
High performance framework to analyze
microarray data

Fabrizio Marozzo1, Loris Belcastro1

University of Calabria [fmarozzo,lbelcastro]@dimes.unical.it

Summary. Pharmacogenomics is an important research field that studies the im-
pact of genetic variation of patients on drug responses, looking for correlations
between Single Nucleotide Polymorphisms (SNPs) of patient genome and drug tox-
icity or efficacy. The large number of available samples and the high resolution of
the instruments allow microarray platforms to produce huge amounts of SNP data.
To analyze such data and find correlations in a reasonable time, high-performance
computing solutions must be used. Cloud4SNP is a bioinformatics tool, based on
Data Mining Cloud Framework (DMCF), for parallel preprocessing and statistical
analysis of SNP pharmacogenomics microarray data.

This work describes how Cloud4SNP has been extended to execute applications
on Apache Spark, which provides faster execution time for iterative and batch
processing. The experimental evaluation shows that Cloud4SNP is able to exploit
the high-performance features of Apache Spark, obtaining faster execution times
and high level of scalability, with a global speedup that is very close to linear values.

Key words: Pharmacogenomics, Single Nucleotide Polymorphisms, Statistical
Analysis, Cloud Computing

Running head: High performance framework to analyze microarray data

1 Introduction

In recent years there has been a growing interest about the biomedical omics dis-
ciplines, such as genomics, proteomics, and interactomics. In particular, genomics
is the study of the activity of genes, proteomics focuses on the activity of proteins,
and interactomics concerns the study of protein interactions inside a cell [10].

In a typical case-control study, microarray technology is able to measure the
expression level of genes present in biological samples, which results in a matrix
of real numbers where the value (i, j) represents the expression of the gene i on
the sample j. More recently, genotyping microarrays make it possible to detect
the genetic variant between samples, i.e., to detect variations in nucleotides with
respect to a reference population.



2 Fabrizio Marozzo, Loris Belcastro

A nucleotide variation or Single Nucleotide Polymorphism (SNP) is defined as
a stable substitution of a single base of DNA1 occurring with a frequency of more
than 1% in at least one population. For instance, in the short sequences ATGT and
ACGT a base change occurs at position 2. Each individual has a unique sequence
of DNA that determines his/her characteristics and differences can be measured in
terms of substitutions of bases in the same position. In a case-control genotyping
study, microarray technology produces a matrix of SNPs where the (i, j) value
represents the SNP found on the DNA sequence or gene i on sample j.

Pharmacogenomics is the branch of genomics that studies the impact of individ-
ual genetic variations on the response to drugs. In particular, pharmacogenomics
correlates gene expression or SNPs with the toxicity or efficacy of a drug, with the
aim of improving drug therapies according to the patients’ genotype (e.g., choosing
drugs that best match each patient’s genetic profile) [20]. Pharmacogenomics ex-
periments involve gene sequencing and SNP detection using microarray technology
and computational analysis. DMET (Drug Metabolism Enzymes and Transporter)
is an Affymetrix2 microarray platform for gene profiling specifically designed to
detect in human samples the presence/absence of SNPs on 225 genes that are re-
lated with drug absorption, distribution, metabolism and excretion (ADME) [9].
SNPs data generated by the DMET platform are preprocessed and analyzed for
discovering a correlation between the presence/absence of SNPs and condition of
samples (e.g., the type of drug treatment or response to a drug). Main issues in
analyzing DMET SNPs data are: i) the efficient management of huge data due to
the high number of samples and genes investigated in pharmacogenomics studies;
ii) the fast analysis of SNP symbolic data, which need to undergo different prepro-
cessing compared to gene expression numeric data; iii) obtaining a result that is
biologically interpretable.

The huge amount of data generated represent a challenge to the current process
and analysis capabilities. Then to extract results in a reasonable time from such
kind of data, novel frameworks and data analysis approaches have been developed.
Moreover, the usage of sequential algorithms for analyzing large volumes of data
requires a very long time for extracting useful models and patterns. In this scenario,
high performance computers, such as many and multi-core systems, Clouds and
clusters, paired with parallel and distributed algorithms, are commonly used [7].
Nowadays several programming frameworks are available for developing computing
intensive applications to be executed in distributed environments. Among open-
source projects, Apache Hadoop3 and Apache Spark4 are considered the leading
open-source data-processing frameworks, which was contributed by IT giants such
as Facebook and Yahoo. For several classes of applications, Spark is considered a
better alternative to Hadoop, since it stores data in RAM memory and queries it
repeatedly so as to obtain better performance [6].

Cloud4SNP [2] is a parallel version of the DMET-Analyzer [12] that exploits
data parallelism to perform statistical tests on multiple computing nodes on the
Cloud. This paper presents an extension of Cloud4SNP for enabling the execution of

1 DNA is made up of four sub-units, or bases, called adenine (A), cytosine (C),
guanine (G) and thymine (T).

2 www.affymetrix.com
3 http://hadoop.apache.org/
4 http://spark.apache.org/



High performance framework to analyze microarray data 3

data analysis applications based on Apache Spark, which provides faster, in-memory
executions for iterative and batch processing. The experimental evaluation shows
that Cloud4SNP is able to exploit the high-performance features of Apache Spark,
obtaining faster execution times and high level of scalability, with a global speedup
that is very close to linear values.

The rest of the paper is structured as follows. Section 2 describes the main tools
for analyzing SNP genotyping data for pharmacogenomics, including the most pop-
ular frameworks for designing and executing parallel and distributed data analysis
applications. Section 3 discusses the main functionalities and implementation de-
tails of Cloud4SNP. Section 4 presents the performance evaluation of Cloud4SNP.
Finally, Section 5 concludes the paper.

2 Related work

Microarray technology is used in biology and medicine to study the behavior of
genes in biological processes, with the aim of understanding how their behavior
can be related to disease progression. Microarray technology includes two main
categories of microarray chips: i) expression microarrays that aim to investigate the
activity of genes in different conditions, and ii) genomic microarrays (e.g., DMET
arrays) that aim to study the variations on sequence of genomes.

In recent years, the average size of a dataset from microarray platforms has
been growing steadily. This trend is mainly due to two main factors: i) the in-
crease of size of files that can be encoded on a single chip; and ii) the increasing
number of samples (and therefore of arrays) that are usually produced in a single
experiment. Therefore, the increase in the size of the datasets to be analyzed, and
in the complexity of the analyzes to be carried on, give rise to the need to use
high-performance tools and technologies for processing such data efficiently. The
usage of parallel and distributed algorithms on multicore architectures could lead
to an efficient preprocessing of microarray data. In such a way, the computation
is distributed across several CPU cores, which perform a parallel computation on
smaller data chunks. As first step in this direction, the MapReduce programming
models can be exploited to perform the preprocessing algorithm on different data
chunks that are distributed to the different computing nodes. However, partitioning
and distributing data to nodes can often be inefficient due to network overhead.

One of the main research works is affyPara [1] that is a Bioconductor5 package
for parallel preprocessing of Affymetrix microarray data. It is freely available from
the Bioconductor project. Similarly, the micro-CS project [13] presents a framework
for the analysis of microarray data based on a distributed architecture made of
different web-services for annotating and preprocessing data.

EMAAS (Extensible MicroArray Analysis System) [3] is a web-application for
the management and analysis of Affymetrix arrays. It is based on a high perfor-
mance computing architecture that uses Grid technology for the analysis of large
datasets. Among its main characteristics, EMAAS i) is able to process only a subset
of Affymetrix Expression arrays; ii) supports collaboration among users; and iii)
requires the upload of data onto the web server, so it may require large upload time

5 http://www.bioconductor.org/



4 Fabrizio Marozzo, Loris Belcastro

when Internet speed is not sufficient or it may cause legal problems for SNP data
in some countries.

Since most biology labs or clinical centers that use microarrays do not have
parallel or HPC computers, parallelizing the microarray data analysis pipeline is
not enough. The use of Cloud computing systems can also offer small research
groups the possibility of exploiting parallel bioinformatics tools. Cloud computing
is a valid and cost-effective solution for executing complex data analysis applications
[22]. In fact, thanks to elastic resource allocation and high computing power, Cloud
computing represents a compelling solution for faster data analysis, that means
more timely results and then greater data value. Actually, despite the Cloud is
an affordable solution for many users, the number of data processing framework
available is very limited. Most available solutions today are based on open source
frameworks, such as Apache Hadoop and Apache Spark.

Hadoop is the most used open source MapReduce implementation for devel-
oping parallel applications that analyze big amounts of data. It can be adopted
for developing distributed and parallel applications using many programming lan-
guages (e.g., Java, Ruby, Python, C++). Hadoop relieves developers from having
to deal with classical distributed computing issues, such as load balancing, fault
tolerance, data locality, and network bandwidth saving.

Apache Spark is another framework for Big Data processing. Differently from
Hadoop, in which intermediate data are always stored in distributed file systems,
Spark stores data in RAM memory and queries it repeatedly so as to obtain better
performance for some class of applications (e.g., iterative machine learning algo-
rithms). For many years, Hadoop has been considered the leading open source Big
Data framework, but recently Spark has become the more popular so that it is
supported by every major Hadoop vendors. In fact, for particular tasks, Spark is
up to 100 times faster than Hadoop in memory and 10 times faster on disk.

The use of Cloud and of high-level programming are at the basis of the Data
Mining Cloud Framework (DMCF) [19], i.e., the data analysis framework used to
implement Cloud4SNP applications. DMCF enables the design and the execution
of distributed data analysis workflows on Clouds by using a high-level visual lan-
guage (VL4Cloud) or a script-based language (JS4Cloud). Recently, DMCF has
been extended to include the execution of MapReduce tasks [5].

There are other representative workflow-based systems that can be used to im-
plement applications for analyzing large amount of data on parallel and distributed
computing systems. Swift [23] is a system for creating and running distributed
workflows, which uses an implicit data-driven task parallelism. In fact, it looks like
a sequential language, but all variables are futures, thus the execution is based
on data availability (i.e., when the input data is ready, functions are executed in
parallel).

COMPSs [14] is another workflow system that aims at easing the develop-
ment and execution of workflows in distributed environments, including Grids and
Clouds. With COMPSs, users create a Java sequential application and select which
methods will be executed remotely by providing an annotated interfaces. The run-
time intercepts any call to a selected method creating a representative task and
finding the data dependencies with all the previous ones that must be considered
along the application run [18].

Pegasus [11] is a workflow management system developed at the University
of Southern California for supporting the implementation of scientific applications



High performance framework to analyze microarray data 5

also in the area of data analysis. Pegasus includes a set of software modules to exe-
cute workflow-based applications in a number of different environments, including
desktops, Clouds, Grids, and clusters. It has been used in several scientific areas
including bioinformatics, astronomy, earthquake science,gravitational wave physics,
and ocean science.

3 Cloud4SNP

Cloud4SNP allows to statistically test the significance of the presence of SNPs in
two classes of samples using the well known Fisher test. The Fisher test allows
to test if two distributions are significantly different, i.e. the eventual difference is
not due by chance. In particular, Cloud4SNP performs the following main steps: i)
loading of the input dataset and sample class assignment; ii) execution of statistical
tests (e.g., Fisher test); and iii) statistical correction of p-values.

3.1 Loading of the input dataset and sample class assignment

The input dataset is a table (SNPs Input Table) containing for each sample and for
each probe the detected SNPs, as produced by the DMET Console. The SNPs Input
Table is np×ns matrix of alleles, where np is the number of probes (np = 1936 for
current DMET chips) and ns is the number of samples. Table 1 shows a portion
of this table showing the SNPs detected in 8 samples (S1, . . . , S8) on 2 probes.
Samples are assigned to class A or B by mouse selection or by providing a list of
samples for class B. In the example, some samples (S1, . . . , S4) belong to class A,
while the remaining ones (S5, . . . , S8) belong to class B.

Table 1. Example dataset containing alleles detected in 8 subjects through 2 probes
(np = 2 and ns = 8).

SNPs Table

Probes S1 S2 S3 S4 S5 S6 S7 S8

Probe1 a/a a/a a/a c/t t/t t/t t/t t/t

Probe2 a/a a/c a/a t/t a/c a/c c/t t/t

3.2 Execution of statistical tests and correction of p-values

During this step, the Cloud4SNP Statistical Tests module performs the following
operations:

� Preprocess the input data, and eventually filtering of probes having the same or
similar distributions in class A and B by using the Fisher Significance threshold
(Fs).

� Compute Fisher tests (Ft) and discards tests that are not statistically significant
according to Ft (i.e., the tests whose p-value is greater than Ft). More details
about this step are provided in as dedicated paragraph below.



6 Fabrizio Marozzo, Loris Belcastro

� Annotate results with URLs to dbSNP6 and to PharmaGKB7.

After computing Fisher tests, the Cloud4SNP Statistical Corrections module
performs one of the available multiple tests corrections (none, Bonferroni or False
Discovery Rate) that adjust p-values derived from multiple statistical tests to cor-
rect for occurrence of false positives. Annotated and eventually corrected results
are finally displayed to the user through the Graphical User Interface. In summary,
Cloud4SNP Statistical Tests and Cloud4SNP Statistical Corrections are the core
modules of Cloud4SNP and provide the analysis of SNP data.

An example of Fisher test applied to SNPs

The Fisher Test is applied to couples of SNPs, e.g. SNPh vs SNPk, occurring on
a probe Probei on classes A and B. The algorithm uses the occurrences of the
two alleles SNPh and SNPk on each class A and B that are reported in a 2 × 2
contingency table used to compute the Fisher test. Thus, to perform the Fisher
Test, Cloud4SNP has to count the occurrences of the SNPs for each probe and
class. Tables 2 and 3 contain the occurrences of SNPs in class A and B respectively
for the dataset reported in Table 1. For the sake of simplicity, such tables do not
report the occurrences of alleles that are not present in any of the two classes, since
such occurrences are of course zero.

As an example, Table 4 is the input data to perform the F-test on SNPs A/A
vs T/T on probe Probe1, while Table 5 is the input data to perform the F-test on
SNPs A/A vs C/T on probe Probe2. Applying F-test on such data, the distributions
of SNPs A/A vs T/T on probe Probe1 in the two classes are statistically different
(p−value = 0.0286), while the distributions of SNPs A/A vs C/T on probe Probe2
not (p−value = 0.3333). The p-value threshold to accept or refuse the test (usually
set to 0.05) is a parameter of Cloud4SNP, called Fisher Filter threshold (Ft). The
Ft parameter is used to accept or not the performed Fisher tests, i.e. Fisher tests
results with p− value > Ft are discarded and not visualized to the user.

Table 2. Class A SNPs Table.

Class A

Probes S1 S2 S3 S4

Probe1 a/a a/a a/a c/t

Probe2 a/a a/c a/a t/t

3.3 Data Mining Cloud Framework

The DMCF’s architecture has been designed to be implemented on different Cloud
systems, so as to take advantage of main cloud computing features, such as elasticity
of resources provisioning. In DMCF, at least one Virtual Web Server runs contin-
uously in the Cloud, as it serves as user front-end. In addition, users specify the

6 http://www.ncbi.nlm.nih.gov/projects/SNP
7 http://www.pharmgkb.org



High performance framework to analyze microarray data 7

Table 3. Class B SNPs Table.

Class B

Probes S5 S6 S7 S8

Probe1 t/t t/t t/t t/t

Probe2 a/c a/c c/t t/t

Table 4. Probe1 A/A and T/T SNPs occurrences for Fisher Test

Class A Class B
a/a 3 0
t/t 0 4

Table 5. Probe2 A/A and C/T SNPs occurrences for Fisher Test

Class A Class B
a/a 2 0
c/t 0 1

minimum and maximum number of Virtual Compute Servers, which are in charge
of executing the data mining tasks. The DMCF can exploit the auto-scaling fea-
tures that allows dynamic spinning up or shutting down Virtual Compute Servers,
based on the number of tasks ready for execution in the DMCF’s Task Queue.
Since storage is managed by the Cloud platform, the number of storage servers is
transparent to the user.

The DMCF allows creating data mining and knowledge discovery applications
using workflow formalisms. Workflows may encompass all the steps of discovery
based on the execution of complex algorithms and the access and analysis of sci-
entific data. In data-driven discovery processes, knowledge discovery workflows can
produce results that can confirm real experiments or provide insights that can-
not be achieved in laboratories. In particular, DMCF allows to program workflow
applications using two languages:

1. VL4Cloud (Visual Language for Cloud), a visual programming language that
lets users develop applications by programming the workflow components
graphically [17].

2. JS4Cloud (JavaScript for Cloud), a scripting language for programming data
analysis workflows based on JavaScript [16].

Both languages use two key programming abstractions:

1. Data elements denote input files or storage elements (e.g., a dataset to be
analyzed) or output files or stored elements (e.g., a data mining model).

2. Tool elements denote algorithms, software tools or service performing any kind
of operation that can be applied to a data element (data mining, filtering,
partitioning, etc.).

In particular, three different types of Tools can be used in a DCMF workflow:

1. A Batch Tool is used to execute an algorithm or a software tool on a Virtual
Compute Server without user interaction. All input parameters are passed as
command-line arguments.



8 Fabrizio Marozzo, Loris Belcastro

2. A Web Service Tool is used to insert into a workflow a Web service invocation.
3. A MapReduce Tool is used to insert into a workflow the execution of a MapRe-

duce algorithm or application running on a cluster of virtual servers [5].

For each Tool in a workflow, a Tool descriptor includes a reference to its exe-
cutable, the required libraries, and the list of input and output parameters. Each
parameter is characterized by name, description, type, and can be mandatory or
optional. Another common element is the task concept, which represents the unit
of parallelism in our model. A task is a Tool, invoked in the workflow, which is in-
tended to run in parallel with other tasks on a set of Cloud resources. According to
this approach, VL4Cloud and JS4Cloud implement a data-driven task parallelism.
This means that, as soon as a task does not depend on any other task in the same
workflow, the runtime asynchronously spawns it to the first available virtual ma-
chine. A task Tj does not depend on a task Ti belonging to the same workflow (with
i 6= j), if Tj during its execution does not read any data element created by Ti.

In VL4Cloud, workflows are directed acyclic graphs whose nodes represent data
and tools elements. The nodes can be connected with each other through direct
edges, establishing specific dependency relationships among them. When an edge is
being created between two nodes, a label is automatically attached to it representing
the type of relationship between the two nodes. Data and Tool nodes can be added
to the workflow singularly or in array form. A data array is an ordered collection
of input/output data elements, while a tool array represents multiple instances of
the same tool.

In early versions, DMCF has exploited the default storage provided by public
cloud infrastructures for any I/O operations. This implies that DMCF’s I/O perfor-
mance was limited by the performance of the storage provided by cloud providers.
In work [21] it was proposed to use the Hercules system within DMCF as a storage
system for temporary data generated by workflow-based applications. Hercules is
a highly scalable, in-memory, distributed storage system. In a later work [15], a
data-aware scheduling runtime that exploits data locality has been used. An exper-
imental evaluation was carried out to evaluate the advantages of these strategies
and to demonstrate the effectiveness of the solution. Using the proposed data-aware
strategy and Hercules as a temporary storage service, I/O overhead was reduced
by 55% compared to standard Azure storage-based execution, leading to a 20%
reduction in total execution of the workflow.

3.4 Workflow implementation

Starting from the sequential DMET-Analyzer software several modules have been
exported and ported as individual tools to the Data Mining Cloud Framework. In
particular, the Cloud4SNP Statistical Tests and Cloud4SNP Statistical Corrections
modules have been implemented in DMCF as tools, called DMETAnalyzer and
Corrector respectively.

In addition, three new tools have been added in the Data Mining Cloud Frame-
work to support parallel processing of SNP input data: i) a Partitioner tool, which
creates a set of partitions from a single SNP dataset; (ii) a ModelMerger tool, which
merges into a single model the partial models generated by the DMETAnalyzer, ei-
ther corrected or not by a Corrector ; iii) a ModelsMerger tool, which takes in
input three single models (with FDR, Bonferroni or none correction) and produces



High performance framework to analyze microarray data 9

a single HTML file. Using the web GUI of Data Mining Cloud Framework, the
tools described above have been composed into the Cloud4SNP workflow shown in
Figure 1.

Fig. 1. Cloud4SNP workflow in the Data Mining Cloud Framework.

The workflow performs the following steps. As first step, the initial dataset is
partitioned into n chunks by the Partitioner, where n is the number of workers
available for parallel data processing (16 in this case). By increasing the number of
workers, it is possible to improve the level of parallelism and, therefore, system per-
formance. Each data chunk DatasetPart[i], i = 1, ..., n, is analyzed by an instance
of the DMETAnalyzer tool (i.e., DMETAnalyzer[i]), which produces a partial model
(i.e., PartialModel[i]) containing the p-values of each probe. Such partial models
are corrected using two different instances of the Corrector tool: Corrector 0 that
uses an FDR correction, and Corrector 1 that uses a Bonferroni correction. Then,
three instances of the ModelMerger tool are used to create three models, ModelNC,
ModelFDR and ModelBONF, which are respectively the model with no corrections
(composition of PartialModel[n]), the model with FDR correction (composition of
PartialModelFDR[n]), and the model with Bonferroni correction (composition of
PartialModelBONF[n]). Finally, the ModelsMerger tool combines ModelNC, Mod-
elFDR and ModelBONF to produce a single HTML file with all the output results
(see Figure 2).

3.5 Using Apache Spark for faster in-memory processing

Apache Spark8 is considered one of the leading open source Big Data systems and
thus it is supported by every major Cloud providers. Differently from other systems
(e.g., Apache Hadoop), in which intermediate data are always stored in distributed
file systems, Spark stores data in RAM memory and queries it repeatedly so as to
obtain better performance for some classes of applications. Apache Spark allows
also to cache intermediate data, providing a significant performance improvement
while running multiple queries on the same data. Spark is commonly used to de-
velop in-memory iterative batch applications using many programming languages
(e.g., Java, Scala, Python, R). Many powerful libraries are built on top of Spark:

8 https://spark.apache.org



10 Fabrizio Marozzo, Loris Belcastro

Fig. 2. Cloud4SNP workflow at the end of the execution, with visualization of the
final result.

MLlib for machine learning, GraphX for graph-parallel computation, ParSoDa[8]
for processing social media data, Spark Streaming for stream processing.

Apache Spark provides a low-level of abstraction, because a programmer can
define an application using APIs which are powerful but require high programming
skills. Developing an application based on Spark requires a quite small number of
lines of code, especially when Scala is used as programming language [4]. Input
data is divided in chunks and processed in parallel by different computing nodes.
It supports also task parallelism, when independent stages of the same application
are executed in parallel. Spark is designed to process very large amounts of data in
large-scale infrastructures with up to tens of thousands of nodes.

On the other hand, the DMCF provides a high-level of abstraction, because a
programmer can define workflows by using a high-level visual language (VL4Cloud)
or a script-based language (JS4Cloud). VL4Cloud is a convenient design approach
for high-level users, for example, domain-expert analysts having a limited under-
standing of programming. Conversely, JS4Cloud allows skilled users to program
complex applications more rapidly, in a more concise way, and with greater flexi-
bility.

Cloud4SNP has been redesigned and extended to allow the configuration of
Spark-based applications in two ways:

1. Using a Web Tool in DMCF, specially configured to invoke an external web
service that invokes the execution of a Spark application.

2. Using a Batch Tool in DMCF to launch a Spark application on a VM on which
Spark is installed in single-node mode

Since the preprocessing, analysis and statistical correction algorithms have been
entirely rewritten in Spark, it is possible to use them natively for creating and exe-
cuting the entire workflow on a Spark cluster, without passing through DMCF. In
such a way, the execution of the Spark application is driven by a central coordi-
nator (i.e., the main process of the application), which can connect with different
cluster managers (e.g., Apache Mesos9 or Hadoop YARN 10) for better managing

9 https://mesos.apache.org/
10 https://hadoop.apache.org/



High performance framework to analyze microarray data 11

distributed resources. including the usage of data locality techniques for reducing
the network overhead due to data moviment among nodes.

4 Performance Evaluation

To evaluate the execution times and scalability with increasing workloads, several
experiments have been carries out on three SNP datasets (D1, D2, D3) with a
constant number of samples (28) and with an increasing number of probes: around
10,000 probes for the dataset D1, 20,000 for the D2, and 40,000 for D3.

Figure 3 shows the turnaround times of the different implementation of Cloud4SNP
using the dataset D3. As shown, Apache Spark ensures a reduction in the process-
ing times by an average of 35% compared to the other systems. In particular, using
Spark natively ensures the best performance, followed by DMCF with Spark as Tool.
In general, the differences in processing between the two Spark-based implementa-
tions are minimal, mainly due to the overhead required by DMCF for managing
and executing the workflow in a distributed environment. For the other two smaller
datasets, D1 and D2, the results obtained are quite similar and, therefore, are not
reported for reasons of brevity.

Cloud4SNP
Cloud4SNP	+	Spark
Spark

E
xe

cu
tio

n	
tim

e	
[s

ec
]

2000

4000

6000

8000

104

Nodes
1 2 4 8 16

Fig. 3. Execution times of the different Cloud4SNP implementations using the
dataset D3.

Although using Spark natively offers the best performance, DMCF continues
to be the recommended choice for low skilled users that have limited programming
capabilities. In addition, due to the complexity of managing a Spark cluster, the use
Spark only makes sense for large datasets, so as to make the most of its in-memory
processing capabilities.

Figure 4 reports the speedup obtained by the different systems using the dataset
D3. As reported, the results obtained is very close to linear values, demonstrating
the high scalability of the implemented solutions.



12 Fabrizio Marozzo, Loris Belcastro

Ideal
Cloud4SNP
Cloud4SNP+Spark
Spark

S
p
e
e
d
u
p

1
2

4

8

16

Number	of	nodes
1 2 4 8 16

Fig. 4. Speedup values of the different Cloud4SNP implementations using the
dataset D3.

5 Conclusion

This paper discussed an extension of Cloud4SNP, a bioinformatics tool for parallel
preprocessing and statistical analysis of SNP pharmacogenomics microarray data,
for enabling the execution of data analysis applications based on Apache Spark.
Apache Spark is one of the leading open source Big Data systems, which is able to
provide faster, in-memory executions for iterative and batch processing. The exper-
imental evaluation shows that Cloud4SNP is able to exploit the high-performance
features of Apache Spark, obtaining faster execution times and high level of scala-
bility, with a global speedup that is very close to linear values.

References

1. affypara-a bioconductor package for parallelized preprocessing algorithms of
affymetrix microarray data. Bioinform Biol Insights 30(22), 83–7 (2009)

2. Agapito, G., Cannataro, M., Guzzi, P.H., Marozzo, F., Talia, D., Trunfio, P.:
Cloud4snp: Distributed analysis of snp microarray data on the cloud. In: Proc.
of the ACM Conference on Bioinformatics, Computational Biology and Biomed-
ical Informatics 2013 (ACM BCB 2013). p. 468. ACM Press, Washington, DC,
USA (September 2013), iSBN 978-1-4503-2434-2

3. Barton, G., Abbott, J., Chiba, N., Huang, D., Huang, Y., Krznaric,
M., Mack-Smith, J., Saleem, A., Sherman, B., Tiwari, B., Tomlinson,
C., Aitman, T., Darlington, J., Game, L., Sternberg, M., Butcher, S.:
Emaas: An extensible grid-based rich internet application for microar-
ray data analysis and management. BMC Bioinformatics 9(1), 493 (2008),
http://www.biomedcentral.com/1471-2105/9/493

4. Belcastro, L., Marozzo, F., Talia, D.: Programming models and systems for
big data analysis. International Journal of Parallel, Emergent and Distributed
Systems 34(6), 632–652 (2019)

5. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Programming visual and
script-based big data analytics workflows on clouds. In: Grandinetti, L., Jou-
bert, G., Kunze, M., Pascucci, V. (eds.) Post-Proc. of the High Performance



High performance framework to analyze microarray data 13

Computing Workshop 2014. Advances in Parallel Computing, vol. 26, pp. 18–
31. IOS Press, Cetraro, Italy (2015), iSBN: 978-1-61499-582-1

6. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Appraising spark on large-
scale social media analysis. In: Euro-Par Workshops. pp. 483–495. Lecture
Notes in Computer Science, Santiago de Compostela, Spain (28-29 August
2017), iSBN: 978-3-319-75178-8

7. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Big data analysis on clouds.
In: Zomaya, A., Sakr, S. (eds.) Handbook of Big Data Technologies, pp. 101–
142. Springer (December 2017), iSBN: 978-3-319-49339-8

8. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: Parsoda: high-level parallel
programming for social data mining. Social Network Analysis and Mining 9(1),
1–19 (2019)

9. Burmester, J.K., Sedova, M., Shapero, M.H., Mansfield, E.: Dmet microar-
ray technology for pharmacogenomics-based personalized medicine. Microarray
Methods for Drug Discovery, Methods in Molecular Biology 632, 99–124 (2010)

10. Cannataro, M., Guzzi, P.H., Veltri, P.: Protein-to-protein interactions: Tech-
nologies, databases, and algorithms. ACM Comput. Surv. 43(1), 1:1–1:36 (Dec
2010), http://doi.acm.org/10.1145/1824795.1824796

11. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J.,
Mayani, R., Chen, W., Da Silva, R.F., Livny, M., et al.: Pegasus, a workflow
management system for science automation. Future Generation Computer Sys-
tems 46, 17–35 (2015)

12. Guzzi, P.H., Agapito, G., Di Martino, M.T., Arbitrio, M., Tagliaferrri, P., Tas-
sone, P., Cannataro, M.: DMET-analyzer: automatic analysis of affymetrix
DMET data. BMC Bioinformatics 13:258, 258+ (Oct 2012)

13. Guzzi, P.H., Cannataro, M.: mu-cs: An extension of the tm4 platform to manage
affymetrix binary data. BMC Bioinformatics 11, 315 (2010)

14. Lordan, F., Tejedor, E., Ejarque, J., Rafanell, R., Alvarez, J., Marozzo, F.,
Lezzi, D., Sirvent, R., Talia, D., Badia, R.M.: Servicess: An interoperable pro-
gramming framework for the cloud. Journal of grid computing 12(1), 67–91
(2014)

15. Marozzo, F., Rodrigo Duro, F., Garcia Blas, J., Carretero, J., Talia, D., Trunfio,
P.: A data-aware scheduling strategy for workflow execution in clouds. Concur-
rency Computation 29(24) (2017)

16. Marozzo, F., Talia, D., Trunfio, P.: Js4cloud: Script-based workflow program-
ming for scalable data analysis on cloud platforms. Concurrency Computation
27(17), 5214–5237 (2015)

17. Marozzo, F., Talia, D., Trunfio, P.: A workflow management system for scalable
data mining on clouds. IEEE Transactions on Services Computing 11(3), 480–
492 (2018)

18. Marozzo, F., Lordan, F., Rafanell, R., Lezzi, D., Talia, D., Badia, R.: Enabling
cloud interoperability with compss. In: Proc. of the 18th International European
Conference on Parallel and Distributed (Europar 2012). vol. 7484, pp. 16–27.
Lecture Notes in Computer Science, Rhodes Island, Greece (27-31 August 2012)

19. Marozzo, F., Talia, D., Trunfio, P.: Scalable script-based data analysis work-
flows on clouds. In: Proceedings of the 8th Workshop on Workflows in Support
of Large-Scale Science. pp. 124–133 (2013)

20. Phillips, C.: SNP Databases. In: Komar, A.A. (ed.) Single Nucleotide Polymor-
phisms, vol. 578, chap. 3, pp. 43–71. Humana Press, Totowa, NJ (2009)



14 Fabrizio Marozzo, Loris Belcastro

21. Rodrigo Duro, F., Marozzo, F., Garcia Blas, J., Talia, D., Trunfio, P.: Exploit-
ing in-memory storage for improving workflow executions in cloud platforms.
Journal of Supercomputing 72(11), 4069–4088 (2016)

22. Talia, D., Trunfio, P., Marozzo, F.: Data Analysis in the Cloud. Elsevier (Oc-
tober 2015), iSBN 978-0-12-802881-0

23. Wilde, M., Hategan, M., Wozniak, J.M., Clifford, B., Katz, D.S., Foster, I.:
Swift: A language for distributed parallel scripting. Parallel Computing 37(9),
633–652 (2011)


