receives performance information collected offline and estimates which co-runner is better,167

in order to find stable co-locations.168

Moving away from collaborative filtering, Marco et al. [10] present a mixture-of-experts approach169

to model the memory behavior of Spark applications. It is based on a set of memory models (i.e., linear170

regression, exponential regression, Napierian logarithmic regression) trained on a wide variety of171

applications. At runtime, an expert selector based on k-nearest neighbour (kNN) is used to choose the172

model that best describes memory behavior, in order to determine which tasks can be assigned to the173

same host for improving throughput. The memory models and expert selector are trained offline on174

different working sets, recording the memory used by a Spark executor through the Linux command175

“/proc”. Finally, the scheduler uses the selected model to determine how much memory is required176

for an incoming application, for improving server usage and system throughput.177

Similarly to machine learning-based techniques, IIWM exploits a prediction model trained on178

execution logs of previous workflows, however it differs in two main novel aspects: i) IIWM only uses179

high-level workflow features, without requiring any runtime information as done in [8] and [10], in180

order to avoid the overhead that could be not negligible for complex applications; ii) it provides an181

algorithm for effectively scheduling a workflow in scenarios with limited computing resources.182

As far as we know, no similar approaches in literature can be directly compared to IIWM in183

terms of goals and requirements. In fact, differently from IIWM, Quasar [8] and Cooper [9] can be184

seen as resource-efficient cluster management systems, aimed at optimizing QoS constraints and185

resource usage. With respect to the most related work, presented in [10], IIWM presents the following186

differences.187

• It focuses on data-intensive workflows while in reference [10] general workloads are addressed.188

• It uses high-level information for describing an application (e.g. task and dataset features), while189

in reference [10] low-level system features are exploited, such as cache miss rate and number of190

blocks sent, collected by running the application on a small portion (100 MB) of the input data.191

• It proposes a more general approach, since the approach proposed in [10] is only appliable to192

applications whose memory usage is a function of the input size.193

3. Materials and Methods194

The Intelligent In-memory Workflow Manager (IIWM) is based on three main steps:195

1. Execution monitoring and dataset creation: starting from a given set of workflows, a transactional196

dataset is generated by monitoring the memory usage and execution time of each task, specifying197

how it is designed and giving concise information about the input.198

2. Prediction model training: from the transactional dataset of executions, a regression model is199

trained in order to fit the distribution of memory occupancy and execution time, according to the200

features that represent the different tasks of a workflow.201

3. Workflow scheduling: taking into account the predicted memory occupancy and execution time202

of each task, provided by the trained model, and the available memory of the computing node,203

tasks are scheduled using an informed strategy. In this way, a controlled degree of parallelism204

can be ensured, while minimizing the risk of memory saturation.205

In the following sections, a detailed description of each step is provided.206

Version April 29, 2021 submitted to Future Internet 6 of 20

3.1. Execution monitoring and dataset creation207

The first step in IIWM consists of monitoring the execution of different tasks on several input208

datasets with variable characteristics, in order to build a transactional dataset for training the regression209

model. The proposed solution was specifically designed for supporting the efficient execution of data210

analysis tasks, which are used in a wide range of data-intensive workflows. Specifically, it focuses211

on three classes of data mining tasks: classification tasks for supervised learning, clustering tasks for212

unsupervised learning and association rules discovery. Using Spark as a testbed, the following data213

mining algorithms from the MLlib2 library have been used: Decision Tree, Naive Bayes, and Support214

Vector Machines (SVM) for classification tasks; K-Means and Gaussian Mixture Models (GMM) for215

clustering tasks; FPGrowth for association rules tasks.216

3.1.1. Execution monitoring within the Spark unified memory model217

As far as execution monitoring is concerned, a brief overview of Spark unified memory model is218

required. In order to avoid OOM errors, Spark uses up to 90% of the heap memory, which is divided219

into three categories: reserved memory (300 MB), used to store Spark internal objects; user memory (40%220

of heap memory), used to store data structures and RDDs computed during transformations and221

actions; spark memory (60% of heap memory), divided in execution and storage. The former refers to that222

used for computation during shuffle, join, sort, and aggregation processes, while the latter is used for223

caching RDDs. It is worth noting that, when no execution memory is used, storage can acquire all the224

available memory and vice versa. However, storage may not evict execution due to complexities in225

implementation, while stored data blocks are evicted from main memory according to a Least Recently226

Used (LRU) strategy.227

The occupancy of storage memory relies on the persistence operations performed natively by the228

algorithms. Table 2 reports some examples of data caching implemented in the aforementioned MLlib229

algorithms. In particular, the cache() call corresponds to persist(StorageLevel.MEMORY_AND_DISK),230

where MEMORY_AND_DISK is the default storage level used for the recent API based on DataFrames.231

MLlib algorithm Persist call

K-Means
//Compute squared norms and cache them

norms.cache()

DecisionTree
//Cache input RDD for speed-up during multiple passes

BaggedPoint.convertToBaggedRDD(treeInput,...).cache()

GMM instances.cache() . . . data.map(_.asBreeze).cache()

FPGrowth items.cache()

SVM IstanceBlock.blokifyWithMaxMemUsage(...).cache()

Table 2. Examples of persist calls in MLlib algorithms.

According to the Spark unified memory model, the execution monitoring was made via the Spark232

REST APIs, which expose executor-level performance metrics, collected in a JSON file, including peak233

occupancy for both execution and storage memory along with execution time.234

3.1.2. Dataset creation235

Using the aforementioned Spark APIs, we monitored the execution of several MLlib algorithms236

on different input datasets, covering the main data mining tasks, i.e. classification, clustering, and237

2 https://spark.apache.org/mllib/

https://spark.apache.org/mllib/

Version April 29, 2021 submitted to Future Internet 7 of 20

association rules. The goal of this process is the creation of a transactional dataset for the regression238

model training, which contains the following information:239

• The description of the task, such as its class (e.g., classification, clustering, etc.), type (fitting or240

predicting task), and algorithm (e.g., SVM, K-Means, etc.).241

• The description of the input dataset in terms of the number of rows, columns, categorical columns242

and overall dataset size.243

• Peak memory usage (both execution and storage) and execution time, which represent the three244

target variables to be predicted by the regressor. In order to obtain more significant data, the245

metrics were aggregated on median values by performing ten executions per task.246

For the sake of clarity, table 3 shows a sample of the dataset described above.247

Task
Name

Task
Type

Task
Class

Dataset
Rows

Dataset
Columns

Categorical
Columns

Dataset
Size (MB)

Peak Storage
Memory (MB)

Peak Execution
Memory (MB) Duration (ms)

GMM Estimator Clustering 1474971 28 0 87.0045 433.37 1413.5 108204
K-Means Estimator Clustering 5000000 104 0 1239.78 4624.52 4112 56233.5

DecisionTree Estimator Classification 9606 1921 0 84.9105 730.09 297.895 39292
NaiveBayes Estimator Classification 260924 4 0 13.4986 340.92 6982.82 16531.5

SVM Estimator Classification 5000000 129 0 1542.58 6199.11 106.6 238594.5
FPGrowth Estimator AssociationRules 823593 180 180 697 9493.85 1371.03 96071.5

GMM Transformer Clustering 165474 14 1 6.36604 2.34 1e-06 62.5
K-Means Transformer Clustering 4898431 42 3 648.887 3.23 1e-06 35

DecisionTree Transformer Classification 1959372 42 4 257.686 3.68 1e-06 65.5
NaiveBayes Transformer Classification 347899 4 0 17.9982 4.26 1e-06 92.5

SVM Transformer Classification 5000000 129 0 1542.58 2.36 1e-06 55.5
FPGrowth Transformer AssociationRules 136073 34 34 13.5493 1229.95 633.5 52429

. .

Table 3. A sample of the training dataset.

Starting from 20 available datasets, we divided them into two partitions used for training and248

testing respectively. Afterwards, an oversampling procedure was performed, aimed at increasing the249

number of datasets contained in the partitions. Specifically, a naive random sampling approach can250

lead to unexpected behaviors regarding the convergence of algorithms, thus introducing noise into251

the transactional dataset used to build the regression model. To cope with this issue, we used the252

following feature selection strategy:253

• For datasets used in classification or regression tasks we considered only the k highest scoring254

features based on:255

– analysis of variance (F-value) for integer labels (classification problems);256

– correlation-based univariate linear regression test for real labels (regression problems).257

• For clustering datasets we used a correlation-based test to maintain the k features with the258

smallest probability to be correlated with the others.259

• For association rules discovery datasets no features selection is required, as the number of260

columns refers to the average number of items in the different transactions.261

The described procedure has been applied separately on the training and test partitions, so as to262

avoid the introduction of bias into the evaluation process. Specifically, the number of datasets in the263

training and test partitions has increased from 15 to 260 and from 5 to 86 respectively. Subsequently,264

we fed these datasets to the MLlib algorithms, obtaining two final transactional datasets of 1309 and265

309 monitored executions, used for training and testing the regressor, respectively.266

3.2. Prediction model training267

Once the training and test datasets with memory and time information were built, a regression268

model can be trained with the goal of estimating peak memory occupancy and turnaround time of a269

task in a given workflow.270

As a preliminary step, we analyzed the correlation between the features of the training data and271

each target variable, using the Spearman index. We obtained the following positive correlations: a272

Version April 29, 2021 submitted to Future Internet 8 of 20

value of 0.30 between storage memory and the input dataset size, 0.46 between execution memory and273

the task class and 0.21 between execution time and the number of columns. These results can be seen274

in detail in Figure 1.275

Ta
sk

Na
m

e
Ta

sk
Ty

pe
Ta

sk
Cl

as
s

Ro
ws

Co
lu

m
ns

Ca
te

go
ric

al
Co

lu
m

ns
Si

ze
Pe

ak
St

or
ag

eM
em

or
y

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
PeakStorageMemory 0.5

0.0

0.5

1.0

(a) Storage memory
Ta

sk
Na

m
e

Ta
sk

Ty
pe

Ta
sk

Cl
as

s
Ro

ws
Co

lu
m

ns
Ca

te
go

ric
al

Co
lu

m
ns

Si
ze

Pe
ak

Ex
ec

ut
io

nM
em

or
y

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
PeakExecutionMemory 0.5

0.0

0.5

1.0

(b) Execution memory

Ta
sk

Na
m

e
Ta

sk
Ty

pe
Ta

sk
Cl

as
s

Ro
ws

Co
lu

m
ns

Ca
te

go
ric

al
Co

lu
m

ns
Si

ze
Du

ra
tio

n

TaskName
TaskType

TaskClass
Rows

Columns
CategoricalColumns

Size
Duration

0.5

0.0

0.5

1.0

(c) Duration

Figure 1. Correlation of target variables with the other features.

Afterwards we moved to the training of the regression model. Due to its complexity, the regression276

problem can not be faced with a simple linear regressor or its regularized variants (e.g. Ridge, Lasso or277

ElasticNet), but a more robust model is necessary. We experimentally evaluated this aspect by testing278

the forecasting abilities of these linear models achieving poor results. For this reason, an ensemble279

learning model has been used in order to fit the nonlinear distribution of features. Specifically, the280

stacking technique (meta learning) [20] has been used by developing a two-layer model in which a set281

of regressors are trained on the input dataset and a Decision Tree is fitted on their predictions. The first282

layer consists of three tree-based regressors, able to grasp different aspects of input data: a Gradient283

Boosting, an AdaBoost and an Extra Trees regressor. The second layer exploits a single Decision Tree284

regressor, which predicts the final value starting from the concatenation of the outputs from the first285

layer. The described ensemble model has been set with the hyper-parameters shown in Table 4.286

Hyper-parameter Value

n_estimators 500
learning_rate 0.01

max_depth 7
loss least squares

Table 4. Hyper-parameters.

Among 20 trained models, initialized with different random states, we selected the best one by
maximizing the following objective function:

O = R̄2 −MAE

whose goal is to choose the model that best explains the variance of data, while minimizing the287

forecasting error. This function jointly considers the adjusted determination coefficient (R̄2), which288

guarantees robustness with respect to the addition of useless variables to the model compared to the289

classical R2 score, and the mean absolute error (MAE), normalized with respect to the maximum.290

The described model has been developed in Python3 using the scikit-learn3 library and evaluated291

against the test set of 309 unseen executions obtained as described in Section 3.1.2. Thanks to the292

3 https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

Version April 29, 2021 submitted to Future Internet 9 of 20

combination of different models, the ensemble technique showed to be very well suited for this task,293

leading to good robustness against outliers and a high forecasting accuracy, as shown in Figure 2.294

0 50 100 150 200 250 300
Index of sample

0

1000

2000

3000

4000

Pe
ak

St
or

ag
eM

em
or

y

Regression estimates
Ground truth

(A) Storage memory

0 50 100 150 200 250 300
Index of sample

0

1000

2000

3000

4000

5000

6000

Pe
ak

Ex
ec

ut
io

nM
em

or
y

Regression estimates
Ground truth

(B) Execution memory

0 50 100 150 200 250 300
Index of sample

0

20000

40000

60000

80000

100000

120000

Du
ra

tio
n

Regression estimates
Ground truth

(C) Duration

Figure 2. Meta-learner regression estimates for the different target variables.

These results are detailed in Table 5, which shows the evaluation metrics for each target variable,295

including the R̄2 score and the Pearson correlation coefficient. In particular, the Mean Absolute Error296

(MAE) and the Root Mean Square Error (RMSE) for the storage and execution memory represent297

average errors in megabytes, while for the duration they represent errors in milliseconds.298

RMSE MAE Adjusted R2 Pearson
Correlation

Storage Memory 108.23 26.66 0.96 0.98
Execution Memory 312.60 26.30 0.91 0.95

Duration 4443.17 2003.70 0.95 0.98

Table 5. Evaluation metrics on the test set.

3.3. Workflow scheduling299

The prediction model described in Section 3.2 can be exploited to forecast the amount of memory300

that will be needed to execute a given task on a target computing node and its duration, based on301

the task features listed in Section 3.1. These predictions are then used within the scheduling strategy302

described in the following, whose goal is to avoid swapping to disk due to memory saturation in order303

to improve application performance and makespan through a better use of in-memory computing.304

The results discussed below refer to a static scheduling problem, as the scheduling plan is generated305

before the execution. In typical static scheduling the workflow system has to predict the execution306

load of each task accurately, using heuristic-based methods [21]. Likewise, in the proposed method the307

execution load of each task of a given workflow is predicted by the model trained on past executions.308

Moreover, we investigated how workflow tasks can be scheduled and run on a single computing node,309

but this approach can be easily generalized to a multi-node scenario. For example, a data-intensive310

workflow can be decomposed into multiple sub-workflows to be run on different computing nodes311

according to their features and data locality. Each sub-workflow is scheduled locally to the assigned312

node using the proposed strategy.313

In IIWM, we modelled the scheduling problem as an offline Bin Packing (BP). This is a well-known314

problem, widely used for resource and task management or scheduling, such as load balancing in315

mobile cloud computing architectures [22], energy-efficient execution of data-intensive applications316

in clouds [23], DAGs real-time scheduling in heterogeneous clusters [24] and task scheduling in317

multiprocessor environments [25]. Its classical formulation is as follows [26]. Let n be the number318

of items, wj the weight of the j-th item and c the capacity of each bin: the goal is to assign each item319

to a bin without exceeding the capacity c and minimizing the number of used bins. The problem is320

NP-complete and a lot of effort went into finding fast algorithms with near-optimal solutions. We321

adapted the classical problem to our purposes as follows:322

Version April 29, 2021 submitted to Future Internet 10 of 20

• An item is a task to be executed.323

• A bin identifies a stage, i.e. a set of tasks that can be run in parallel.324

• The capacity of a bin is the maximum amount C of available memory in a computing node.325

When assigning a task to a stage s ∈ S , its residual available memory will be indicated with Cs.326

• The weight of an item is the memory occupancy estimated by the prediction model. In the case of327

Spark testbed, it will be the maximum of the execution and storage memory, in order to model328

a peak in the unified memory. For what concerns the estimated execution time, it is used for329

selecting the stage to be assigned when memory constraints hold for multiple stages.330

With respect to the classical BP problem two changes were introduced:331

• All workflow tasks have to be executed, so the capacity of a stage may still be exceeded if a task332

takes up more memory than the available one.333

• The assignment of a task t to a stage s is subjected to dependency constraints. Hence, if a334

dependency exists between ti and tj, then the stage of ti has to be executed before the one of tj.335

To solve the BP problem, modelled as described above, in order to produce the final scheduling336

plan, we used the First Fit Decreasing algorithm which assigns tasks sorted in non-increasing order of337

weight. However, the introduction of dependency constraints in the assignment process may cause the338

under-usage of certain stages. To cope with this issue, we introduced a further step of consolidation,339

aimed at reducing the number of stages by merging together stages without dependencies according340

to the available memory. The main execution flow of the IIWM scheduler is shown in Figure 3 and341

described by Algorithm 1. In particular, given a data-intensive workflowW , described as a DAG by342

its tasks and dependencies, and the prediction modelM as input, a scheduling plan is generated in343

two steps: i) building of the stages and task assignment; ii) stage consolidation.344

IIWM scheduler

Scheduled
stages

Prediction model

Workflow

Scheduling

s2

s1

s3

s4

Consolidation

s2

s1

s3

s4

Final schedule

merge
(s4, s2)

merge
(s3, s1)

Figure 3. Execution flow of the IIWM scheduler. Given a workflow and a prediction model as input,
a scheduling plan is generated in two steps: i) building of the stages and task assignment; ii) stage
consolidation.

The algorithm is divided into two main parts: in the first part (lines 1-23), the stages are built by345

iteratively assigning each task according to the estimates of the prediction model; in the second part346

(lines 25-34), a consolidation process is performed, trying to minimize the number of stages.347

The first part (lines 1-23) starts with the initialization of an empty list of stages S , which will be348

filled according to a dictionary Q that stores the in-degree of each task in the DAG, which is used for349

identifying the free tasks which can be scheduled. The prediction modelM is exploited to estimate350

the memory occupancy and execution time of each task in T , according to their dataset description351

(lines 3-4). The dictionary Pmem, which collects the predicted memory occupancies, is then used to352

sort tasks according to the First Fit Decreasing strategy (line 5). At each iteration, tasks that can be353

scheduled (i.e., assigned to a stage) are collected in the T f ree set. In particular, they are identified by354

a zero in-degree, as their execution does not depend on others (line 7). By virtue of the acyclicity of355

the DAG-based workflow representation, there will always exist a task t ∈ T with a zero in-degree356

not yet scheduled, unless set T is empty. Afterwards, the task with the highest memory occupancy is357

Version April 29, 2021 submitted to Future Internet 11 of 20

selected from T f ree in order to be scheduled (line 8). At this point, a list of candidate stages (Ssel) for358

the selected task is identified according to the peak memory occupancy forecasted by the prediction359

modelM (lines 9-10). In particular, a stage si belongs to Ssel if it satisfies the following conditions:360

• The residual capacity Csi of the selected stage si is not exceeded by the addition of the task t.361

• There not exists a dependency between t and any task t′ belonging to si and every subsequent362

stage (si+1 ∪ · · · ∪ sk), where a dependency (t′, t)n is identified by a path of length n > 0.363

If there exist one or more candidate stages Ssel (line 11), the best one is chosen based on the364

minimum marginal increase. Specifically, for each of these stages, the expected increase of the execution365

time is estimated (lines 12-13), assigning the task t to the stage s with the lowest value (lines 14-16).366

Otherwise (line 17), a newly created stage is allocated for t and added to the list S (lines 18-21). Once367

the task t is assigned to the stage s, the residual capacity Cs is updated (lines 15, 20). Then, the residual368

in-degree for every task in the out-neighbourhood of t (line 22) is decremented by updating the369

dictionary Q, so as to allow the assignment of these tasks in the next iterations. Finally, the assigned370

task t is removed from the set of workflow nodes T (line 23).371

ALGORITHM 1: IIWM SCHEDULER

Input: WorkflowW = (T ,A), Prediction modelM
Output: A list of stages S

1 S ← ∅
2 Q ← 〈t : |N in(t)|, ∀t ∈ T 〉
3 Pmem ← 〈t :M.predict_mem(t, dt), ∀t ∈ T 〉 . Memory prediction for each task in T
4 Ptime ← 〈t :M.predict_time(t, dt), ∀t ∈ T 〉 . Time prediction for each task in T
5 T ← sort_decreasing(T ,Pmem)
6 while T 6= ∅ do
7 T f ree ← {t ∈ T | Q[t] == 0}
8 t← get_ f irst(T f ree)

9 memt ← Pmem[t]
10 Ssel ← {si ∈ S | memt ≤ Csi and @ (t′, t)n ∈ A, n > 0, ∀t′ ∈ si ∪ si+1 ∪ · · · ∪ sk}
11 if Ssel 6= ∅ then
12 duration← 〈s : maxt′∈s Ptime[t′], ∀s ∈ Ssel〉
13 increase← 〈s : max{Ptime[t], duration[s]} − duration[s], ∀s ∈ Ssel〉
14 s← argmins′∈Ssel increase
15 Cs ← Cs −memt
16 s← s ∪ {t}
17 else
18 s← ∅
19 s← s ∪ {t}
20 Cs ← Cs −memt
21 S ← S ∪ {s}
22 Q[t′] = Q[t′]− 1, ∀t′ ∈ N out(t)
23 T ← T \ {t}
24 // Consolidation step

25 Smov ← {s ∈ S | |N out(t)|== 0, ∀t ∈ s}
26 if Smov 6= ∅ then
27 for si ∈ Smov do
28 for sj ∈ S | j > i do
29 memsi∪sj ← ∑

t∈si∪sj

Pmem[t]

30 if memsi∪sj ≤ C then
31 sj ← si ∪ sj
32 S ← S \ si
33 break

34 return S

Version April 29, 2021 submitted to Future Internet 12 of 20

The second part of the algorithm (lines 25-34) performs a consolidation step with the goal of372

reducing the number of allocated stages by merging some of them if possible, with a consequential373

improvement in the global throughput. The stages involved in the consolidation step, namely the374

movable stages (Smov), are those containing tasks with a zero out-degree (line 25). This means that no375

task in such stages blocks the execution of another one, so they can be moved forward and merged376

with subsequent stages if the available capacity C is not exceeded. For each movable stage si (line377

27), another stage sj from S is searched among the subsequent ones, such that its residual capacity is378

enough to enable the merging with si (lines 28-30). The merging between si and sj is performed by379

assigning to sj each task of si (line 31), finally removing si from S (line 32). In the end, the list of stages380

S built by the scheduler is returned as output. Given this scheduling plan, the obtained stages will be381

executed in sequential order, while all the tasks in a stage will run concurrently.382

Compared to a blind strategy where the maximum parallelism is achieved by running in parallel383

all the tasks not subjected to dependencies, which will be referred to as Full-Parallel in our experiments,384

IIWM can reduce both delays of parallelization (εp), due to context switch and process synchronization,385

and swapping/spilling to disk (εs), due to I/O operations. Delay εp is always present in all scheduling386

strategies when two or more tasks are run concurrently, while εs is present only when a memory387

saturation event occurs. Given ε = εp + εs, IIWM mainly reduces εs, which is the main factor behind388

the drop in performance in terms of execution time, due to the slowness in accessing secondary storage.389

As far as the Spark framework is concerned, the proposed strategy is effective for making the390

most of the default storage level, i.e. MEMORY_AND_DISK: at each internal call of the cache() method,391

data is saved in-memory as long as this resource is available, using disk otherwise. In this respect,392

IIWM can reduce the actual persistence of data on disk by better exploiting in-memory computing.393

4. Results and Discussion394

This section presents an experimental evaluation of the proposed system, aimed at optimizing the395

in-memory execution of data-intensive workflows. We experimentally assessed the effectiveness of396

IIWM using Apache Spark 3.0.1 as a testbed. In particular, we generated two synthetic workflows for397

analyzing different scenarios, by assessing also the benefits coming from the use of IIWM using a real398

data mining workflow as a case study.399

In order to provide significant results, each experiment was executed ten times and the average400

metrics with standard deviations are reported. In particular, for each experiment, we evaluated the401

accuracy of the regression model in predicting memory occupancy and execution time.402

We evaluated the ability of IIWM to improve application performance taking into account two403

different aspects:404

• Execution time: let m1 and m2 be the makespan for two different executions. If m2 < m1 we can
compute the improvement on makespan (mimp) and application performance (pimp) as follows:

mimp =
m1 −m2

m1
× 100% pimp =

m1

m2

• Disk usage: we used the on-disk usage metric, which measures the amount of disk usage, jointly
considering the volume and the duration of disk writes. Formally, given a sequence of disk
writes w1, ..., wk let τ

′
i , τ

′′
i ∈ T be the start and end time of the wi write respectively. Let also

W : T→ R be a function representing the amount of megabytes written to disk over time T. We
define on-disk usage as:

on-disk usage =
k

∑
i=1

1
τ
′′
i − τ

′
i

∫ τ
′′
i

τ
′
i

W(τ)dτ

Specifically, for each workflow we reported: i) a comparison between Full-Parallel and IIWM405

in terms of disk usage over time; ii) a detailed description of the scheduling plan generated by both406

Version April 29, 2021 submitted to Future Internet 13 of 20

strategies; iii) the average improvement on makespan and application performance with IIWM; iv)407

statistics about the use of disk, such as the time spent for I/O operations and the on-disk usage metric;408

v) the execution of the workflow by varying the amount of available memory, in order to show the409

benefits of the proposed scheduler in different limited memory scenarios.410

4.1. Synthetic workflows411

We firstly evaluated our approach against two complex synthetic data analysis workflows, where412

the Full-Parallel approach showed its limitations due to a high degree of parallelism. The dependencies413

in these workflows should be understood as execution constraints. For instance, clustering has to be414

performed before classification for adding labels to an unlabelled dataset, or a classification task is415

performed after the discovery of association rules for user classification purposes.416

The first test has been carried out on a synthetic workflow with 42 nodes. Table 6 provides a417

detailed description of each task in the workflow, while their dependencies are shown in Figure 4.418

Node Task
Name

Task
Type

Task
Class Rows Columns Categorical

Columns
Dataset

size (MB)

t0 NaiveBayes Estimator Classification 2939059 18 4 198.93904
t1 FPGrowth Estimator AssociationRules 494156 180 180 417.01007
t2 NaiveBayes Estimator Classification 5000000 27 0 321.86484
t3 K-Means Estimator Clustering 1000000 104 0 247.95723
t4 DecisionTree Estimator Classification 4000000 53 0 505.45
t5 DecisionTree Estimator Classification 4000000 27 0 257.4918
t6 DecisionTree Estimator Classification 5000000 129 0 1542.5775
t7 K-Means Estimator Clustering 2000000 53 0 252.72397
t8 NaiveBayes Estimator Classification 2000000 104 0 495.9038
t9 NaiveBayes Estimator Classification 1000000 129 0 307.56625
t10 SVM Estimator Classification 2000000 53 0 252.72397
t11 K-Means Estimator Clustering 2049280 9 2 122.02598
t12 GMM Estimator Clustering 2458285 28 0 145.00838
t13 K-Means Estimator Clustering 9169 5812 1 101.88691
t14 SVM Estimator Classification 2000000 27 0 128.74657
t15 K-Means Estimator Clustering 3000000 104 0 743.87286
t16 SVM Estimator Classification 3000000 53 0 379.08823
t17 SVM Estimator Classification 14410 1921 0 127.3811
t18 K-Means Estimator Clustering 5000000 53 0 631.8128
t19 K-Means Estimator Clustering 5000000 104 0 1239.7812
t20 K-Means Estimator Clustering 2000000 78 0 371.93442
t21 SVM Estimator Classification 3000000 104 0 743.87286
t22 K-Means Estimator Clustering 2939059 18 4 198.93904
t23 SVM Estimator Classification 19213 1442 0 123.28475
t24 DecisionTree Estimator Classification 3000000 129 0 922.6897
t25 K-Means Estimator Clustering 1959372 26 4 189.5505
t26 DecisionTree Estimator Classification 4898431 18 4 331.56735
t27 NaiveBayes Estimator Classification 4898431 18 4 331.56735
t28 K-Means Estimator Clustering 2939059 34 4 334.91486
t29 K-Means Estimator Clustering 4898431 18 4 331.56735
t30 K-Means Estimator Clustering 1966628 42 0 170.48729
t31 NaiveBayes Estimator Classification 1959372 18 4 132.62437
t32 K-Means Estimator Clustering 3000000 78 0 557.9056
t33 DecisionTree Estimator Classification 3000000 53 0 379.08823
t34 DecisionTree Estimator Classification 14410 2401 0 159.71497
t35 K-Means Estimator Clustering 2939059 42 4 386.53033
t36 DecisionTree Estimator Classification 2939059 34 4 334.91486
t37 DecisionTree Estimator Classification 4000000 129 0 1230.2445
t38 NaiveBayes Estimator Classification 1000000 53 0 126.36286
t39 GMM Estimator Clustering 1000000 53 0 126.36286
t40 DecisionTree Estimator Classification 2939059 18 4 198.93904
t41 K-Means Estimator Clustering 4898431 18 4 331.56735

Table 6. Task and dataset descriptions (workflow 1).

t0

t1 t2 t3

t4 t5 t6 t7t8 t9t10

t11 t12 t13 t14

t15 t16t17 t18 t19 t20 t21

t22 t23 t24 t25 t26 t27 t28

t29 t30 t31 t32 t33 t34

t35 t36 t37

t38 t39

t40

t41

Figure 4. Task dependencies
(workflow 1).

The first step is to predict the memory occupancy and execution time of each task of the workflow:419

the regression model was able to accurately estimate the peaks on storage and execution memory and420

the duration, as shown in Table 7.421

RMSE MAE Adjusted R2 Pearson
Correlation

Storage Memory 246.63 95.6 0.96 0.98
Execution Memory 4.7 1.6 0.99 0.99

Duration 20354.38 7877.72 0.80 0.91

Table 7. Performance evaluation of the prediction model.

We firstly considered a configuration characterized by 14 GB available for running the workflow,422

which will be used up to 60% due to the Spark unified memory model. Table 8 shows an execution423

Version April 29, 2021 submitted to Future Internet 14 of 20

example with IIWM, focusing on its main steps: i) the scheduling of tasks based on their decreasing424

memory weight; ii) the allocation of a new stage; iii) the exploitation of the estimated execution time425

while computing the marginal increase. This last aspect can be clearly observed in iteration 17, where426

task t17 is assigned to stage s7, which presents a marginal increase equal to zero. This is the best427

choice compared to the other candidate stage (s6), whose execution time would be increased by 12496428

milliseconds by the assignment of t17, with a degradation of the overall makespan.429

Iteration State Stages

It. 0
T 0

f ree = {t0}
Create s0 and assign t0

Unlock {t1, t2, t3}
s0 = {t0}

It. 1
T 1

f ree = {t1, t3, t2}
Create s1 and assign t1

Unlock {t4}
s0 = {t0}, s1 = {t1}

It. 2
T 2

f ree = {t3, t4, t2}
Create s2 and assign t3

Unlock {t7, t8, t9, t10}

s0 = {t0}, s1 = {t1},
s2 = {t3}

It. 3
T 3

f ree = {t7, t4, t10, t2, t8, t9}
Create s3 and assign t7

s0 = {t0}, s1 = {t1},
s2 = {t3} , s3 = {t7}

It. 4

T 4
f ree = {t4, t10, t2, t8, t9}
Ssel = {s2, s3}

increase = {0, 0}
Assign t4 to s2

s0 = {t0}, s1 = {t1},
s2 = {t3, t4}, s3 = {t7}

.

It. 17

T 17
f ree = {t17, t23, t8, t9}
Ssel = {s6, s7}

increase = {12496.363, 0}
Assign t17 to s7

Unlock {t25}

s0 = {t0}, s1 = {t1, t2},
s2 = {t3, t4, t5},
s3 = {t7, t10, t6},

s4 = {t12, t11}, s5 = {t15, t18},
s6 = {t19, t22}, s7 = {t24, t16, t17}

.

Table 8. Example of execution of algorithm 1 at iteration level.

At the end of the process, a consolidation step is exploited for optimizing throughput and430

execution time, by merging two stages with zero out-degree with some tailing stages, so as to avoid431

the sequential execution of the two stages in favour of a parallel one.432

Figure 5 shows disk occupancy throughout the execution. As a consequence of memory saturation,433

the execution of Full-Parallel resulted in a huge amount of disk writes, while IIWM achieved a null434

disk usage since no swapping occurred thanks to intelligent task scheduling. Thus, this translates into435

better use of in-memory computing.436

0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25 27
Elapsed time (min.)

0

100

200

300

Di
sk

 u
sa

ge
 (G

B)

Full-Parallel
IIWM

Figure 5. Disk usage over time for Full-Parallel and IIWM.

Version April 29, 2021 submitted to Future Internet 15 of 20

These results can be clearly seen also in Table 9, which shows the scheduling plan produced437

by the IIWM scheduler, together with some statistics about execution times and the use of the disk.438

In particular, given the curves representing disk writes over time shown in Figure 5, on-disk usage439

graphically represents the sum, for each disk write, of the ratio between the area under the curve440

identified by a write and its duration. Compared to the Full-Parallel strategy, IIWM achieved better441

execution times and an improvement in application performance, with a boost of almost 1.45x (pimp)442

and a 31.15% reduction in time (mimp) on average.443

Strategy Task-scheduling plan Number
of stages Time (min.) Peak disk

usage (MB)
Writes

duration (min.)
On-disk

usage (MB)

Full-Parallel

(t0), (t1 ‖ t2 ‖ t3),
(t4 ‖ t5 ‖ t6 ‖ t7 ‖ t8 ‖ t9 ‖ t10),

(t11 ‖ t12 ‖ t13 ‖ t14),
(t15 ‖ t16 ‖ t17 ‖ t18 ‖ t19 ‖ t20 ‖ t21),
(t22 ‖ t23 ‖ t24 ‖ t25 ‖ t26 ‖ t27 ‖ t28),
(t29 ‖ t30 ‖ t31 ‖ t32 ‖ t33 ‖ t34 ‖ t41),

(t35 ‖ t36 ‖ t37), (t38 ‖ t39), (t40)

10 31.52± 0.6 356106.601 11.56 126867.065

IIWM

(t0), (t1 ‖ t2), (t3 ‖ t4 ‖ t5),
(t7 ‖ t10 ‖ t6 ‖ t8 ‖ t9),

(t12 ‖ t11 ‖ t13), (t15 ‖ t18), (t19 ‖ t22 ‖ t23),
(t24 ‖ t16 ‖ t17 ‖ t29), (t25 ‖ t41), (t30 ‖ t20),

(t35 ‖ t21 ‖ t14), (t28 ‖ t26 ‖ t27),
(t33 ‖ t32 ‖ t34 ‖ t31), (t37 ‖ t36),

(t39 ‖ t38), (t40)

16 21.70± 0.63 0 0 0

Table 9. Scheduling plan and statistics about execution times and disk usage with 14 GB of RAM.

With different sizes of available memory, the Full-Parallel approach showed higher and higher444

execution times and disk writes as memory decreased, while IIWM was able to adapt the execution445

to available resources as shown in Figure 6, finding a good trade-off between the maximization of446

the parallelism and the minimization of the memory saturation probability. At the extremes, with447

unlimited available memory, or at least greater than that required to run the workflow, IIWM will448

perform as a full concurrent strategy, producing the same scheduling of Full-Parallel.449

14 22 30
Memory size (GB)

0

50

100

150

200

250

300

350

Av
er

ag
e

pe
ak

 d
isk

 u
sa

ge
 (G

B) Full-Parallel
IIWM

(a) Average peak disk usage

14 22 30
Memory size (GB)

20

22

24

26

28

30

32

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

in
.) Full-Parallel

IIWM

(b) Average execution time

Figure 6. Average peak disk usage and execution time, varying the size of available memory.

The second synthetic workflow consists of the 27 tasks described by Table 10 and their450

dependencies, shown in Figure 7. This scenario is characterized by highly heavy tasks and very451

low resources, where the execution of a single task can exceed the available memory. In particular, task452

T18 has an estimated peak memory occupancy higher than Spark available unified memory of 5413.8453

MB (i.e., corresponding to a heap size of 9.5 GB): this will bring the IIWM scheduling algorithm to454

allocate the task to a new stage, but memory will be saturated anyway.455

In such a situation, data spilling to disk cannot be avoided, but IIWM tries to minimize the456

number of bytes written and the duration of I/O operations. Even in this scenario, the prediction457

model achieved very accurate results, shown in Table 11, confirming its forecasting abilities.458

Version April 29, 2021 submitted to Future Internet 16 of 20

Node Task
Name

Task
Type

Task
Class Rows Columns Categorical

Columns
Dataset

size (MB)

t0 K-Means Estimator Clustering 3918745 34 4 446.54932
t1 DecisionTree Estimator Classification 4000000 27 0 257.4918
t2 GMM Estimator Clustering 2458285 28 0 145.008
t3 DecisionTree Estimator Classification 3000000 53 0 379.08823
t4 DecisionTree Estimator Classification 4000000 129 0 1230.24
t5 DecisionTree Estimator Classification 3918745 18 4 265.2537
t6 DecisionTree Estimator Classification 4898431 42 3 648.887
t7 DecisionTree Estimator Classification 2939059 42 4 386.53033
t8 K-Means Estimator Clustering 2458285 56 0 278.75266
t9 GMM Estimator Clustering 3000000 53 0 379.08823
t10 SVM Estimator Classification 4000000 53 0 505.45
t11 K-Means Estimator Clustering 2939059 42 4 386.53033
t12 SVM Estimator Classification 2000000 53 0 252.72397
t13 K-Means Estimator Clustering 1639424 9 2 93.6976
t14 NaiveBayes Estimator Classification 260924 3 0 10.3273
t15 K-Means Estimator Clustering 2000000 78 0 371.93442
t16 DecisionTree Estimator Classification 3918745 26 4 379.1089
t17 DecisionTree Estimator Classification 3918745 34 4 446.54932
t18 FPGrowth Estimator AssociationRules 823593 180 180 697.0
t19 DecisionTree Estimator Classification 2939059 26 4 284.33032
t20 SVM Estimator Classification 5000000 27 0 321.86484
t21 FPGrowth Estimator AssociationRules 164719 180 180 139.871
t22 GMM Estimator Clustering 3000000 27 0 193.119
t23 K-Means Estimator Clustering 4898431 26 4 473.88403
t24 DecisionTree Estimator Classification 2000000 104 0 495.9038
t25 K-Means Estimator Clustering 2458285 69 0 344.6047
t26 FPGrowth Estimator AssociationRules 494156 180 180 417.01007

Table 10. Task and dataset descriptions (workflow 2).

t0

t1 t2t3 t4

t5 t6 t7 t8t9 t10 t11 t12

t13 t14 t15 t16t17 t18 t19 t20

t21

t22 t23 t24t25

t26

Figure 7. Task dependencies
(workflow 2).

RMSE MAE Adjusted R2 Pearson
Correlation

Storage Memory 213.81 78.92 0.98 0.99
Execution Memory 29.86 11.56 0.98 0.99

Duration 20086.80 9925.13 0.82 0.94

Table 11. Performance evaluation of the prediction model.

Figure 8 shows disk occupancy during the execution. As we can see, even IIWM cannot avoid459

data spilling, even though its disk usage was much lower considering peak value and writes duration460

compared to Full-Parallel.461

0 2 3 5 7 8 10 12 13 15 17 18 20 22 23 25
Elapsed time (min.)

0

5

10

15

20

25

Di
sk

 u
sa

ge
 (G

B)

(a) Disk usage of Full-Parallel

0 2 3 5 7 8 10 12 13 15 17 18 20
Elapsed time (min.)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Di
sk

 u
sa

ge
 (G

B)

(b) Disk usage of IIWM

Figure 8. Disk usage over time for Full-Parallel and IIWM.

Finally, Table 12 shows the statistics about disk usage and execution times. Again, IIWM achieved462

better results with a boost in performance of almost 1.30x (pimp) with respect to a Full-Parallel strategy463

and a 23% reduction in time (mimp) on average. An interesting aspect that emerges from the behavior464

of IIWM scheduler, in the task-scheduling plan, is the similarity with priority-based scheduling in465

assigning tasks based on decreasing weights. In fact, tasks characterized by low memory occupancy466

may be assigned to tailing stages even if they are close to the root (e.g., in Full-Parallel, t1 is executed467

in the second stage, while in IIWM it is executed in the seventh one). Hence, in a dynamic scheduling468

scenario where tasks can be added at runtime, IIWM may suffer from the starvation problem, as469

such tasks may experiment an indefinite delay as far as new tasks with a higher memory weight470

Version April 29, 2021 submitted to Future Internet 17 of 20

are provided to the scheduler. Nevertheless, in the proposed work we dealt with a static scheduling471

problem, where all tasks are known in advance and the task-set is not modifiable at runtime.472

Strategy Task-scheduling plan Number
of stages Time (min.) Peak disk

usage (MB)
Writes

duration (min.)
On-disk

usage (MB)

Full-Parallel

(t0), (t1 ‖ t2 ‖ t3 ‖ t4),
(t5 ‖ t6 ‖ t7 ‖ t8 ‖ t9 ‖ t10 ‖ t11 ‖ t12),

(t13 ‖ t14 ‖ t15 ‖ t16 ‖ t17 ‖ t18 ‖ t19 ‖ t20),
(t21), (t22 ‖ t23 ‖ t24 ‖ t25), (t26)

7 29.42± 1.88 27095.837 20.6 10593.79

IIWM

(t0), (t4 ‖ t2), (t11 ‖ t7), (t8 ‖ t3),
(t15 ‖ t10 ‖ t9 ‖ t16), (t18),

(t17 ‖ t1 ‖ t12), (t6 ‖ t5), (t14),
(t13 ‖ t20 ‖ t19), (t21),

(t23 ‖ t24), (t25), (t22), (t26)

15 22.68± 1.65 304.5 3.6 60.82

Table 12. Scheduling plan and statistics about execution times and disk usage with 9.5 GB of RAM.

4.2. Real case study473

In order to assess the performance of the proposed approach against a real case study, we used474

a data mining workflow [27] that implements a model selection strategy for the classification of an475

unlabelled dataset. Figure 9 shows a representation of the workflow designed by the visual language476

VL4Cloud [28]. A training set is divided into n partitions and k classification algorithms are fitted on477

each partition for generating k× n classification models. The k× n fitted models are evaluated by a478

model selector on a test set to choose the best model. Afterwards, the n predictors use the best model to479

generate n classified datasets. The following k classification algorithms provided by the MLlib library480

were used: Decision Tree with C4.5 algorithm, Support Vector Machines (SVM), and Naive Bayes. The481

training set, test set and unlabelled dataset provided as input for the workflow have been generated482

from the Physical Unclonable Functions (PUFs) [29] simulation through a n-fold-cross strategy. In this483

scenario, IIWM can be used to optimize the data processing phase regarding the execution of the k× n484

classification algorithms (estimators first, transformers then) concurrently. The other phases, such as485

data acquisition and partitioning, are out of our interest. The red box in Figure 9 shows the tasks of the486

workflow that will be analyzed.487

Filter [m]

PS: dataset

dataset fDataset

FUnlab [m]

dataset sDataset

Train Shuffler STrain

Partitioner

dataset

TrainPart [n]

ClAlgo [1][n]

PS: dataset

model

Model [1][n]

ClAlgo [2][n]

PS: dataset

model

Model [2][n]

ClAlgo [k][n]

PS: dataset

model

Model [k][n]

ModelSelector

Test

BestModel

bestModel

Predictor [m]

PS: dataset

ClassDataset[m]
UnLab [m]

dataset

dataset

Figure 9. Ensemble learning workflow.

Figure 10 shows disk occupancy over time with 14 GB of RAM. Also in this case, IIWM avoided488

disk writes, while Full-Parallel registered a high level of disk usage. In particular, during the training489

phase, the parallel execution of the k× n models (with k = 3 and n = 5) saturates memory with 15490

concurrent tasks and generates disk writes up to 124 GB.491

Version April 29, 2021 submitted to Future Internet 18 of 20

0 2 3 5 7 8 10
Elapsed time (min.)

0

25

50

75

100

125
Di

sk
 u

sa
ge

 (G
B)

Full-Parallel
IIWM

Figure 10. Disk usage over time for Full-Parallel and IIWM.

The results are detailed in Table 13, which shows a boost in execution time of almost 1.66x (pimp)492

and a 40% time reduction (mimp) with respect to Full-Parallel.493

Strategy Task-scheduling plan Number
of stages Time (min.) Peak disk

usage (MB)
Writes

duration (min.)
On-disk

usage (MB)

Full-Parallel (t0 ‖ t2 ‖ t4 ‖ t6 ‖ t8 ‖ t10 ‖ t12 ‖ t14 ‖ t16 ‖ t18 ‖ t20 ‖ t22 ‖ t24 ‖ t26 ‖ t28),
(t1 ‖ t3 ‖ t5 ‖ t7 ‖ t9 ‖ t11 ‖ t13 ‖ t15 ‖ t17 ‖ t19 ‖ t21 ‖ t23 ‖ t25 ‖ t27 ‖ t29) 2 11.42± 0.27 124730.874 9.6 54443.186

IIWM
(t10 ‖ t12 ‖ t14 ‖ t16 ‖ t20 ‖ t22 ‖ t24 ‖ t26 ‖ t28),

(t18 ‖ t0 ‖ t2 ‖ t4 ‖ t6 ‖ t8 ‖ t11 ‖ t13 ‖ t15 ‖ t17 ‖ t21 ‖ t23 ‖ t25 ‖ t27 ‖ t29),
(t19 ‖ t1 ‖ t3 ‖ t5 ‖ t7 ‖ t9)

3 6.88± 0.1 0 0 0

Table 13. Scheduling plan and statistics about execution times and disk usage with 14 GB of RAM.

The general trends varying the amount of available resources are also confirmed with respect to494

the previous examples, as shown in Figure 11.495

14 18 22
Memory size (GB)

0

20

40

60

80

100

120

Av
er

ag
e

pe
ak

 d
isk

 u
sa

ge
 (G

B) Full-Parallel
IIWM

(a) Disk usage

14 18 22
Memory size (GB)

7

8

9

10

11

12

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

in
.) Full-Parallel

IIWM

(b) Average execution time

Figure 11. Average peak disk usage and execution time, varying the size of available memory.

5. Conclusions and Final Remarks496

Nowadays, data-intensive workflows are widely used in several application domains, such as497

bioinformatics, astronomy, and engineering. This paper introduced and evaluated a system, named498

Intelligent In-memory Workflow Manager (IIWM), aimed at optimizing the in-memory execution of499

data-intensive workflows on high-performance computing systems. Experimental results suggest500

that by jointly using a machine learning model for performance estimation and a suitable scheduling501

strategy, the execution of data-intensive workflows can be significantly improved with respect to502

state-of-the-art blind strategies. In particular, the main benefits of IIWM resulted when has been503

applied to workflows having a high level of parallelism. In this case a significant reduction of memory504

saturation has been obtained. Therefore it can be used effectively when multiple tasks have to be505

executed on the same computing node, for example when they need to be run on multiple immovable506

datasets located on a single node or due to other hardware constraints. In these cases, an uninformed507

scheduling strategy will likely exceed the available memory, causing disk writes and therefore a508

Version April 29, 2021 submitted to Future Internet 19 of 20

drop in performance. The proposed approach also showed to be a very suitable solution in scenarios509

characterized by a limited amount of memory reserved for execution, thus finding possible applications510

in data-intensive IoT workflows, where data processing is performed on constrained devices located511

at the network edge.512

IIWM has been evaluated against different scenarios concerning both synthetic and real data513

mining workflows, using Apache Spark as a testbed. Specifically, by accurately predicting resources514

used at runtime, our approach achieved up to 31% and 40% reduction of makespan and a performance515

improvement up to 1.45x and 1.66x for the synthetic workflows and the real case study respectively.516

In future work additional aspects of performance estimation will be investigated. For example,517

the IIWM prediction model can be extended also to consider other common stages in workflows518

besides data analysis, such as data acquisition, integration and reduction, and other information about519

tasks, input data, and hardware platform features can be exploited in the scheduling strategy.520

6. Acknowledgment521

This work has been supported by the ASPIDE Project funded by the European Union’s Horizon522

2020 Research and Innovation Programme under grant agreement No 801091.523

References524

1. Talia, D.; Trunfio, P.; Marozzo, F. Data Analysis in the Cloud; Elsevier, 2015. ISBN 978-0-12-802881-0.525

2. Da Costa, G.; Fahringer, T.; Rico-Gallego, J.A.; Grasso, I.; Hristov, A.; Karatza, H.D.; Lastovetsky, A.;526

Marozzo, F.; Petcu, D.; Stavrinides, G.L.; Talia, D.; Trunfio, P.; Astsatryan, H. Exascale machines require527

new programming paradigms and runtimes. Supercomputing Frontiers and Innovations 2015, 2, 6–27.528

3. Li, M.; Tan, J.; Wang, Y.; Zhang, L.; Salapura, V. SparkBench: A Comprehensive Benchmarking Suite529

for in Memory Data Analytic Platform Spark. Proceedings of the 12th ACM International Conference530

on Computing Frontiers; Association for Computing Machinery: New York, NY, USA, 2015; CF ’15.531

doi:10.1145/2742854.2747283.532

4. De Oliveira, D.C.; Liu, J.; Pacitti, E. Data-intensive workflow management: for clouds and data-intensive533

and scalable computing environments. Synthesis Lectures on Data Management 2019, 14, 1–179.534

5. Verma, A.; Mansuri, A.H.; Jain, N. Big data management processing with Hadoop MapReduce and spark535

technology: A comparison. 2016 Symposium on Colossal Data Analysis and Networking (CDAN), 2016,536

pp. 1–4. doi:10.1109/CDAN.2016.7570891.537

6. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica,538

I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. 9th539

{USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 12), 2012, pp. 15–28.540

7. Samadi, Y.; Zbakh, M.; Tadonki, C. Performance comparison between Hadoop and Spark frameworks541

using HiBench benchmarks. Concurrency and Computation: Practice and Experience 2018, 30, e4367.542

8. Delimitrou, C.; Kozyrakis, C. Quasar: Resource-Efficient and QoS-Aware Cluster Management.543

Proceedings of the 19th International Conference on Architectural Support for Programming Languages544

and Operating Systems; Association for Computing Machinery: New York, NY, USA, 2014; ASPLOS ’14, p.545

127–144. doi:10.1145/2541940.2541941.546

9. Llull, Q.; Fan, S.; Zahedi, S.M.; Lee, B.C. Cooper: Task Colocation with Cooperative Games. 2017547

IEEE International Symposium on High Performance Computer Architecture (HPCA), 2017, pp. 421–432.548

doi:10.1109/HPCA.2017.22.549

10. Marco, V.S.; Taylor, B.; Porter, B.; Wang, Z. Improving Spark Application Throughput via Memory550

Aware Task Co-Location: A Mixture of Experts Approach. Proceedings of the 18th ACM/IFIP/USENIX551

Middleware Conference; Association for Computing Machinery: New York, NY, USA, 2017; Middleware552

’17, p. 95–108. doi:10.1145/3135974.3135984.553

11. Maros, A.; Murai, F.; Couto da Silva, A.P.; M. Almeida, J.; Lattuada, M.; Gianniti, E.; Hosseini, M.; Ardagna,554

D. Machine Learning for Performance Prediction of Spark Cloud Applications. 2019 IEEE 12th International555

Conference on Cloud Computing (CLOUD), 2019, pp. 99–106. doi:10.1109/CLOUD.2019.00028.556

https://doi.org/10.1145/2742854.2747283
https://doi.org/10.1109/CDAN.2016.7570891
https://doi.org/10.1145/2541940.2541941
https://doi.org/10.1109/HPCA.2017.22
https://doi.org/10.1145/3135974.3135984
https://doi.org/10.1109/CLOUD.2019.00028

Version April 29, 2021 submitted to Future Internet 20 of 20

12. Talia, D. Workflow Systems for Science: Concepts and Tools. International Scholarly Research Notices 2013,557

2013, 1–15.558

13. Smanchat, S.; Viriyapant, K. Taxonomies of workflow scheduling problem and techniques in the cloud.559

Future Generation Computer Systems 2015, 52, 1–12. Special Section: Cloud Computing: Security, Privacy560

and Practice, doi:https://doi.org/10.1016/j.future.2015.04.019.561

14. Bittencourt, L.F.; M. Madeira, E.R.; S. Da Fonseca, N.L. Scheduling in hybrid clouds. IEEE Communications562

Magazine 2012, 50, 42–47. doi:10.1109/MCOM.2012.6295710.563

15. Zhao, Y.; Hu, F.; Chen, H. An adaptive tuning strategy on spark based on in-memory computation564

characteristics. 2016 18th International Conference on Advanced Communication Technology (ICACT),565

2016, pp. 484–488. doi:10.1109/ICACT.2016.7423442.566

16. Chen, D.; Chen, H.; Jiang, Z.; Zhao, Y. An adaptive memory tuning strategy with high performance for567

Spark. International Journal of Big Data Intelligence 2017, 4, 276–286.568

17. Xuan, P.; Luo, F.; Ge, R.; Srimani, P.K. Dynamic Management of In-Memory Storage for Efficiently569

Integrating Compute-and Data-Intensive Computing on HPC Systems. 2017 17th IEEE/ACM570

International Symposium on Cluster, Cloud and Grid Computing (CCGRID), 2017, pp. 549–558.571

doi:10.1109/CCGRID.2017.66.572

18. Tang, Z.; Zeng, A.; Zhang, X.; Yang, L.; Li, K. Dynamic memory-aware scheduling in573

spark computing environment. Journal of Parallel and Distributed Computing 2020, 141, 10 – 22.574

doi:https://doi.org/10.1016/j.jpdc.2020.03.010.575

19. Bae, J.; Jang, H.; Jin, W.; Heo, J.; Jang, J.; Hwang, J.; Cho, S.; Lee, J.W. Jointly optimizing task granularity576

and concurrency for in-memory mapreduce frameworks. 2017 IEEE International Conference on Big Data577

(Big Data), 2017, pp. 130–140. doi:10.1109/BigData.2017.8257921.578

20. Wolpert, D.H. Stacked generalization. Neural networks 1992, 5, 241–259.579

21. Liu, J.; Pacitti, E.; Valduriez, P.; Mattoso, M. A Survey of Data-Intensive Scientific Workflow Management.580

Journal of Grid Computing 2015, 13, 457–493. doi:10.1007/s10723-015-9329-8.581

22. Raj, P.H.; Kumar, P.R.; Jelciana, P. Load Balancing in Mobile Cloud Computing using Bin Packing’s First582

Fit Decreasing Method. International Conference on Computational Intelligence in Information System.583

Springer, 2018, pp. 97–106.584

23. Baker, T.; Aldawsari, B.; Asim, M.; Tawfik, H.; Maamar, Z.; Buyya, R. Cloud-SEnergy: A bin-packing based585

multi-cloud service broker for energy efficient composition and execution of data-intensive applications.586

Sustainable Computing: informatics and systems 2018, 19, 242–252.587

24. Stavrinides, G.L.; Karatza, H.D. Scheduling real-time DAGs in heterogeneous clusters by combining588

imprecise computations and bin packing techniques for the exploitation of schedule holes. Future589

Generation Computer Systems 2012, 28, 977–988.590

25. Coffman, Jr, E.G.; Garey, M.R.; Johnson, D.S. An application of bin-packing to multiprocessor scheduling.591

SIAM Journal on Computing 1978, 7, 1–17.592

26. Darapuneni, Y.J. A Survey of Classical and Recent Results in Bin Packing Problem 2012.593

27. Marozzo, F.; Rodrigo Duro, F.; Garcia Blas, J.; Carretero, J.; Talia, D.; Trunfio, P. A data-aware594

scheduling strategy for workflow execution in clouds. Concurrency and Computation: Practice and595

Experience 2017, 29, e4229, [https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4229]. e4229 cpe.4229,596

doi:https://doi.org/10.1002/cpe.4229.597

28. Marozzo, F.; Talia, D.; Trunfio, P. A Workflow Management System for Scalable Data Mining on Clouds.598

IEEE Transactions On Services Computing 2018, 11, 480–492. ISSN: 1939-1374.599

29. Aseeri, A.O.; Zhuang, Y.; Alkatheiri, M.S. A Machine Learning-Based Security Vulnerability Study on XOR600

PUFs for Resource-Constraint Internet of Things. 2018 IEEE International Congress on Internet of Things601

(ICIOT), 2018, pp. 49–56. doi:10.1109/ICIOT.2018.00014.602

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional603

affiliations.604

© 2021 by the authors. Submitted to Future Internet for possible open access publication605

under the terms and conditions of the Creative Commons Attribution (CC BY) license606

(http://creativecommons.org/licenses/by/4.0/).607

https://doi.org/https://doi.org/10.1016/j.future.2015.04.019
https://doi.org/10.1109/MCOM.2012.6295710
https://doi.org/10.1109/ICACT.2016.7423442
https://doi.org/10.1109/CCGRID.2017.66
https://doi.org/https://doi.org/10.1016/j.jpdc.2020.03.010
https://doi.org/10.1109/BigData.2017.8257921
https://doi.org/10.1007/s10723-015-9329-8
http://xxx.lanl.gov/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4229
https://doi.org/https://doi.org/10.1002/cpe.4229
https://doi.org/10.1109/ICIOT.2018.00014
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem statement

	Related work
	Analytical-based
	Machine learning-based

	Materials and Methods
	Execution monitoring and dataset creation
	Execution monitoring within the Spark unified memory model
	Dataset creation

	Prediction model training
	Workflow scheduling

	Results and Discussion
	Synthetic workflows
	Real case study

	Conclusions and Final Remarks
	Acknowledgment
	References

