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Abstract—Geographically distributed data centers (DCs) offer
promising business opportunities to both big companies that own
several sites and multi-owner inter-cloud infrastructures. In these
scenarios, workload management is a particularly challenging
task, since the autonomy of single DCs should be preserved while
global objectives, such as cost reduction and load balance, should
be achieved. In this paper, a hierarchical approach for workload
management in geographically distributed DCs is presented. The
proposed solution is composed of two algorithms devoted to work-
load assignment and migration. Both algorithms are based on the
computation of a simple function that represents the cost of run-
ning some workload in the different sites of the distributed DC.
The framework requires a very limited exchange of state infor-
mation among the sites and preserves the autonomy of single
DCs and, at the same time, allows for an integrated manage-
ment of heterogeneous platforms. Performance is analyzed for
a specific infrastructure composed of four DCs, with two goals:
1) load balance and 2) energy cost reduction. Results show that
the proposed approach smoothly adapts the workload distribu-
tion to variations of energy cost and load, while achieving the
desired combination of management objectives.

Index Terms—Cloud computing, geographical data centers,
energy saving, cost saving, load balancing, VM migrations.

I. INTRODUCTION

THE EVER increasing demand for computing resources
has led companies and resource providers to build private

data centers (DCs), or to offload applications and services to
the DCs owned by a Cloud company. Due to this process,
the number and scale of data centers are rapidly increas-
ing. It is estimated that data center electricity consumption
is projected to increase to roughly 140 billion kilowatt-hours
annually by 2020, corresponding to about 50 large power
plants, with annual carbon emissions of nearly 150 million
metric tons. The financial impact for the DC management
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is also huge, since a DC spends between 30% to 50% of
its operational expenditure in electricity: the expected figure
for the sector in 2020 is $13 billion per year of electricity
bills.1

The efficient utilization of resources in the data centers is
therefore essential to reduce costs, energy consumption, car-
bon emissions and also to ensure that the quality of service
experienced by users is adequate and adherent to the stipulated
Service Level Agreements. Through the allocation of multiple
Virtual Machines (VMs) on the same physical server, the vir-
tualization technology helps to increase the efficiency of DCs.
A good level of efficiency must be guaranteed also in
geographically distributed DCs, whose adoption is rapidly
increasing. Major cloud service providers, such as Amazon,
Google, and Microsoft, are deploying distributed DCs to match
the increasing demand for resilient and low-latency cloud ser-
vices, or to interconnect heterogeneous DCs owned by differ-
ent companies, in the so-called “Inter-Cloud” scenario. In this
scenario, the dynamic allocation and migration of workload
among DCs has become also an opportunity to reduce costs,
moving the workload where the energy is cheaper/cleaner
and/or cooling costs are lower, according to what is called the
“follow the moon” paradigm. Inter-site migration is enabled by
the availability of a high network capacity achievable thanks
to physical improvements and logical/functional enhancements
(e.g., the adoption of Software Defined Networks).

While workload assignment and migration can be very
effective for cost reduction, the associated decision processes
are made particularly complex by the time-variability of elec-
tricity cost, and by the workload variability both within single
sites and across the whole infrastructure. Workload manage-
ment is typically solved as an optimization problem, often in
a centralized way. This approach has three main implications:
(i) poor scalability, due to the large number of parameters
and servers; (ii) poor ability to adapt to changing conditions,
as massive migrations of VMs may be needed to match a
new decision on the workload distribution; (iii) limitation to
the autonomy of the sites, which are often required to share
the same strategies and algorithms. The need for autonomous
management is self-explanatory in multi-owned DCs, and is
crucial even within a single-owner infrastructure, for example

1Updated information can be found on the Web portal of the
U.S. National Resources Defense Council, http://www.nrdc.org/energy/
data-center-efficiency-assessment.asp.
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in the case that one or several sites are hosted by co-located
multi-tenant facilities.

To tackle these challenging issues, this paper proposes
EcoMultiCloud, a hierarchical framework for the efficient
distribution of the workload on a multi-site platform. The
framework allows for an integrated and homogeneous man-
agement of heterogeneous platforms but at the same time
preserves the autonomy of single sites. It also gives the
data center administrators the opportunity of specifying
the business goals that are mostly relevant for the spe-
cific scenario – minimization of energy costs, load balancing,
reduction of carbon emission, etc. – and their relative impor-
tance, as well as constraints on the minimum values of the
objectives. Another key feature is the self-organizing and adap-
tive nature of the approach: VM migrations are performed
asynchronously, when and where needed, and their rate is
tunable by administrators.

The framework is composed of two layers: at the lower
layer, each site adopts its own strategy to distribute and con-
solidate the workload internally. At the upper layer, a set
of algorithms – shared by all the sites – are used to evalu-
ate the behavior of single sites and distribute the workload
among them, both at the time that new applications/VMs are
assigned and when some workload migration from one site
to another is deemed appropriate. At each site a Data Center
Manager (DCM) periodically sends to other sites’ DCMs a
number of parameters that summarize the state of the site: pos-
sible parameters include the overall utilization of resources,
the efficiency of computation, the energy costs, the amount
of CO2 emissions. Upon reception of such data from the
other sites, the DCM executes the upper layer algorithms to:
(i) determine the target data center to which a new applica-
tion or VM should be assigned, in accordance to the specified
goals; (ii) check if the workload is efficiently distributed
among the different sites and trigger migration of applications
when needed. This strategy resembles the one used to cope
with traffic routing in the Internet, where a single protocol –
Border Gateway Protocol – is used to interconnect different
Autonomous Systems (ASs), while every AS is free to choose
its own protocol – e.g., RIP or OSPF – for internal traffic
management.

The EcoMultiCloud framework was firstly presented in [1],
where it was also compared to ECE (Energy and Carbon-
Efficient VM Placement Algorithm) [2], the reference of
non-hierarchical approaches that have full visibility about all
VMs and servers. There, it was shown that the hierarchical
approach does not cause performance degradation with respect
to single layer algorithms, and in addition it offers notable
advantages in terms of time to convergence (because the bigger
problem is decomposed into several smaller ones), scalability,
autonomy of sites, overall administration, information man-
agement. With respect to [1], here the work is significantly
extended in many directions: (i) the algorithm for the assign-
ment of VMs is generalized to include and balance several
business goals; (ii) a new algorithm for triggering inter-DC
VM migrations is defined and evaluated; (iii) a mathematical
analysis is provided to confirm the validity of the approach;
(iv) a thorough performance evaluation shows how energy

costs can be reduced exploiting the time and space variability
of energy prices.

The contribution of the paper is the following: Section II
summarizes related work in the fields of data center opti-
mization and geographical workload distribution; Section III
presents the EcoMultiCloud architecture and specifies the
roles assigned to the upper and lower layers, as well as
their interaction; Section IV illustrates the algorithms adopted
for the assignment and migration of applications, and offers
a mathematical analysis that can be used both to predict
the performance and tune the algorithms depending on the
desired objectives; Section V illustrates the performance
results obtained with a simulation study for a specific sce-
nario including four data centers located in North America
and Europe; finally, Section VI concludes the paper.

II. RELATED WORK

Many successful efforts have been done to increase the
physical efficiency of data centers; for example, for its com-
ponents devoted to cooling and power distribution, and this is
confirmed by the general decrease of the PUE (Power Usage
Effectiveness Index), the ratio between the overall power
entering the data center and the power needed for the IT infras-
tructure. However, much remains to be done in terms of the
computational efficiency: for example, on average only a frac-
tion of CPU capacity of servers – between 15% and 30% – is
actually exploited, and this leads to huge inefficiencies due to
the lack of proportionality between resources usage and energy
consumption [3]. Improvements in this field are related to a
more efficient management of the workload and a better use of
the opportunities offered by virtualization. The efforts may be
categorized in two big fields: workload consolidation within
a single data center, and efficient workload management in
geographical infrastructures that include several remote data
centers.

Workload consolidation is a powerful means to improve IT
efficiency and reduce power consumption within a data cen-
ter [4]–[7]. Sheikhalishahi et al. [8] presented a multi-resource
scheduling technique to provide a higher degree of con-
solidation in multi-dimensional computing systems. Some
approaches - e.g., [9] and [10] - try to forecast the processing
load and aim at determining the minimum number of servers
that should be switched on to satisfy the demand, so as to
reduce energy consumption and maximize data center rev-
enues. However, even a correct setting of this number is only a
part of the problem: algorithms are needed to decide how the
VMs should be mapped to servers in a dynamic environment,
and how live migration of VMs can be exploited to unload
servers and switch them off when possible, or to avoid SLA
violations.

Self-organizing and decentralized algorithms have been
proposed to improve scalability, since the problem of con-
solidation is known to be NP-hard when addressed with a
centralized approach. In [11], the data center is modeled as
a P2P network, and ant-like agents explore the network and
collect information needed to migrate VMs and reduce power
consumption. The approach presented in [12] decentralizes
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part of the intelligence to single servers that take decisions
based on local information, using probabilistic functions, while
a central manager coordinates servers’ decisions to efficiently
consolidate the workload.

The problem is even more complex in geographically dis-
tributed data centers. Research efforts are focused on two
related but different aspects [13]: the routing of service
requests to the most efficient data center, in the so called
assignment phase, and the live migration of portions of
the workload when conditions change and some data cen-
ters become preferable in terms of electricity costs, emission
factors, or more renewable power generation.

Several studies explore the opportunity of energy cost-
saving by routing jobs when/where the electricity prices are
lower [14], [15]. Some prior studies assume that the elec-
tricity price variations and/or job arrivals follow certain sta-
tionary (although possibly unknown) distributions [16]–[18].
Rao et al. [19] tackle the problem taking into account
the spatial and time diversity in dynamic electricity mar-
kets. They attempt to minimize overall costs for multiple
data centers located in different energy marketing regions.
Shao et al. [20] study the effect of transmission delay intro-
duced by the routing of service requests and related data
across DCs. Yao et al. [17] propose a solution in which
the power cost can be reduced under delay tolerant work-
loads. By exploiting temporal and spatial variations of both
workload and electricity prices, they provide a power cost-
delay trade off which is exploited to minimize power expenses
at the cost of service delay. The considered target applica-
tions that can generate delay tolerant workloads are based
on MapReduce programming, including searching, social net-
working, data analytics. Lučanin and Brandic [21] focus on the
significant impact of “geotemporal inputs”, i.e., the time- and
location-dependent factors that may impact energy consump-
tion in geographically distributed data centers. Among such
factors, they consider real-time electricity pricing enabled by
the deregulated electricity market, the cooling efforts needed
at different sites and different times, and the availability of
renewable energy. The scheduling of the VMs in a geograph-
ical context is tackled through a two-stage approach, which
combines best-effort global optimization, driven by genetic
algorithms, with deterministic local optimization for constraint
satisfaction.

Liu et al. [14] propose a geographical load balancing (GLB)
approach to route general Internet service-requests to data
centers located in various geographical regions, by com-
puting the optimal number of active servers at each data
center. Yu et al. [22] propose a GLB algorithm to mini-
mize energy cost and control the risks at the same time, as
they model the uncertainties of price and workload as risk
constraints. Luo et al. [23] exploit temporal and spatial diver-
sities of energy price to trade service delay for energy cost.
The authors proposed a novel spatio-temporal load balancing
approach to minimize energy cost for distributed DCs. The
algorithms presented in [24] and [25] tackle the problem con-
sidering the user’s point of view, and aim to choose the most
convenient data center to which the user should consign a
service or VM.

Inter-DC VM migration is a more novel research topic, as
virtualization infrastructures have not offered such features so
far. However they will do in the near future: for example, the
vSphere 6.0 release of VMware includes new long-distance
live migration capabilities, which will enable VM migrations
across remote virtual switches and data centers. While oppor-
tunities opened by long distance migrations are big, involved
issues are also extremely complex: among them, determine
whether the benefits of workload migrations overcome the
drawbacks, from which site and to which site to migrate, what
specific portion of the workload should be migrated, how to
reassign the migrating workload in the target site, etc.

Some significant efforts have been done in this area. The
electricity price variation, both across time and location, is
exploited to reduce overall costs using different strategies. The
Stratus approach [26] exploits Voronoi partitions to determine
to which data center requests should be routed or migrated.
In [27], an optimization problem is formulated aiming at
minimizing operational costs. Ren et al. [28] use an online
scheduling algorithm based on Lyapunov optimization tech-
niques. Kayaaslan et al. [29] propose an optimization frame-
work based on the observation that energy prices and query
workloads show high spatio-temporal variation for throughput-
intensive applications like Web search engines. The optimiza-
tion framework is based on a workload shifting algorithm
considering both electricity prices, to reduce the energy cost,
and workload of data centers at the time of shifting, to reduce
response time. Le et al. [30] consider VM placement in cloud
for high performance applications. The authors propose VM
migration policies across multiple data centers in reaction to
variable power pricing. In order to adapt to the dynamic avail-
ability of renewable energy, Akoush et al. [31] argue for either
pausing VM executions or migrating VMs between sites based
on local and remote energy availability.

Most proposed approaches aim to solve the problem as a
whole, in a centralized fashion, undergoing the risk of originat-
ing three main issues, as discussed in the introductory section:
poor scalability due to the size of the problem and the hetero-
geneity of involved business objectives, poor ability to adapt
to changing conditions (e.g., changes in amount of workload,
electricity price or carbon taxes) and lack of autonomy of
single data centers. To efficiently cope with these issues, we
believe that it is necessary to decentralize part of the intelli-
gence and distribute the decisions points, while still exploiting
the centralized architecture and functionalities offered by vir-
tualization infrastructures in single data centers. This naturally
leads to a hierarchical infrastructure, in which single data
centers manage the local workload autonomously but com-
municate with each other to route and migrate VMs among
them. A self-organizing hierarchical architecture is proposed
in [32], but so far it is limited to the management of a sin-
gle data center. A recent study [33] proposes a hierarchical
approach that combines inter-DC and intra-DC request rout-
ing. The VM scheduling problem is decomposed and solved at
single data centers, and is able to combine different objectives,
e.g., minimize electricity cost, carbon taxes and bandwidth
cost. While the work certainly deserves attention, it only solves
the routing problem and does not exploit the opportunity of
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Fig. 1. EcoMultiCloud scenario: upper and lower layer of two interconnected
data centers.

dynamic workload migration, nor the approach seems to be
easily extensible in that direction.

To the best of our knowledge, our approach is among the
first to offer a solution for the multi-DC scenario that exploits
the benefits of a hierarchical architecture, balances multiple
business objectives and constraints, and integrates algorithms
for the assignment/routing problem and algorithms that trig-
ger inter-DC migrations to adapt the workload distribution to
varying conditions.

III. ARCHITECTURE FOR INTER-DC
WORKLOAD DISTRIBUTION

This section describes the hierarchical architecture of
EcoMultiCloud for the efficient management of the workload
in a multi-site scenario. The architecture is composed of two
layers: (i) the upper layer is used to exchange information
among the different sites and drive the distribution of VMs
among the DCs and (ii) the lower layer is used to allocate the
workload within single DCs.

EcoMultiCloud extends the decentralized/self-organizing
approach, recently presented in [12] and referred to as
EcoCloud, for the consolidation of the workload in a sin-
gle data center. With EcoCloud key decisions regarding the
local data center are delegated to single servers, which
autonomously decide whether or not to accommodate a VM
or trigger a VM migration. The data center manager has only
a coordination role. In a similar fashion, the EcoMultiCloud
architecture leaves most of the intelligence to single DCs. At
the lower layer, each DC is fully autonomous, and can man-
age the internal workload using either EcoCloud or any other
consolidation algorithm. At the upper layer, coordinating deci-
sions, for example about the necessity of migrating an amount
of workload from one site to another, are taken combining the
information related to single DCs. The upper layer algorithms
may be tuned or modified without causing any impact on the
operation of single sites.

The reference scenario is depicted in Figure 1, which shows
the upper and lower layer for two interconnected DCs, as well
as the main involved components. At each DC, a data center
manager (DCM) runs the algorithms of the upper layer, while
the local manager (LM) performs the functionalities of the
lower layer. In the most typical case, both the DCM and LM

Fig. 2. EcoMultiCloud scenario: the DCMs of four data centers exchange
high level information about the state of local data centers. Such information
is used, for example, to decide which site should accommodate a new VM.

may be deployed on the same host as the manager of the local
virtualization infrastructure, e.g., the vCenter in the case of
VMware. The DCM integrates the information coming from
the lower layer and uses it to implement the functionalities
of the upper layer. The DCM is required to: (i) communi-
cate with the local LM in order to acquire detailed knowledge
about the current state of the local DC, for example regard-
ing the usage of host resources and the state of running VMs;
(ii) extract relevant high level information about the state of the
DC; (iii) transmit/receive such high level information to/from
all the other DCMs; (iv) execute the algorithms of the upper
layer to combine the collected information and take decisions
about the distribution of the workload among the DCs. For
example, the assignment algorithm is used to decide to which
DC a new VM should be assigned. Once the VM is delivered
to the target site, the local LM runs the lower layer algorithms
to assign the VM to a specific host.

As depicted in Figure 2, the framework is designed so
that all the DCMs execute the upper layer algorithms and,
for example, choose the target DC for a VM originated
locally. This requires an all-to-all data transmission among the
DCMs. While the approach requires information exchanges
that scale quadratically with the number of DCs, the num-
ber of interconnected sites is expected to be small. Moreover,
the amount of information to be distributed is tiny, i.e., of the
order of a few packets, since it contains only a general descrip-
tion of the status of the DC: pieces of information such as
the load, the PUE, the electricity price need to be exchanged.
The periodicity of the information exchange is of the order of
an update per one or a few minutes, meaning that less than
1 Kbps of information exchange is needed. Thus, the choice
of a distributed approach, based on all-to-all data exchanges,
is not critical in terms of scalability and avoids the choice of
a single coordination point that in a multi-site scenario may
be inappropriate for administrative reasons. However, should
the number of DCs grow to large values (say, above a few
tens of sites) other kinds of interconnections are possible. As
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an example, a hierarchical architecture can be adopted for
the DCMs, in which DCs are organized in clusters; within
clusters, the DCs coordinate in an all-to-all fashion like the
one discussed in this paper. Periodically, each cluster leader
communicates with other clusters’ headers some information
such as the total workload in the cluster, the average cost and
energy consumption. Inter-cluster VM migrations can then be
decided. In what follows, we will describe the case in which a
few sites communicate with all the others in a full-mesh kind
of architecture.

Since the single DCs are autonomous regarding the choice
of the internal algorithms for workload management, the focus
here is on the algorithms of the upper layer. Two basic algo-
rithms are executed at each DCM: (i) the assignment algorithm
that determines the appropriate target DC for each new VM;
(ii) the migration algorithm that periodically evaluates whether
the current load distribution is appropriate, decides whether an
amount of workload should be migrated and, if so, determines
from which source site to which target site.

IV. EcoMultiCloud ALGORITHMS FOR WORKLOAD

ASSIGNMENT AND MIGRATION

As mentioned in the previous section, a key responsibil-
ity of the DCM is to analyze detailed data about the local
data center and summarize relevant information that is then
transmitted to remote DCMs and used for the assignment and
redistribution of workload. The nature of the high level infor-
mation depends on the objectives that must be achieved. Some
important goals are:

1) Reduction of consumed energy. Moderns DCs are
equipped with instrumentation to monitor the energy
consumed in computational resources. The total energy,
including that needed for cooling and power distribu-
tion, is obtained by multiplying the power used for
computation by the PUE (Power Usage Efficiency)
index;

2) Reduction of energy costs. The cost of electricity is gen-
erally different from site to site and also varies with time,
even on a hour-to-hour basis, therefore the overall cost
may be reduced by shifting portions of the workload to
more convenient sites;

3) Reduction of carbon emissions. Companies are today
strongly encouraged to reduce the amount of carbon
emissions, not only to compel to laws and rules, but
also to advertise their green effort and attract customers
that are increasingly careful about sustainability issues;

4) Quality of service. The workload must be distributed
without overloading any single site, as this may affect
the quality of the service perceived by users. The quality
of service may also be improved by properly com-
bining applications having different characteristics, for
example, CPU-bound and RAM-bound applications;

5) Load balancing among different sites. Among the ratio-
nales are: a better balance may help improve the respon-
siveness of the sites, decrease the impact on physical
infrastructure – e.g., in terms of cooling and power
distribution – and help prevent overload situations;

TABLE I
SYMBOLS AND NOTATION

6) Inter-DC data transmission. The assignment/migration
of VMs to remote sites should take into account many
factors, among which the type of application hosted by
the VM, the amount of involved data and the avail-
able inter-DC bandwidth. For example, migrating a VM
may not be convenient in the case that the VM hosts a
database server, while it may be appropriate if it runs
a Web application, especially in the frequent case that
Web services are replicated on several DCs.

All the above mentioned goals are important, yet different
data centers may focus on different aspects, depending on the
specific operating conditions and on the priorities prescribed
by the management. It is up to the company’s management to
specify the objectives and their relative weights. For example,
let us assume that the primary objectives are the reduction
of overall carbon emissions, the load balancing and the reduc-
tion of costs. These goals are representative of opposite needs,
the need for optimizing the overall efficiency (in terms of
costs and carbon emissions) and the need for guaranteeing
the fairness among data centers. Such opposite needs are to
be combined through properly defined weights, as described
in the next section.

Next sections are devoted to the description of the two
basics algorithms executed by the DCMs: the assignment
and migration algorithms. To simplify reading, in Table I the
notation used throughout the paper is reported.

A. Assignment Algorithm

The optimal distribution of the workload among the data
centers is driven by a purposely defined assignment function,
which balances and weights the chosen business goals. This
function associates to each DC a value that represents the cost
to run some workload in that DC, low values correspond to
low overall cost of the DC. The strategy, then, is to assign
a VM to the DC with the lowest value of the function. For
example, if the objectives are the balance of load, the mini-
mization of carbon emissions and the minimization of costs
related to energy, the assignment function f i

assign, for each DC i,
is defined as follows:

f i
assign = α · Fi

Fmax
+ β · Ui

Umax
+ γ · Ci

Cmax
(1)
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Fig. 3. The EcoMultiCloud assignment algorithm, executed by the DCM of each data center.

where the coefficients α, β and γ are positive and
α + β + γ = 1.

The function represents the decided balance among the var-
ious targets, and it corresponds to the strategic decision taken
by the system administrator on how the system should work.
It is applied to the system as a whole. The three terms Fi, Ui

and Ci, are related, respectively, to carbon emissions, overall
utilization and energy costs. The terms are normalized with
respect to the maximum values communicated by DCs. The
three mentioned goals – reduction of costs, reduction of car-
bon emissions and load balancing – are weighted through the
values of the coefficients. After computing the values of fassign

for each DC, the VM is assigned to the data center having the
lowest value. Once consigned to the target DC, the VM is allo-
cated to a physical host using the local assignment algorithm,
for example EcoCloud [12]. The assignment function and its
effects will be discussed with more details in Section IV-C,
with the help of a mathematical model.

To compute the assignment function, it is required that the
DCM of each data center transmits to the others some very
simple pieces of data, which are then used to compute the three
mentioned terms. In the examined case, relevant information
is: (i) the best available carbon footprint rate of a local server,
fs, (ii) the utilization of the bottleneck resource, Ui, and (iii) the
energy cost, Ci. In this paper, for simplicity, we assume that
the PUE value of each DC is known and constant. However, no
modification is required to the algorithms if the PUE changes,
as long as it is known. The carbon term Fi of a DC i,
measured in Tons/MWh, defines the best available carbon
rate, i.e., the carbon footprint rate (carbon emitted per con-
sumed energy) of the most efficient available server [2], and is
computed as:

Fi = PUEi · min{ fs| server s is available} (2)

The rationale is that, when assigning a VM, the target DC
should be chosen so as to minimize the incremental increase
of the carbon footprint. To this aim, a DCM does not need
to know the carbon footprint rate of all the servers of remote

sites: it only needs to know, per each site, the minimum rate
among the servers that are available to host the VM.

The utilization of the bottleneck resource is determined by
computing the overall utilization of each hardware resource:
CPU, RAM, storage, etc. For example, the utilization of CPU
is defined as the total amount of CPU utilized by servers
divided by the CPU capacity of the entire DC, and the uti-
lization of other resources is computed in a similar way. The
bottleneck resource for a DC i is the one with the highest
value of utilization, and this value is denoted as Ui.

Finally, the energy cost term, Ci, is defined as:

Ci = PUEi · Pi (3)

where Pi is the price of electricity ($/kWh) and is assumed
to be the same on all the servers of a data center. Indeed, the
overall cost of energy is obtained by multiplying the energy
consumed by the IT component of the data center first by
the PUE – which gives the total amount of consumed energy,
including power distribution and cooling – and then by the
price of energy.

In conclusion, each DCM transmits to the other DCMs, the
following vector of values, which corresponds to the state of
the DC:

si = {Fi, Ui, Ci} (4)

Figure 3 reports the pseudo-code used by a data center DCM
to choose the target data center, among the NDC data centers
of the system, for a VM originated locally. First, the DCM
requests the values of Fi, Ui and Ci to all the remote data
centers.2 Then, it computes the maximum values of the terms,
for the normalization, and computes expression (1) for any
data center that has some spare capacity, i.e., for which the
utilization of the bottleneck resource has not exceeded a given
threshold UTi . Finally, the VM is assigned to the DC that has
the lowest value of (1). Once consigned to the target DC, the

2As an alternative, values can be transmitted periodically in a push fashion.
In both cases the amount of transmitted information is tiny.
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VM is allocated to a physical host using the local assignment
algorithm.

B. Migration Algorithm

The assignment algorithm optimizes the distribution of the
VMs on the basis of the chosen objectives and their respec-
tive weights. The values of the fassign function tend to be
equal in the different data centers, as discussed in detail in
Section IV-C. However, the distribution may become ineffi-
cient when the conditions change, e.g., the load or the price
of energy vary in one or more data centers. In such cases,
inter-DC VM migrations are performed to redistribute the
workload.

The migration algorithm is triggered when the values of
the fassign functions of two DCs differ by more than a
predetermined threshold, for example in what follows we will
use 3%.3 The frequency at which this condition is evaluated
should depend on the dynamism of the specific scenario, for
example on the frequency at which the price of energy varies.
When such an imbalance is detected, VMs are migrated from
the data center having the highest value of fassign to the data
center with the minimum value, until the values reenter within
the tolerance range. The frequency of migrations is limited
by the bandwidth between the source and target data centers.
This bandwidth may correspond to the physical bandwidth
of inter-DC connections or may be a portion of the physi-
cal bandwidth reserved by data center administrators for this
purpose. In some cases, a few migrations might be needed
between two DCs simply to balance some load fluctuations
that make the fassign functions of the DCs differ more than
desired. These events typically require only a few migrations.
In other cases, a batch of migrations are instead necessary to
compensate abrupt changes of the fassign function in a DC,
for example, due to some electricity price variations. When
this happens, the process as described above translates into a
sequence of VM migrations between pairs of DCs until a new
balance among all the fassign functions is reached. When the
abrupt change makes a DC become the best performing DCs,
multiple VM migration requests will be made by the other
DCs; to avoid congestion on the access links of the receiving
DC, the VM migration process can be easily coordinated by
the DCM of the receiving DC.

Here, we would like to highlight the adaptive and
self-organizing nature of the algorithm, as migrations
are performed only when needed, asynchronously, and at
predetermined and controlled rates. This is in contrast with
most migration algorithms which require that the assignment
of VMs is recomputed at fixed time intervals and generally
need lots of concurrent migrations to achieve the new assign-
ment pattern, possibly deteriorating the quality of service.

C. Analysis of the Assignment and Migration Algorithms

We now analyze the effect of the assignment function (1).
The function represents a metric of cost, that is the cost to

run a VM in a given DC. As mentioned before, in the case

3In our scenario, the threshold was chosen after some trials not reported
here for the sake of brevity.

of (1), three objectives are considered: reduction of cost, reduc-
tion of carbon emissions and load balance. Other objectives
can also be considered and, in the general case, the expression
to define the assignment function for DC i becomes:

f i
assign =

M∑

k=1

βk
Yk

i

Yk
max

with
M∑

k=1

βk = 1 (5)

where M objectives are defined, based on the costs Yk
i , nor-

malized with respect to the maximum cost Yk
max. The weights

βk sum to 1 to represent the relative importance of the various
components of cost.

In what follows, the focus is shifted to the minimization of
costs in the case that the price of energy varies both among
different data centers, located in different countries, and with
time. The general assignment function, given in (5), is thus
instantiated to take into account two objectives, load balancing
and monetary cost minimization, thus obtaining:

f i
assign = β · Ui

Umax
+ (1 − β) · Ci

Cmax
(6)

The utilization U, defined as the overall utilization of the
bottleneck hardware resource, and the energy cost C, are used
to balance two opposite needs: the optimization of the overall
efficiency and the fairness among data centers.

We order the DCs based on the value of Ci, so that, Ci < Cj

if i < j; in other words, we order the DCs from the best
performing in terms of energy cost to the least performing
one. We now study the effect of (6) on the steady-state working
point of the multi-site system. The steady-state corresponds to
the values of workload that are reached by the DCs, once the
system has adapted to the values of the assignment functions.
Given a total load �, at the steady-state, the load distributes
among the DCs in such a way that all the DCs exhibit the same
value of f i

assign; in addition, no other load distribution would
allow such a low value of f i

assign. Indeed, the DCM allocates
a VM to the DC i with the smallest value of f i

assign; but, the
allocation of the VM to the DC makes f i

assign increase and get

closer to the other functions f j
assign. Thus, differences among

the values of f i
assign reduce and at the steady-state vanish. The

reached steady-state minimizes the maximum value of f i
assign.

The steady-state distribution of the load, denoted by the
terms U∗

i , can be derived by the solution of the system of
linear equations,

{
β

U∗
i

U∗
max

+ (1 − β) Ci
Cmax

= β
U∗

j
U∗

max
+ (1 − β)

Cj
Cmax∑NDC

i=1 U∗
i = � with 0 ≤ U∗

i ≤ UTi

(7)

where UTi is the maximum allowed workload in DC i.
Given the chosen DC ordering, C1 ≤ Ci and U1 ≥ Ui for

all i. The DC 1 is, thus, the most loaded DC and Umax = U1.
We call DC 1 the reference DC. The system (7) leads to the
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Fig. 4. Relative load versus β for a case with 4 DCs.

following solution,
{

U∗
i = U∗

1

[
1 − 1−β

βCmax
(Ci − C1)

]
= U∗

1 li
∑NDC

i=1 U∗
i = �

(8)

The load distributes in such a way that the larger the terms
(Ci − C1) is (that means the larger the cost to run a VM in
DC i is), the smaller the load allocated to DC i is.

The terms li = 1 − (1 − β)/(βCmax)(Ci − C1) define the
relative load of the DCs with respect to the best performing
DC (the reference DC). The term β corresponds to the weight
of load balance with respect to monetary costs; as β → 1, the
policy tends to a pure load balance in which the load is the
same for all the DCs; i.e., li → 1.

As an example, Figure 4 shows the relative load for the
case with NDC=4 DCs, with energy prices and PUE values
taken from the scenario that will be discussed in Section V.
Clearly, as the weight β decreases, the importance of load
balance decreases, and the gap among values of the load in
the various DCs increases. Figure 4 can be used to define the
setting of β. Assume, for example, that a load balance target
imposes that the relative load between DCs cannot be smaller
than 0.5, i.e., one DC cannot have more than twice the load
of another DC. Then, from the figure, we can find that the
minimum possible value for β that guarantees this load balance
target is 0.52. This value, or a slightly higher one, should then
be used if the objective is to minimize the monetary cost while
respecting the constraint on the load balance.

In the solution of (7), some values of U∗
i might turn to be

negative. These are the cases in which the corresponding DC i
has such a high cost that it is more convenient to allocate the
VMs to the other better performing DCs, i.e., DC j, with j < i.
In Figure 4, for example, when β = 0.3, the VMs are assigned
to DC 1, 2, 3 while the fourth DC is not used. Moreover,
when � is large, the solution of (7) leads to some Ui > 1.
Clearly, these solutions are not acceptable. In these cases, the
corresponding DCs are fully loaded and the additional load is
distributed among the less performing DCs.

One of the main characteristics of the proposed solution
is the possibility to adapt the load allocation to changes of
the considered terms, that is, in the case considered above, to
changes of the electricity cost. When the cost Ci varies, for
example due to electricity tariffs that have daily variations, the

system adapts to it by changing the allocation of the load to
the DCs, i.e., the values of Ui. In particular, the variations of
load must follow those of Ci according to the derivative of (8),

dUi

dCi
= − U∗

1

Cmax

1 − β

β
(9)

An increase of Ci causes a decrease of the load associated to
DC i; the decrease depends on the parameter β and, similarly,
a decrease of Ci causes an increase of the load of DC i. These
load changes are performed through migrations: in the first
case, migrations out of DC i are needed, in the second case,
some VMs have to be migrated to DC i. Migration flows will
occur in proportion to the values of the relative loads under
the new conditions, i.e., after the change of Ci. In practice,
the migrations can be coordinated by the DCM of DC i.

The effectiveness of the adaptation of load to variations of
cost depends on the relative timescale of tariff variations with
respect to VM arrivals and departures. For example, when
electricity tariffs change a few times per day, as is usually the
case, systems with highly dynamic VM arrivals and departures
easily and quickly adapt to tariff changes. Conversely, when
VMs lifetime is of the order of days, the system is too slow
to adapt to tariff variations; in this case, VM migrations are
needed to make the system adaptive.

Assume that, at some time of the day, the cost Ci increases
of a quantity �Ci and that the relative load of a VM in DC i
is given by ui. The variation of the number of VMs in DC i
that is needed to reach the new optimal load allocation, is
given by

X = −�Ci

ui

U∗
1

Cmax

1 − β

β
(10)

where the negative terms corresponds to the fact that if the
energy price increases, the number of VMs should decrease.

To reach the new desired load allocation, DC i has to get rid
of X VMs. This can be achieved by the natural termination of
the lifetime of a VM, and by migrations. Assume that the rate
at which VMs terminate is given by μi VMs/s; in general,
μi depends on the average VM lifetime and on the typical
number of VMs in the DC. If we want to guarantee that the
optimal allocation after the tariff change is reached in a time
Tm (that stands for time for migrating), we need to guarantee
that, in addition to VM terminations, some VMs are migrated
out of DC i at speed vi that can be computed as,

(μi + vi)Tm ≥ −X (11)

That is, the number of VMs that leave the DC (due to either
VMs termination, with rate μi, or migration, with rate vi) in
the time Tm must be larger than X. Hence, the migration speed
must be,

vi ≥ −X

Tm
− μi = �Ci

Tmui

U∗
1

Cmax

1 − β

β
− μi (12)

As discussed previously, the VMs migrate from DC i to
the other DCs based on the differences between the func-
tions f i

assign.
Assume that the migration speed vi is set according to (12)

and such that the duration of the migration period is T < Tm;
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Fig. 5. Time to migrate the VMs versus variations of the energy price �C,
for several values of the migration speed; β = 0.5.

Fig. 6. Time to migrate the VMs versus β, for several values of the migration
speed, �C = 0.2 $/kWh.

with T = −X/(vi + μi). As can be seen in Fig. 5, in sce-
narios like the one considered above, the time to migrate the
VMs is of the order of a few hours. Increases of the migration
speed can have very beneficial effect when large price varia-
tions occur. For example, for �C = 0.5 $/kWh, doubling the
migration speed from 50 to 100 VMs per hour reduces the
time T to about an 1 h. However, when β is small, variations
of electricity price translate into very large numbers of needed
migrations and long times to converge to the optimimal load
distribution. This behavior is shown in Fig. 6. For β = 0.1, up
to 10 h are needed when the migration speed is low. Similar
considerations can be done for the case in which the energy
cost at DC i decreases and some VMs have to be migrated to
DC i.

V. PERFORMANCE EVALUATION

This section is devoted to the performance evaluation of
EcoMultiCloud. The evaluation is organized in three main
parts. In the first one, we focus on the potential cost into which
the system incurs if it does not adapt to time-varying energy
price, and to isolate this effect we assume a stable load and
observe the system working conditions after the assignment
phase. In the second part, we examine how migrations can
help to make the workload distribution adaptive to changes of
the electricity price. In the third part, we estimate the energy

TABLE II
PUE AND LOCAL TIME OF THE FOUR DCS IN THE EXAMINED SCENARIO

TABLE III
ENERGY PRICE, EXPRESSED AS $/kWh, FOR THE 4 DCS. THE TABLE

SHOWS ONLY THE TIME, EXPRESSED IN UTC, CORRESPONDING

TO THE ENERGY PRICE CHANGE IN AT LEAST ONE DC

consumption, including the amount of energy needed for VM
migrations.

As mentioned in the introductory section, a careful
analysis of the hierarchical approach was already per-
formed in a previous work [1] by comparing the results
of EcoMultiCloud with the reference of non-hierarchical
approaches, namely ECE (Energy and Carbon-Efficient VM
Placement Algorithm) [2]. Thus, our purpose here is not to
validate the hierarchical approach, but, rather, to focus on the
minimization of costs in the case that the energy price varies
both among DCs located in different countries, and with time.

We consider a system with two objectives, load balancing
and cost minimization, that are reflected by the assignment
function in (6), reported here for the reader’s convenience,

f i
assign = β · Ui

Umax
+ (1 − β) · Ci

Cmax

The function works with two terms per DC: the utilization
Ui and the energy cost Ci. The scenario under analysis is the
same of [1] and [2], with four interconnected DCs and val-
ues of the PUE as reported in Table II; time zones are also
indicated with respect to UTC, assuming that the DC loca-
tions are, respectively, California, Ontario (Canada), U.K. and
Germany. Table III reports energy prices in a 24 hours interval,
again time is expressed in UTC.4 To simplify the analysis, it
is assumed that the prices repeat periodically for a few days.
The term Ci is obtained by multiplying the PUE of DC i as
in Table II by the electricity price reported in Table III.

Data about VMs and physical hosts are taken from the
logs of a Proof of Concept performed by the company

4Energy prices are taken or extrapolated from the following Web sites:
• California: www.pge.com/tariffs/IndustrialCurrent.xls.
• Ontario: www.hydroone.com/RegulatoryAffairs/RatesPrices/Pages.
• U.K.: en.wikipedia.org/wiki/Electricity_billing_in_the_UK.
• Germany: www.iwr-institut.de/en/press/background-informations.
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Eco4Cloud srl (www.eco4cloud.com), spin-off from the
National Research Council of Italy, on the DC of a telecom-
munication operator. The DC contains 112 servers virtualized
with the platform VMware vSphere 5.0. Among the servers, 76
are equipped with processor Xeon 24 cores and 100-GB RAM,
and 36 with processor Xeon 16 cores and 64-GB RAM. All
the servers have network adapters with bandwidth of 10 Gbps.
The servers host 2000 VMs which are assigned a number
of virtual cores varying between 1 and 8 and an amount of
RAM varying between 1 GB and 16 GB. The most utilized
resource in this scenario is the RAM, therefore the RAM uti-
lization of DC i is considered when computing the utilization
Ui in (6). A constraint imposed by the DC administrators was
that the utilization of server resources must not exceed 80%,
i.e., UTi = 0.8. Servers and VMs are replicated for all the DCs,
while the values of PUE and energy price are differentiated as
described above.

The performance is analyzed with an event-based Java sim-
ulator that was previously validated with respect to real data
for the case of a single DC [12]. At a time UTC=0, corre-
sponding to midnight for DC 3 that is located in U.K., all the
VMs are assigned one by one by executing the assignment
algorithm described in Section IV-A: (i) each VM is delivered
by the local DCM to the DC having the lowest value of the
assignment function fassign; (ii) within the target DC, the VM
is assigned to a specific host using, as local assignment algo-
rithm, the EcoCloud algorithm presented in [12], which proved
to achieve a nearly optimal degree of workload consolidation.5

Results are obtained, unless otherwise stated, for β=0.5 and
total load �=50%. Since the RAM is the bottleneck resource,
the overall load � of the system is defined as the ratio between
the total amount of RAM utilized by the VMs and the RAM
capacity of the entire system. Thus, the overall number of VMs
is chosen so as to load the whole system to the desired extent.

A. Constant Load, No Migration

In the first scenario, the number of running VMs is assumed
to be stable: no VM terminates or is generated, and inter-DC
migrations are not allowed.6

Table IV reports the values of RAM utilization of the DCs,
at the end of the assignment phase, for different values of the
overall load � (50% and 75%) and β (0, 0.5 and 1). The table
shows that, for any given load, the parameter β can be used to
tune the two objectives, cost minimization and load balance.
With β=1, all the DCs are equally loaded since load balancing
is the only objective. With β=0, the load is preferably assigned
to the DCs with lowest energy price, which are loaded up
to their maximum capacity. With β=0.5, there is a tradeoff
between the two objectives: for example, with overall load
equal to 50%, the RAM utilization ranges between 36.2% (at
the most expensive DC at time of assignment, namely DC 1)
to 69.4% (at the most convenient DC, DC 2).

5Any other efficient consolidation algorithm can be adopted as local assign-
ment algorithm, with no remarkable effect on the overall performance of
multi-DC assignment.

6The hardware requirements of single VMs, as extracted by the real traces
used for the experiment, are dynamic.

TABLE IV
RAM UTILIZATION OF THE DCS WITH DIFFERENT VALUES OF β AND

OVERALL LOAD �, AT THE END OF THE ASSIGNMENT PHASE

Fig. 7. Values of fassign vs. time. Results obtained with simulation and
mathematical analysis are reported for comparison.

Fig. 8. Energy cost per hour vs. time for the single DCs. The total cost is
the sum of the four costs.

Figure 7 shows the values of the fassign function for the
different DCs, as obtained from simulations and from the
mathematical analysis illustrated in Section IV-C, for the sce-
nario with β=0.5 and overall load �=50%. Right after the
assignment phase (executed at time 0), the values of the fassign

function for the different DCs are the same, as discussed and
anticipated in Section IV-C. Subsequently, due to energy price
variations during the day, the values of fassign vary and dif-
ferentiate from each other, which is a sign that the initial
assignment becomes inefficient (and it cannot be modified
since migrations are not allowed and VMs do not start or
terminate). For example, at time UTC=7 the fassign value of
DC 4 is higher than the value of DC 1, therefore it would
be advantageous to move a portion of the workload from the
former DC to the latter.

Figure 8 shows the hourly cost of the energy consumption
for the single DCs as well as the total cost. Clearly, the costs
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Fig. 9. Arrival rate of new VMs per hour.

are heavily affected by the variations of energy price along the
24 hours. In the next section, it is shown that the costs can be
notably reduced through inter-DC migrations.

B. Dynamic Load and Migrations

The second set of experiments is performed in a scenario
in which two phenomena are enabled: the turnover of VMs
and the inter-DC migration process. The first phenomenon is
related to the arrival and departure of VMs. We assume that
new VMs are launched at different rates during the day and
the night, namely λday and λnight, and that λday = 2 · λnight.
Figure 9 reports the arrival rates at the four DCs in a 24 hours
interval, and the overall arrival rate to the whole system. We
also assume that the average lifetime of a VM, denoted as 1/μ,
is equal to 180 hours.

The variations of energy price and the arrival/departure
process contribute to break the equilibrium achieved at the
assignment phase. Inter-DC migrations are then used to prop-
erly redistribute the workload, as explained in Section IV-B.
Workload migration is triggered when fassign values of two
DCs differ by more than 3%, which is checked at intervals
of 60 minutes. Experiments were performed with different
values of the bandwidth that is available or reserved for
DC migrations: 0.5 Gbps, 1 Gbps, 2 Gbps and 5 Gbps. In
the examined scenario, such values of bandwidth enable the
migration, respectively, of about 50 VMs, 100 VMs, 200 VMs
and 500 VMs per hour. When it is not specified, a bandwidth
of 2 Gbps is assumed. The results reported in the following
are related to a 24-hour interval corresponding to the third day
after the initial assignment of VMs. This allows the results to
become independent from the conditions experienced at the
time of the initial assignment, in particular from the price of
energy at that time. Indeed, it was observed that the biasing
caused by the initial conditions vanishes after the first day,
thanks to inter-DC migrations that are performed during this
time. This can be observed in Figure 10: values of fassign repeat
cyclically every 24 hours, starting from the second day.

Figure 11 focuses on the values of fassign during the third
day. While the variations of energy prices tend to stretch
fassign values apart, as previously seen in Figure 7, inter-DC
migrations let the functions approach each other, making the
workload distribution more efficient. Figure 12 shows that the

Fig. 10. Values of fassign vs. time for the first three days after the initial
assignment.

Fig. 11. Values of fassign during the third day after the initial assignment.

Fig. 12. Utilization of DCs vs. time during the third day after the initial
assignment.

load of DCs adapts to the energy price variations. For example,
at the time labeled as 60 (12 am UTC of the third day), the
most loaded DCs are DC 1 and DC 2, because in the preceding
hours they have been the DCs with the lowest energy price –
see Table III – and have then attracted VMs from the other
two DCs.

Figure 13 shows the energy costs of the four DCs. The
inter-DC migration process makes costs closer to each other,
as can be observed by comparing this figure to Figure 8. Most
importantly, the total cost notably reduces: Figure 14 reports
the total energy cost obtained with two different values of
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Fig. 13. Energy cost per hour vs. time during the third day after the initial
assignment.

Fig. 14. Total energy cost per hour vs. time during the third day after the
initial assignment, with different allowed migration rates.

Fig. 15. Total daily energy cost in the third day vs. the allowed migration
rate, for different values of β.

inter-DC bandwidth and, for the sake of comparison, in the
case that migrations are disabled (curve “no migrations”) and
in the case that the migrations are instantaneous, taken as a
theoretical limit. Cost savings clearly increase with the allowed
bandwidth.

The total daily cost of energy is reported in Figure 15,
for different values of inter-DC bandwidth and β. In the
case examined so far, with β=0.5, the daily cost is equal
to about $973,000 if migrations are not allowed, while it
is about $860,000 when the bandwidth is 2 Gbps, resulting

Fig. 16. Coefficient of variation in the third day of operation for different
values of β.

Fig. 17. Utilization of DCs vs. time during the third day after the initial
assignment. Overall load �=75%.

in a cost saving of about $113,000, corresponding to 11%.
Cost savings are even higher with β=0, since the load bal-
ancing is not taken into account, and cheaper DCs are able
to attract more VMs. In this case, the daily saving increases
to about $219,000, or 21%. Conversely, with β=1, all the
DCs support the same load and, since the load balance is
the only objective, no inter-DC migrations are triggered even
when allowed, and no cost saving can be achieved. It is also
noticed that lower values of β correspond to lower values of
daily cost, as expected, except when no inter-DC migrations
are allowed.

Figure 16 helps to understand the effect on the load balanc-
ing objective. The figure reports the value of the coefficient
of variation in the third day of operation with three different
values of β. The index is computed by considering the RAM
utilization of the four DCs and dividing the standard devia-
tion by the average. With β=1 the DCs are equally loaded, as
desired. With β=0 the distribution of load is completely deter-
mined by costs, so the imbalance is maximum. Finally, with
β=0.5 the values are intermediate between the two extreme
cases, and the large fluctuations reflect the fact that inter-DC
migrations are used to dynamically redistribute the load as
required by the varying values of energy price.

Finally, Figure 17 shows the utilization of the DCs
for the case of a higher overall load, i.e., � = 0.75,
for β = 0.5. It is observed that when the load is
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Fig. 18. Power consumption of DCs vs. time during the third day after the
initial assignment, with β=1. Overall load �=50%.

high, the most convenient DCs may reach full utilization,
but the actual load distribution still depends also on the
energy cost.

C. Energy Consumption

The business objectives of the data center administrators are
established through the choice of the appropriate components
in the expression of the assignment function (5) and through
the tuning of the corresponding weights. In (6), the two chosen
objectives are the reduction of energy costs and the load bal-
ance. However, other metrics can be affected indirectly. For
example, the cost of the consumed energy depends on both
the price of electricity and the PUE, as stated in (3), since
the amount of consumed energy depends on the PUE. If the
data center administrators operate to reduce the energy costs,
they can also achieve a significant reduction in the energy
consumption, though the latter objective is not specifically
declared.

This beneficial effect is indeed observed in the examined
scenario. Figure 18 shows the amount of energy that is con-
sumed by the four data centers, and the total consumption, in
the scenario examined in Section IV-B, with � = 50% and
β = 1. Since the data centers are equally loaded (β = 1),
the energy consumption at the data centers is proportional to
the values of the PUE index. The overall energy consumed
in the data centers in one day of operation is 5388 kWh.
Figure 19 reports the energy consumed with β = 0, i.e., when
the objective is the reduction of energy costs only. In this
case, the energy consumption is reduced because less load
is assigned to data centers with higher values of the PUE.
The energy savings are lower than cost savings, both because
energy saving is not the the primary objective and because the
PUE values are not so different among each other. However,
the energy saving is significant: the overall amount of energy
consumed in one day reduces to 4950 kWh when β = 0,
which corresponds to an energy saving of 8.12%.

The migration of VMs leads to incremental energy con-
sumption. We now quantify this extra-consumption and show
that it is negligible with respect to the total amount. In [34], an
accurate model for energy consumption due to VM migration

Fig. 19. Power consumption of DCs vs. time during the third day after the
initial assignment, with β=0. Overall load �=50%.

is presented7: the consumed energy Emig, expressed in Joules,
can be computed as:

Emig = m · Vmig + n (13)

In this expression, Vmig is the amount of migrated data, mea-
sured in megabytes, and m and n are parameters whose values
depend on the approach adopted for live migration. To make
the migration procedure transparent to the user, the VMware
virtualization platform uses the precopying algorithm, i.e., the
memory pages are pushed across the network to the new
destination while the source VM continues running, and the
memory pages get dirtied during the migration are itera-
tively re-sent to ensure memory consistency. The parameters
are trained in [34] using linear regression and ordinary least
squares estimation, and the obtained values are m = 0.512 and
n = 20.165, which we use for our estimation.

In Section IV-C, the amount of data involved in VM migra-
tions was estimated for the case that, after the values of the
function fassign of the data centers have reached a steady state
and are equal to each other, a variation �C of the energy
cost is experienced at one of the data centers. In such a case,
the amount of data to migrate to return to the equilibrium
condition, Dmig, is:

Dmig = −�Ci · U∗

Cmax
· 1 − β

β
(14)

where U∗ is the overall RAM utilization of the most loaded
data center and Cmax is the maximum cost of energy among
the four data centers.

For example, let us take the case of the experiment dis-
cussed in Section IV-B, with � = 50% and β = 0.5. After
the initial assignment, the energy price of DC 1 decreases from
0.15 $/kWh to 0.11 $/kWh (see Table III). The PUE of DC 1
is equal to 1.56 (Table II), so the corresponding variation �C
of the energy cost is (0.11 − 0.15) · 1.56 = −0.0624 $/kWh.

7The model derived in [34] only considers the energy drawn by each migra-
tion side, while it ignores the energy consumed by the switching fabric during
the migration. The reason is that in a geographical scenario the network
connecting the two ends can be very complex, so the consumed energy is
hard to quantify. Moreover, since the network elements are typically owned
by multiple Internet and telecommunications companies, it is questionable if
the consumed energy should be accounted in the energy balance of the data
centers.
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The value of Dmig is then8:

Dmig = 0.0624 · 9.9 · 106 · 0.694

0.234
· 1 − 0.5

0.5
MB

= 1.856 · 106MB (15)

The energy consumed to migrate this amount of data,
according to (13), is about 950,000 Joules, or about
0,264 kWh. Notice that this is an approximate computation
mainly because the values of the parameters m and n in (13)
are taken from [34] and suited to represent the scenario that
is considered there; their values should be evaluated for other
considered environments. However, it is clear that the expected
consumed energy is very low with respect to the overall energy
consumed in the data centers, and can be neglected in this
context.

VI. CONCLUSION

The paper focused on the challenging task of workload
management in multi-site data centers. A new hierarchical
approach, named EcoMultiCloud, was presented and evalu-
ated. The proposed solution is based on a function that defines
the cost of running some workload on the various sites of the
distributed data center. The function can be tailored to prop-
erly trade-off the various possible management goals, such as
energy cost reduction and load balance. Moreover, the solution
preserves the autonomy of the sites for the internal manage-
ment. The presented results show that the proposed solution,
despite being simple and requiring a very limited informa-
tion exchange among the sites, smoothly adapts the workload
distribution to variations of the working conditions, such as
changes of the energy cost and daily load fluctuations. Future
research will be devoted to the definition of techniques based
on a differentiated management of different classes of VMs,
both in the assignment phase and in the migration phase. For
example, the migration of CPU-intensive VMs can be partic-
ularly useful to reduce energy consumption and energy costs,
because these VMs can be migrated more easily than disk-
and RAM-intensive VMs, and because energy consumption is
more sensitive to the variations of CPU utilization than to the
variations of other hardware resources’ utilization.
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