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Abstract—Due to their inherent cyber-physical features and
high interactivity, IoT services exhibit performances which
are simultaneously impacted by different orthogonal factors.
Indeed, deployment settings (e.g., Cloud- or Edge-based sce-
narios, network bandwidth, hardware resource availability),
algorithmic aspects (e.g., the specific algorithm used to solve
a problem) and data features (e.g., packet size and rate)
deeply affect the overall functioning of an IoT service and
its compliance with specific requirements such as reactivity,
reliability and efficiency. An accurate parameter sweep based on
realistic IoT simulations is a viable, yet still unexplored, solution
to obtain a full-fledged overview and specific evaluations about
the performance of an IoT system under development. In
such a direction, in this paper we present an approach for
assessing Edge analytic in complex IoT scenarios through a
parameter sweep analysis conducted through a simulation-
based process, enabling a fine-grained modeling of hybrid
IoT systems (both Cloud and Edge) of different scales (small,
medium and large). Four typical IoT use cases (autonomous
vehicles, smart healthcare, gaming, and industrial IoT) are
presented to show the benefits of our approach in finding the
right settings for configuring and running them. Indeed, the
obtained results show that our approach concretely helps IoT
developers in the challenging task of tuning the parameters’
set so as to meet the given requirements, even in the case of
large solution spaces and before the actual deployment phase.

Index Terms— Parameter sweep, IoT platforms, IoT services,
Simulation, Edge Analytic.

I. INTRODUCTION

In the last years the ability to produce and gather data
has increased exponentially. Huge amounts of digital data
are generated by and collected from a plethora of Internet
of Things (IoT) devices, such as sensors, cams, in-vehicle
infotainment and wearable devices [1], [2]. The huge amount
of data generated, the speed at which it is produced, and its
heterogeneity in terms of format (e.g., video, text, XML,
JSON), represent a challenge to the current storage, process
and analysis capabilities [3].

Specialized platforms are needed in the collection, integra-
tion and analysis of IoT data capable of offering advanced
services that improve the quality of life of human beings.
The existing IoT platforms are highly centralized and rely on
Cloud solutions for data collection, integration and analysis.
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The data management and processing approach in the Cloud,
however, can be ineffective in terms of response time,
network traffic management and power consumption [4].
Moreover, in many medical and security applications it is
crucial to offer low-latency and privacy-preserving services,
as the delay caused by the transfer of data from an applica-
tion to the Cloud (and vice versa) or malicious manipulations
can cause strong disservices and even loss of life. For this
reason, researchers and large IT companies have proposed
in recent years the adoption of Edge Computing paradigm
and the use of novel IoT solutions for processing data closer
to where it is generated, thus reducing the network traffic,
energy consumption, privacy risks and service delays [5].

Even the analysis of data generated by devices in IoT
platforms and the extraction of valuable insight requires
novel tools [6]. Advanced machine learning and data mining
algorithms are continuously used for this purpose, i.e., they
are able to discover patterns, correlations and trends that
occur in the collected data [7]. In the IoT environment
such algorithms are often performed on devices with limited
resources in terms of memory, computing power, bandwidth
and energy [8]. For this reason, it is necessary to find a good
trade-off between the performance of the algorithms and the
amount of resources needed for their execution [9].

In addition, due to the large scale, heterogeneity and
complexity of IoT systems and networks, designing and
testing IoT applications are still open issues. The Modeling
and Simulation approach (M&S) results to be a powerful
and flexible tool for reproducing and testing IoT systems and
networks. This opportunity becomes essential when real tests
are too expensive due to the size of the infrastructure to be
managed and they may also take a long time due to the high
combinations of configurations to be tested. In fact, factors
such as the deployment settings (e.g., Cloud- or Edge-based
scenarios, network bandwidth, hardware resource availabil-
ity), algorithmic aspects (e.g., the specific algorithm used
to solve a problem) and data features (e.g., packet size
and rate) deeply influence the overall functioning of an IoT
application and its compliance with specific requirements
such as reactivity, reliability and efficiency. An accurate
parameter sweep leveraging on a realistic IoT simulator
is a viable solution to obtain a full-fledged overview and
specific quantitative results about the expected operations and
performance of an IoT system under development. However,
so far, parameter sweep is almost exclusively used over
numerical models for Al algorithms hyper-parameters tuning
and scheduling tasks in grid environment.

That said, in this paper we present a novel approach



for assessing the performance of Edge analytic in complex
IoT scenarios through a parameter sweep analysis conducted
through a simulation-based process. At the best of our knowl-
edge, indeed, there is no similar work enabling the configura-
tion of IoT platforms and services through a comprehensive
and systematic evaluation of the numerous, possible, design
choices (only in [10] this research line is outlined as possible
future work). As well as original, the presented approach is
also highly versatile, being domain- and simulator-neutral:
nevertheless, we advice EdgeCloudSim simulator [11] for its
fine-grained modeling of IoT systems deployed according
to different scale (small, medium and large) and to differ-
ent infrastructures (Cloud-only, Edge-only and Cloud/Edge).
Four typical IoT use cases (industrial IoT, smart healthcare,
autonomous vehicles and mobile gaming) are are outlined to
show how our approach works and its benefits in supporting
design choices and configuration of execution environments.
The results obtained (i) highlight the suitability of Cloud-
based deployments for high resource-demanding IoT services
and of Edge-based ones for large-scale scenarios; and (ii)
allow managing a good compromise among responsiveness,
reliability and efficiency on the basis of service needs. By
providing such insights, hence, our approach concretely helps
IoT developers to determine the system configuration better
matching with the given requirements, even in the case of
large solutions spaces, before its actual deployment.

The structure of the paper is as follows. Section II dis-
cusses background and related work. Section III describes
the proposed approach. Section IV presents the case studies
and the experimental evaluation through a large set of
simulations. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

With the increasing popularity of IoT technologies, several
novel research projects have been carried out for obtaining
valuable insight from large data generated by IoT devices.
Big data analytics in IoT requires technologies and tools that
can transform large amounts of structured, unstructured, or
semi-structured data into more understandable data ready to
be analyzed. Advanced machine learning and data mining
algorithms are used to discover patterns, trends, and cor-
relations over a variety of time horizons in the data [6];
however, these tasks are executed by devices characterized
by limited resources, such as memory, processing, bandwidth
and energy [8]. Thus, it is necessary to find the right compro-
mises between performance (e.g., accuracy) and amount of
resources required for computation. There are many papers
published in this area, i.e. propose data mining/machine
learning solutions in the IoT area, which are described below.

For example, Shanthamallu et al. [12] covered supervised
and unsupervised learning algorithms in the IoT area, and
outlined several applications including pattern recognition,
anomaly detection, computer vision, speech processing.

Alam et al. [13] examined the applicability of eight data
mining/machine learning algorithms for IoT data. These
include, among others, the deep learning artificial neural
networks (DLANNS), which build a feed forward multi-layer

artificial neural network (ANN) for modelling high-level data
abstractions. The achieved results on real IoT datasets show
that decision tree algorithms have better accuracy, are mem-
ory efficient and have relatively higher processing speeds,
while ANNs and DLANNSs can provide highly accurate
results but are computationally expensive.

Hussain et al. [14] highlighted how the security and
privacy solutions of the IoT platforms suffer from a series
of problems related to the dynamic nature of networks. The
paper highlights how some of the gaps in current IoT plat-
form solutions can be overcome by using advanced machine
learning algorithms. Machine learning techniques can be
used to enable the IoT devices to adapt to their dynamic
environment, by supporting self-organizing operation and
also optimize the overall system performance by learning
and processing statistical information from the environment.

For a correct evaluation of machine learning algorithms,
realistic tests are needed on an IoT infrastructure consisting
of a large number of entities/devices connected to each
other and running different types of software. Designing
and validating IoT infrastructures is still a complex issue
due to the even-increasing complexity and technological
improvement that makes them difficult to study and evaluate.
M&S plays an essential role in managing this complexity
since it allows to imitate the structure and behaviour of a
complex system during its lifecycle.

D’ Angelo et al. [15] introduced main issues on the simula-
tion of IoT infrastructure, and discussed a new combination
of M&S techniques to enhance scalability and permit the
real-time execution of massively populated IoT environments
(e.g., large-scale smart cities).

Bosmans et al. [16] presented an overview of the chal-
lenges that arise when testing large IoT applications at the
system level. To overcome these challenges, the author pro-
posed a hybrid simulation-based testing technique that allows
to evaluate IoT infrastructure by orchestrating a real-time
interaction between real-life and virtual local IoT entities so
as to detect emergent behaviors.

Concerning the tools and software, there are many simula-
tors that have been proposed in recent years in the IoT field
[17]. Among them, EdgeCloudSim [11] is a CloudSim exten-
sion [18] that provides a modular architecture for supporting
a variety of crucial functionalities such as network modeling
specific to WLAN and WAN, device mobility model, realistic
and tunable load generator to support Edge/Cloud contin-
uum. The rich set of built-in models can be customized,
extended as well as integrated with external tools, for being
realistically applied also in vertical domains or for intro-
ducing new performance metrics (e.g., energy consumption).
The default simulations output, such as service time, service
failure rate,network/server utilization, allow easily disclosing
the particular impact of computation- and communication-
related factors.

I1I. PROPOSED APPROACH

Functional but also not functional requirements (e.g.,
responsiveness, reliability, efficiency) deeply impact on the



operation of IoT services and, therefore, they have to be
simultaneously considered to make wise design choices. A
surveillance camera correctly detecting car accidents but only
after 1 hour from the event is useless; likewise, a fast but
inaccurate accident detection would trigger too many alerts,
thus forcing a human operator to continuously monitor the
video. A lot of similar examples might be considered since
we daily experience a plethora of smart objects failing in
providing services which, instead, might be smoothly pro-
vided by fully-equipped machines (e.g., lagged multimedia
streaming, imprecise GPS localization). It happens because
the functioning of IoT services is a matter of balance between
technical and business goals [9] and the management of this
trade-off before the slow, error prone, and costly deployment
phase, is a challenging development task: indeed, due to
the high number of factors to be considered, there exists a
plethora of possible configurations, few of them are eligible
and these need to be accurately compared and evaluated. In
this direction, we propose an approach that, according to
the requirements of the specific scenario and its unrestricted
parameters, allows outlining the most suitable configuration
for a given IoT service by means of a parameter sweep
activity conducted over the EdgeCloudSim simulator.

Parameter sweep allows to test a scenario numerous times
with different parameter configurations, defined over spec-
ified ranges. Through an iterative process, the parameter
sweep enables fine-tuning parameter values, exploring a
wide solutions space, and calibrating simulations to data.
In such a way, before the actual system deployment, its
behaviors can be assessed in a variety of settings and the
design choices can be systematically supported. Parameter
sweep is mostly exploited to set the hyper-parameters of Al
algorithms [19] and scheduling tasks in grid environments
[20] by running a set of simulations over numerical models.
However, for IoT services, the simulator upon which the
parameter sweep is performed should allow a fine-grained
modeling of algorithmic, data, and infrastructural aspects so
as to provide realistic results and effective insights to the
IoT developer. We therefore advice EdgeCloudSim which,
better than other simulators currently available at the state-
of-the-art, allows comprehensively analyzing IoT systems of
different scales and provided with hybrid Edge- Cloud-based
offloading strategies.

In particular, the approach we propose consists in mod-
eling and simulating an IoT service over EdgeCloudSim,
performing a parameter sweep analysis over the obtained
results, and finally outlining the best configurations matching
with the requirements initially identified. The approach is
domain- and simulator-neutral, being easily adopted to any
IoT service whose complexity and variety of design choices
demand for a systematic analysis, i.e., the parameter sweep,
rather than naive or approximate evaluations. In detail, our
approach consists in:

1) a preliminary analysis of the scenario, aimed at ranking

its main requirements according to their priorities;

2) a modeling phase or setup, defining the allowable

ranges for the ”sweep variables”, namely, for the ex-

Parameterl = [1, 10, 100, 1000], Parameter2 = [0.1, 0.2, 0.3, 0.4, 0.5]

0.1
02
03
04
0.5
0
0.2
10 03

04

05

T

0.2

100 03
0.4
0.5
0.1
02
1000 03
04
0.5

P 0j0.1{0 20.3{0 4§0.0{0 10 2 {0 3|0 4§0.0/0 1{0 2|0 3{0.4 | 0]0.1{0 2/0.3{0 4§0.0/0 1 /0 2{0 3/0 4

,__\J Pass

o
' Failed
Parameter3 = [1, 1.5, 2, 2.5, 3], Parameter4 = [0, 0.1, 0.2, 0.3, 0.4]

Fig. 1.
analysis

Example of an heat-map gathering the results of a parameter sweep

changed data (e.g., packet size), for the computational
complexity of the algorithms (expressed in MI obtained
by multiplying the execution time and the frequency
in MIPS of the considered processing units) and for
the infrastructural resources (by specifying the number
and hardware features of the devices, the network
bandwidth in Mbps, etc).

3) the parameter sweep, by considering the highly-ranked
requirement as pivot around which let vary the other
ones in the defined ranges. EdgeCloudSim allows
considering non functional requirements like respon-
siveness, reliability and efficiency while a separate
analysis might be performed to assess the fulfilment
of functional requirements, e.g., accuracy or precision
of a given algorithm.

4) gathering the obtained data, display them through
charts or heat maps for simplifying their analysis and
outlining the better system configuration; reiterate to
the previous point in case of not satisfactory results.

Fig. 1 reports an example of an heat map filled with the
results of a parameter sweep, conducted over 4 parameters
and colored according to two requirements which determine
the IoT service failure (red boxes) or success (green boxes).
Developers can exploit it or analyze the charts, as we have
done next, for taking their design choices.

IV. USE CASES AND SIMULATIONS

To showcase of our approach, we consider four use cases
(UCs) with constraints and parameters that can easily be
traced back to typical application scenarios in the IoT field:
Industrial IoT (UC1), smart healthcare (UC2), autonomous
vehicles (UC3) and “mobile gaming” (UC4). The goal is
to evaluate the reactivity, reliability and use of resources in
different configurations for disclosing the eligible ones and
obtaining meaningful insights.

The main parameters used for configure the simulations
of each use case are reported in Table 1. For all of the UCs



TABLE I
MAIN PARAMETERS OF THE PRESENTED USE CASES.

Parameter UcC1 uc2 uc3 UcC4
Avg. packet size (KB) {20-2000} £20-2000} Fixed 200 {20-2000}
Task length (MI) {250-8000} Fixed 1000 {250-8000} {250-8000}
Device population Fixed 100 {100-500} {100-500} Fixed 100

Off-loading strategy Cloud OR Edge

Cloud OR Edge

Cloud OR Edge Cloud AND Edge

we have considered a realistic setting comprising an AWS
rSa.xlarge instance (3.9GHz quadcore- 106926 MIPS) as
Cloud Server and five Raspberry Pi 3+ (1.2 GHz quadcore-
2451 MIPS) as Edge Servers. For the network bandwidth,
instead, we have set a value of 100 Mbps, both for WLAN
(i.e., device-Edge Server connection) and WAN (i.e., device-
Cloud Server connection) as used in other related works
[11]. The average packet size considers both uploaded and
downloaded data and in a range (20-2000 KB) wide enough
to model heterogeneous payload, from text to low quality
images, audio recording and video. Likewise, the task length,
namely the algorithm complexity, varies from 250 to 8000
MI for modelling both lightweight or heavyweight tasks. The
device population has been set for considering small, medium
and large scenario, up to 500 devices (threshold for smooth
simulations) while the offloading strategy contemplates that
task are executed exclusively on the Cloud or on the Edge
servers or on both with different percentages according to a
stochastic distribution.

A. UCI: Real-time asset monitoring for Industrial loT

A fixed number of devices (e.g., sensors embedded
within a conveyor belt) might forward data of differ-
ent sizes (e.g., vibration data with variable resolution or
in batch) for feeding algorithms of different complexities
(from lightweight classifiers to heavyweight long-short-term-
memory networks).

Results reported in Fig. 2(a) shows that, for a population
of 100 sensors deployed on a conveyor belt, the service
time exhibits markedly different trends between the Edge-
and the Cloud-based scenarios. In detail, the service time
is independent of the packet size but just of task length
in the Edge-based scenario; conversely, all the Cloud-based
configurations exhibit a clear correlation with the packet
size, independently from the task length. The same trends
characterize the service fails, as reported in Fig. 2(b). The un-
derlying motivation is that, as shown in Fig. 2(c), the network
is not overloaded (indeed, the contribution of network to the
service time is negligible) even with a packet size of 2,000
KB, but the Edge Servers, due to their limited CPUs, suffer
heavyweight tasks. Conversely, in the centralized scenario,
a bottleneck effect slows down the network and leads to
service failures, independently from the task length: indeed,
Cloud servers’ networking time of Fig. 2(c) exactly overlaps
the service time and exhibits a very similar trend to service
failure. The insights from this simulation are that both
responsiveness and reliability are exclusively impacted by
the task length in the Edge-based scenario and by the packet
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Fig. 2. Use Case 1: Industrial IIoT

size in the Cloud-based one. If we consider, for example,
a threshold value of 5 seconds for the service time and
20% for the service fails, the only suitable configurations
are (250, 500, 1,000 MI) for Edge and (20, 200, 500 KB)
for the Cloud. Therefore, if we aim at better performances,
we should increase, respectively, the CPU powers and the
network bandwidth.

B. UC2: Stroke detection for smart healthcare

Given a legacy system for stroke detection running a
particular algorithm, we aim at performing a scalability test
(i.e., how many users can be simultaneously monitored) with
varying input sizes (e.g., heartbeat and/or blood pressure
and/or oxygenation).

The results of Figs. 3(a) and 3(b) show, with a fixed
task length of 1000 MI, Edge-based configurations scale
better than Cloud-based ones, exhibiting horizontal lines
instead of piece-wise linear curves. In particular, the service
time is constant for all the configurations in Edge-based
scenario, despite both the number of users and packet size
change; the service time raises, instead, in all the Cloud-
based configurations, mostly due to the packet size and its
bottleneck effect on the network, also causing the majority
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of service fails. This hypothesis is confirmed by Fig. 3(c)
which highlights that the CPU usage of Cloud Servers is
negligible while it is relevant for Edge Servers: due to such
high utilization, the Edge-based scenario can hardly support
the simultaneous deployment of other CPU-intensive IoT
services. For example, given the critical nature of this use
case, we might tolerate up to 1 sec of service time and below
15% of service failures: such constraints would limit the
suitable settings to 100 devices for the Edge-based scenario
and 400 device - 200 KB for the Cloud-based one.

C. UC3: Object recognition for autonomous vehicles

Given a certain data to be exchanged within packet of
fixed size (e.g., same video-cameras mounted on each car
forwarding video of equal quality) and might be produced by
a variable number of devices (e.g., the autonomous cars we
consider) and elaborated according to algorithms of different
complexities (convolutional networks, histogram of oriented
gradients, etc.) based on their goal (from simple road sign
detection to advanced event recognition, like car accidents).

As shown also in the previous UCs, Cloud-based scenarios
mostly suffer the higher number of users and the subsequent
network traffic while the Edge-based ones the increasing task
length. In this particular UC where the packet size is fixed
and limited to 200 KB, the Cloud-based settings outperform
the Edge-based ones in terms of service time and service
fails for every configuration with a task length exceeding
the 2,000 MI, as shown respectively in Figs. 4(a) and (b).
Moreover, in both cases, the packet size weakly impacts
on the service reliability, thus the chosen algorithm might
be as lightweight as possible. For example, if we limit the
service responsiveness to Is and its reliability to 30%, the
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Fig. 4. Use Case 3: Autonomous Vehicles

only allowable Edge-based settings contemplates algorithms
of 250 and 500 MI, while Cloud Servers can handle up to
400 devices and task length of 4000 MI.

D. UC4: Augmented Reality for Mobile Gaming

The task-offloading strategy can be hybrid (pool of ser-
vice requests shared by Edge or Cloud servers), the data
exchanged in different packet sizes (e.g., users with different
smartphones might upload videos of different quality and
might receive different kind of contents) and the algorithms
more or less complex, according to the purchased plane (e.g.,
levels of a neural network for a higher precision).

In Fig. 5(a) we can clearly see how the task-offloading
impacts on the service time in a setting which contemplates
100 devices, a task length of 1000 MI and a variable packet
size values; in Fig. 5(b), instead, the service time is evaluated
with respect to 100 devices exchanging data packets of
200 KB according to different task length values; finally,
in Fig. 5(c), we inspect how stressed the CPU of Cloud
and Edge servers are in executing tasks of 2000 MI on
behalf of 100 devices. Main findings are manifold: 200 KB
is the packet size value representing a reversal point for the
service time trends; even with the minimum Cloud offloading
percentage of 10% the Edge-based scenario provides service
times comparable (less than 1 second of difference) to
the Cloud-based ones; the Edge-server utilization drastically
decreases only if the 60% are off-loaded to the Cloud server,
which conversely results poorly under-loaded. Starting from
these insights, developers can precisely manage the trade-off
between an Edge- and a Cloud-based deployment and also
individuate the most suitable server configuration for the IoT
service under development.
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V. CONCLUSIONS

IoT developers continuously face many design choices,
which can deeply impact on the overall system’s operations
and performance. An accurate parameter sweep analysis
properly conducted over a realistic IoT simulator can repre-
sent, therefore, a viable solution to support decision making
by preliminary assessing the IoT system under development.

Therefore, in this paper we have presented a simulator-
based and domain-neutral approach, first in its kind, to
evaluate the simultaneous and mutual impact of different
deployment settings, algorithmic aspects and data features
on the performance of an IoT service. We have performed
a parameter sweep analysis over EdgeCloudSim and we get
evidence that the responsiveness, reliability and efficiency
of both Cloud- and Edge-based deployments markedly vary
according to the specific parameter settings. In particular,
Cloud-based settings outperform in resource-intensive IoT
applications while Edge-based settings avoid bottleneck ef-
fects on the network and provide greater scalability. How-
ever, this is just a thumb rule: indeed, the optimal configu-
ration for a given IoT system can be established only case-
by-case through a comprehensive simulation-based analysis.

As future work, we aim at inserting the proposed approach
within a full-fledged modeling and simulation framework.
Doing so, the configuration of an IoT system according
to its many requirements and constraints can be treated as
an optimization problem and its best solution automatically
provided to the IoT developer for a final validation.
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