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Geotagged data gathered from social media can be used to discover interesting locations visited by users
called Places-of-Interest (PoIs). Since a PoI is generally identified by the geographical coordinates of a single
point, it is hard to match it with user trajectories. Therefore, it is useful to define an area, called Region-of-
Interest (RoI), to represent the boundaries of the PoI’s area. RoI mining techniques are aimed at discovering
Regions-of-Interest from PoIs and other data. Existing RoI mining techniques are based on three main
approaches: predefined shapes, density-based clustering and grid-based aggregation. This paper proposes
G-RoI, a novel RoI mining technique that exploits the indications contained in geotagged social media items
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1. INTRODUCTION
The widespread use of social media makes it possible to extract very useful information
to understand the behavior of large groups of people. This is fostered by the large use
of mobile phones and location-based services, through which millions of people every
day access social media services and share information about the places they visit.
In fact, data gathered from social media, such as posts from Twitter and Facebook or
photos from Instagram and Flickr, are frequently geotagged. Geotagging is the process
of adding geographic metadata (e.g., longitude/latitude coordinates) to text, photos or
videos. It allows to locate the exact physical origin of shared information.

One of the leading trends in social media research is the analysis of geotagged data
to determine if users visited or not interesting locations (e.g., touristic attractions,
shopping malls, squares, parks), often called Places-of-Interest (PoIs). Since a PoI is
generally identified by the geographical coordinates of a single point, it is hard to
match it with user trajectories. For this reason, it is useful to define the so-called
Region-of-Interest (RoI) representing the boundaries of the PoI’s area [de Graaff et al.

Author’s addresses: L. Belcastro and F. Marozzo and D. Talia and P. Trunfio, DIMES, University of Calabria, 
Rende (CS), Italy. Email:{lbelcastro, fmarozzo, talia, trunfio}@dimes.unical.it

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: October 2017.



A:2 L. Belcastro et al.

2013]. The analysis of user trajectories through RoIs is highly valuable in many sce-
narios, e.g.: tourism agencies and municipalities can discover the most visited touris-
tic places and the time of year when such places are visited [Bermingham and Lee
2014][Kurashima et al. 2010]; transport operators can discover the places and routes
where is it more likely to serve passengers [Yuan et al. 2011] and crowed areas where
more transport facilities need to be allocated [You et al. 2014].

RoI mining techniques are aimed at discovering Regions-of-Interest from PoIs and
other data. Existing RoI mining techniques can be grouped into three main ap-
proaches: predefined shapes [de Graaff et al. 2013], density-based clustering [Zheng
et al. 2012] and grid-based aggregation [Cai et al. 2014]. Predefined shapes techniques
use fixed shapes, such as circles or rectangles, to represent RoIs. In many cases, the
use of a predefined shape represents a naı̈ve solution to the RoI mining problem, be-
cause a predefined shape is not able to handle PoIs having RoIs with different sizes
and shapes. Density-based clustering techniques identify RoIs by clustering the data
points according to a density criterion (i.e., number of data points per unit area). Such
kind of algorithms are widely used because they are able to reach good results in many
cases. However, density-based techniques may fail to distinguish regions that are very
close to each other or that have different density. Grid-based aggregation techniques
discretize the area in a regular grid and then aggregate the grid cells so as to form a
RoI. The grid cells can be aggregate using different aggregation policies. Such kind of
algorithms is very sensitive to parameters setting. Thus, may be hard to find a setting
for identifying multiple RoIs with different characteristics in the same area.

This paper presents a novel RoI mining technique, called G-RoI, which differs from
the existing approaches mentioned earlier as it exploits the indications contained in
geotagged social media items (e.g. tweets, posts, photos or videos with geospatial infor-
mation) to discover the RoI of a PoI with a high accuracy. Given a PoI p identified by a
set of keywords, a geotagged item is associated to p if its text or tags contain at least
one of those keywords. Starting from the coordinates of all the geotagged items asso-
ciated to p, G-RoI calculates an initial convex polygon enclosing all such coordinates,
and then iteratively reduces the area using a density-based criterion. Then, from all
the convex polygons obtained at each reduction step, G-RoI adopts an area-variation
criterion to choose the polygon representing the RoI for p.

Many experiments have been performed to assess the accuracy of G-RoI over real
geotagged items extracted from Flickr, one of the most popular photo-sharing social
media. The experimental results show that G-RoI is more accurate in identifying RoIs
than existing techniques. Over a set of 24 PoIs in Rome, G-RoI achieves better results
than existing techniques in 19 cases, with a mean precision of 0.78, a mean recall of
0.82, and a mean F1 score of 0.77. In particular, the mean F1 score of G-RoI is 0.34 higher
than that obtained with the well-known DBSCAN algorithm. Further experiments
have been performed over a set of 24 PoIs in Paris. Also in this case, G-RoI achieved
best results in 18 cases, with a mean precision of 0.81, a mean recall of 0.66, and a
mean F1 score of 0.70 (0.23 higher than that obtained with DBSCAN). For the purpose
of reproducibility, an open-source version of G-RoI and all the input data used in the
experiments are available at https://github.com/scalabunical/G-RoI.

The remainder of the paper is organized as follows. Section 2 introduces the main
concepts and the problem statement. Section 3 discusses related work. Section 4 de-
scribes the proposed methodology. Section 5 compares the performance of G-RoI with
the main techniques in literature. Finally, Section 6 concludes the paper.
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2. PROBLEM DEFINITION
A Place-of-Interest (PoI) is a specific location that someone finds useful or interesting.
Generally, PoIs refer to business locations (e.g., shopping malls) or tourist attractions
(e.g., squares, museums, theaters, bridges). PoIs are also named as Point-of-Interest.

For analyzing users’ behavior, it is useful to understand whether a user visited or
not a PoI. Since information on a PoI is generally limited to an address or to GPS
coordinates, it is hard to match trajectories with PoIs. For this reason, it is useful to
define the so-called Region-of-Interest (RoI) representing the boundaries of the PoI’s
area [de Graaff et al. 2013].

RoIs can be defined as “spatial extents in geographical space where at least a certain
number of user trajectories pass through” [Giannotti et al. 2007]. Thus, RoIs represent
a way to partition the space into meaningful areas and, correspondingly, to associate a
label to a place. In literature, RoIs are also named as regions of attraction [Zheng et al.
2012] or frequent (dense) regions [Altomare et al. 2016].

A geotagged item is a piece of information (e.g. tweet, post, photograph or video) to
which geospatial information were added. Specifically, a geotagged item g includes the
following features:

- text, containing a textual description of g.
- tags, containing the tags associated to g.
- coordinates consists of latitude and longitude of the place from where g was created.
- userId, identifying the user who created g.
- timestamp, indicating date and time when g was created.

A geotagged item can be associated to a PoI P if its text or tags refer to P. The
goal of G-RoI is finding a suitable RoI R that describes the boundaries of P ’s area, by
analyzing a set of geotagged items associated to P.

3. RELATED WORK
Existing techniques to find RoIs can be grouped into three main approaches: prede-
fined shapes, density-based clustering and grid-based aggregation. Table I reports ap-
proaches, algorithms, and goals of the main related work.

Predefined shapes. This approach uses predefined shapes (circles, rectangles, etc.) to
represent RoIs. For example, Kisilevich et al. [Kisilevich et al. 2010a] define RoIs as
circles of fixed radius centered on a set of PoIs whose center coordinates are known.
Spyrou and Mylonas [Spyrou and Mylonas 2016] used circular RoIs to extract popular
touristic routes from Flickr. Specifically, circular shapes are used to translate a trajec-
tory of geospatial points into a sequence of RoIs. Cesario et al. [Cesario et al. 2015]
used rectangles to define RoIs representing stadiums for a trajectory mining study.
In particular, the RoI of a stadium is the smallest rectangle enclosing the stadium’s
area. De Graaff et al. [de Graaff et al. 2013] use Voronoi tessellations [Voronoi 1908]
to define RoIs starting from a set of geographical coordinates representing PoIs.

Density-based clustering. With this approach, RoIs are obtained by clustering a set
of geographical locations. For instance, Crandall et al. [Crandall et al. 2009] used the
Mean shift clustering algorithm [Cheng 1995] to group the locations of a set of Flickr
photos. The RoI is the polygon enclosing the cluster points. Zheng et al. [Zheng et al.
2012] used DBSCAN [Ester et al. 1996] to discover tourist attraction areas from a set
of Flickr photos. DBSCAN was adopted for three main reasons: i) it tends to identify
regions of dense data points as clusters; ii) it supports clusters with arbitrary shape;
iii) it has a good efficiency on large-scale data. DBSCAN was also used by Altomare
et al. [Altomare et al. 2016], with the goal of detecting the regions that are more
densely visited based on data from GPS-equipped taxis. Kisilevich et al. [Kisilevich
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Table I. Comparison with related algorithms.
Related work Approach Algorithm Goal

Kisilevich et al. [Kisilevich et al. 2010a] Pred. shapes Circle with fixed radius Mine travel sequences from
Flickr photos

Spyrou-Mylonas [Spyrou and Mylonas 2016] Pred. shapes Circle with fixed radius Extract popular touristic
routes from Flickr photos

Cesario et al. [Cesario et al. 2015] Pred. shapes Rectangle enclosing PoIs Trajectory mining
from Twitter data

De Graaff et al. [de Graaff et al. 2013] Pred. shapes Voronoi tessellations RoI extraction from
cadastral data

Crandall et al. [Crandall et al. 2009] Density Mean shift clustering Organize a large collection
of geotagged Flickr photos

Zheng et al. [Zheng et al. 2012] Density DBSCAN Discover interesting
places from Flickr photos

Altomare et al. [Altomare et al. 2016] Density DBSCAN Detect RoIs based on data
from GPS-equipped taxis

Kisilevich et al. [Kisilevich et al. 2010b] Density P-DBSCAN Discover attractive areas from
collections of Flickr photos

Giannotti et al. [Giannotti et al. 2007] Grid Popular Regions Mine rectangular RoI shapes
from trajectory data

Cai et al. [Cai et al. 2014] Grid Slope RoI mining Mine arbitrary RoI shapes
from Flickr trajectory data

Cesario et al. [Cesario et al. 2016] Grid Grid cell aggregation Discover mobility patterns
from Instagram photos

Shi et al. [Shi et al. 2014] Grid DCPGS-G Mine RoIs from historical
geo-social networks

et al. 2010b] used a variant of DBSCAN, named P-DBSCAN, to cluster photos taking
into account the neighborhood density (i.e., the number of distinct photo owners in
the neighborhood) and exploiting the notion of adaptive density for fast convergence
towards high density regions. Density-based approaches need a method to assign a
meaning to each RoI found. There are different ways to perform this task. Zheng et
al. [Zheng et al. 2012] and Yin et al. [Yin et al. 2011] assign a name to each cluster by
taking the most frequent keyword in the geotagged items. Ferrari et al. [Ferrari et al.
2011a] automatically associate to each RoI the zip code of the data points in the cluster
center.

Grid-based aggregation. This approach discretizes the area under analysis in a reg-
ular grid and extract RoIs by aggregating the grid cells. For example, Giannotti et
al. [Giannotti et al. 2007] divide an area into grid cells and then count the trajecto-
ries passing through each cell. Grid cells whose counters are above a certain threshold
are expanded to form rectangular shaped RoIs. Cai et al. [Cai et al. 2014] argued that
rectangular expansion produces RoIs that may contain uninteresting low-density cells.
For this reason, they proposed a hybrid grid-based algorithm, called Slope RoI, to mine
arbitrary RoI shapes from trajectory data. Cesario et al. [Cesario et al. 2016] split the
EXPO 2015 area in a grid and associated grid cells to PoIs representing pavilions, in
order to discover the behavior and mobility patterns of users inside the exhibition. Shi
et al. [Shi et al. 2014] map geotagged data into grid cells, and then group the cells
taking into account spatial proximity and social relationship between places.

The proposed G-RoI technique does not belong to the approaches described earlier
and it differs from them in three main respects:

- Differently from approaches using predefined shapes, G-RoI defines RoIs as polygons
that are more accurate to model the variety of shapes a PoI can have.

- Density- and grid-based approaches may have troubles in distinguishing RoIs as-
sociated to PoIs that are very close to each other [Cai et al. 2014]. In fact, these
approaches cluster data points (or aggregate cells) based on their proximity, even if
they belong to different PoIs that are close to each other. As a result, two or more
adjacent PoIs may be associated to the same RoI. In contrast, G-RoI accurately iden-
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tifies different RoIs even in the presence of adjacent PoIs, as demonstrated by the
experimental results presented in Section 5.

- Density- and grid-based approaches algorithms depend on the setting of multiple pa-
rameters (e.g., eps and minNumPoints for DBSCAN, cell size and minimum support
for Slope RoI). For this reason, it is not easy to find parameters that produce accurate
RoIs over different locations with a variety of shapes and data points distributions. In
contrast, as shown in Section 5, G-RoI is accurate in identifying RoIs over locations
characterized by a variety of shapes and data points distributions, using always the
same value for its configuration parameter (a distance threshold between 0 and 1).

Summarizing, the main advantages of G-RoI with respect to the other techniques
can be outlined as follows: i) G-RoI exploits data preprocessing based on keyword se-
lection, which allows it to deal with more precise and clearer input data points; ii)
G-RoI exploits a density-based criterion to identify the set of candidate RoIs and an
area-variation criterion for choosing the most accurate RoI, which allow it to capture
regions of interests independently from their density and shape.

Out of the above comparison are all the works that aggregate social geotagged data
into regions defined either manually or through external services [Chaniotakis and
Antoniou 2015; Ferrari et al. 2011b]: manually defining the boundaries of the PoIs
(e.g., as polygons on a map); ii) automatically, using public web services (e.g., Open-
StreetMap1) that provide the geographical boundaries of a place given its name.

4. METHODOLOGY
Let a PoI P be identified by one or more keywords K = {k1, k2, ...}. Let Gall be a set of
geotagged items. Let G = {g0, g1, ...} be the subset of Gall, obtained by applying a G-
RoI preprocessing procedure that selects from Gall only the geotagged items associated
to P, i.e., the text or tags of each gi ∈ G contains at least one keyword in K. Let
C = {c0, c1, ...} be a set of coordinates, where ci represents the coordinates of gi ∈ G.
Thus, every ci ∈ C represents the coordinates of a location from which a user has
created a geotagged item referring to P. Let cp0 be a convex polygon enclosing all the
coordinates in C, obtained by running the convex hull algorithm [Barber et al. 1996]
on C, described by a set of vertices {v0, v1, ...}.

To find the RoI R for P, the G-RoI algorithm uses two main procedures:

— G-RoI reduction. Starting from cp0, it iteratively reduces the area of the current con-
vex polygon by deleting one of its vertex. A density-based criterion is adopted to
choose the next vertex to be deleted. The density of a polygon is the ratio between
the number of geotagged items enclosed by the polygon, and its area. At each step, the
procedure deletes the vertex that produces the polygon with highest density, among
all the possible polygons. The procedure ends when it cannot further reduce the cur-
rent polygon, and returns the set of convex polygons CP = {cp0, ..., cpn} obtained
after the n steps that have been performed.

— G-RoI selection. It analyses the set of convex polygons CP returned by the G-RoI
reduction procedure, and selects the polygon representing RoI R for PoI P. An area-
variation criterion is adopted to choose R from CP . Given CP , the procedure identi-
fies two subsets: a first subset {cp0, ..., cpcut−1} such that the area of any cpi is signifi-
cantly larger than the area of cpi+1; a second subset {cpcut, ..., cpn} such that the area
of any cpi is not significantly larger than the area of cpi+1. The procedure returns
cpcut as RoI R. This corresponds to choosing cpcut as the corner point of a discrete

1https://www.openstreetmap.org/
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L-curve [Hansen 1992] obtained by plotting the areas of all the convex polygons in
CP on a Cartesian plane, as detailed later in this section.

It is worth noting that the G-RoI algorithm was designed to identify regions rep-
resented by polygons, i.e., regions having non-null areas. In the extreme situation in
which all the points are perfectly in a line, the algorithm cannot identify any polygon
and therefore terminates immediately without returning any RoI. However, it must
be mentioned that, since the coordinates (latitude and longitude) of each point are
available at a very fine grain (six decimal digits, corresponding to a resolution of a few
decimeters), it is very unlikely that all the input points are perfectly aligned, and in
our experiments on real data this extreme case was never found.

4.1. Example
For the sake of clarity and for the Reader’s convenience, before going into algorithmic
details, we describe how the G-RoI reduction and selection procedures work through
a real example. We collected a small sample of 200 geotagged items from different
social networks (Flickr, Twitter, Instagram and Facebook), referring to the Colosseum
in Rome and posted at a maximum distance of 500m from it.

(a) Collection of geotagged items.

(b) Initial convex polygon cp0. (c) Generating cp1 by deleting
one vertex from cp0.

(d) Generating cp2 by deleting
one vertex from cp1.

Fig. 1. G-RoI reduction on Colosseum’s geotagged items.
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In their posts and photos, the social network users identify the Colosseum with
different keywords. The Geonames website2 reports the names used in different lan-
guages to identify the Colosseum, such as Coliseum, Coliseo, Colise, and synonymous
such as Flavian Amphitheatre or Amphitheatrum Flavium. All the geotagged items in
our sample contain at least one of such keywords. From these items, the 200 coordi-
nates shown in Figure 1(a) are extracted. Given the coordinates, the G-RoI reduction
procedure calculates the initial convex polygon cp0 (shown Figure 1(b)), and then it-
eratively reduces the area. Figure 1(c) shows polygon cp1 obtained after the first step
by deleting one of the vertices from cp0. Similarly, Figure 1(d) shows polygon cp2 ob-
tained after cp1. The G-RoI reduction procedures iterates until it cannot further re-
duce the current polygon. The output of the procedure is the set of convex polygons
CP = {cp0, cp1, ..., cpn} obtained at each step. Figure 2 shows with different colors all
the convex polygons in CP , including the one chosen as RoIR by the subsequent G-RoI
selection procedure.

Fig. 2. Set of convex polygons in CP identified by the RoI reduction procedure, with indication of RoI R
chosen by the RoI selection procedure.

The G-RoI selection procedure analyzes CP to choose RoI R among all the convex
polygons in it. To this end, the procedure extracts from CP an ordered set of Cartesian
points P = {(0, A0), (1, A1), ..., (n,An)}.

An element pi ∈ P is a point (i, Ai), where i is the step in which cpi was generated,
and Ai is the area of cpi. Figure 3(a) plots all the points in P in our example. The graph
shows how much the area decreases with the steps performed by the G-RoI reduction
procedure. The graph can be divided in two parts:

— The first part, from step 0 to a cut-off point pcut (not included), decreases quickly,
because at each step the G-RoI reduction procedure cuts a significant portion of area.

— The second part, from pcut to step n, decreases slowly, because at each step the G-RoI
reduction procedure cuts only a small portion of area.

The G-RoI selection procedure identifies the point pcut that is located at the maxi-
mum distance (distmax) from the reference line joining the first point and the last point
under analysis (p0 and pn), as shown in Figure 3(a). If the set of points {pcut, ..., pn} fol-
lows a linear trend as shown in Figure 3(b), i.e., there is no point below a threshold line
at distance th from the reference line joining the points pcut and pn, then the procedure
returns the polygon corresponding to pcut as RoI R (see Figure 3(c)). Otherwise, the

2http://geonames.org/
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Fig. 3. G-RoI selection from Colosseum’s convex polygons.

G-RoI selection procedure iterates by finding a new cut-off point from the set of points
on the right of pcut, as detailed in the next section.

4.2. Algorithmic details
Algorithm 1 shows the pseudo-code of the G-RoI reduction procedure. The input is a
set of coordinates C and the output is a set of convex polygons CP . Starting from C,
the procedure calculates the initial convex polygon cp0 (line 1). Then, cp0 is added to
CP and is taken as current convex polygon cp (lines 2-3). A do-while block performs the
area reduction steps (lines 4-22). At each step, the area of the current convex polygon
cp is reduced by deleting one of its vertices. This implies that the area of cpi+1 is always
lower than the area of cpi. The algorithm ends when it cannot further reduce cp.

At the beginning of each reduction step, the current maximum density ρmax is set to
zero (line 5), while the convex polygon with maximum density cpmax and the vertex to
be deleted vdel are initialized to null (lines 6-7). At each reduction step, for choosing the
vertex to be deleted from cp, the algorithm iterates (lines 8-17) on each vertex v ∈ cp
performing the following operations:

- creates a temporary set of coordinates Ctmp obtained by deleting v from C (line 9);
- calculates the convex polygon cptmp from Ctmp (line 10);

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: October 2017.
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ALGORITHM 1: G-RoI reduction.
Input : Set of coordinates C
Output: Set of convex polygons CP

1 cp0 ← convexHull(C); /* Initial convex polygon */
2 CP ← {cp0}; /* Set of convex polygons */
3 cp← cp0; /* Current convex polygon */
4 do
5 ρmax ← 0; /* Current maximum density */
6 cpmax ← `; /* Convex polygon with density = ρmax */

7 vdel ← `; /* Vertex to be deleted */
8 for v ∈ cp do
9 Ctmp ← C − v;

10 cptmp ← convexHull(Ctmp);
11 Atmp ← Area(cptmp);
12 if Atmp > 0 then
13 ρtmp ← |Ctmp| /Atmp;
14 if ρtmp > ρmax then
15 ρmax ← ρtmp;
16 cpmax ← cptmp;
17 vdel ← v;

18 if ρmax > 0 then
19 CP ← CP ∪ {cpmax};
20 cp← cpmax;
21 C ← C − vdel;
22 while ρmax > 0;
23 return CP

- calculates the area Atmp of cptmp (line 11);
- if Atmp is greater than zero (line 12), the density ρtmp of cptmp is calculated as the
number of coordinates in Ctmp divided by Atmp (line 13);

- if ρtmp is greater than ρmax (line 14), ρtmp is assigned to ρmax (line 15), cptmp is as-
signed to cpmax (line 16), and v is assigned to the vertex to be deleted vdel (line 17).

After having iterated on all vertices, if ρmax is greater than zero (i.e., at least one
polygon was found) (line 18), the algorithm adds cpmax to CP (line 19), assigns cpmax

to cp (line 20), and deletes vdel from C (line 21). Finally, when the current reduction
step does not change ρmax, and so it remains equal to zero, which means that the
current convex polygon cannot be further reduced (line 22), the algorithm returns the
set of convex polygons CP generated (line 23).

Algorithm 2 shows the pseudo-code of the G-RoI selection procedure. The input is a
set of convex polygons CP (i.e., output of G-RoI reduction) and a threshold th ∈ (0, 1).
Given CP , the algorithm creates a set of Cartesian points P , where each point pi is
a pair (i, Ai), with i identifying the step in which cpi has been generated (by G-RoI
reduction) and Ai representing the area of cpi (lines 1-4). Given two adjacent points
pi = (i, Ai) and pi+1 = (i+ 1, Ai+1), Ai is strictly greater than Ai+1, because the area of
cpi+1 is always lower than the area of cpi (see Algorithm 1).

Then, the index of the cut-off point cut is set to zero (line 5). At each iteration (lines
6-19) the algorithm tries to find a cut-off point pcut that is at the maximum distance
from the line y = 1 − x (which links the first and last normalized points in CP ), and
which is located below the line y = 1− th− x (i.e., within a threshold distance th from

ACM Transactions on Knowledge Discovery from Data, Vol. V, No. N, Article A, Publication date: October 2017.
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the line y = 1 − x). Thus, at the beginning of each iteration, the maximum distance
distmax is set to zero (line 7), and the index of the point with maximum distance imax

is set to cut (line 8).

ALGORITHM 2: G-RoI selection.
Input : Set of convex polygons CP ; Threshold th ∈ (0, 1)
Output: Region of Interest R.

1 P ← ∅; /* Set of Cartesian points */
2 for cpi ∈ CP do
3 Ai ← Area(cpi);
4 P ← P ∪ {(i, Ai)};
5 cut← 0; /* Index of the cut-off point */
6 do
7 distmax ← 0; /* Current maximum distance from y=1-x */
8 imax ← cut; /* Index of the point with distmax */
9 for i← cut+ 1 to n− 1 do /* Where n = |CP | − 1 */

10 xnorm = (Pi.x− Pcut.x)/(Pn.x− Pcut.x);
11 ynorm = (Pi.y − Pn.y)/(Pcut.y − Pn.y);
12 if ynorm < 1− th− xnorm then
13 disttmp = (1− ynorm − xnorm) ·

√
2/2;

14 if disttmp ≥ distmax then
15 distmax ← disttmp;
16 imax ← i;

17 if distmax > 0 then
18 cut← imax;

19 while distmax > 0;
20 return cpcut

The algorithm iterates (lines 9-16) on each point pi between pcut and pn (i.e., pi ∈
(pcut, pn)) and performs the following operations:

- normalizes pi.x with respect to [pcut.x, pn.x] and stores such value in xnorm (line 10);
- normalizes pi.y with respect to [pn.y, pcut.y] and stores such value in ynorm (line 11);
- if the normalized point (xnorm, ynorm) is below the line y = 1− th−x (line 12), disttmp

is calculated as the distance of that point from y = 1− x (line 13).
- if disttmp is greater than distmax (line 14), distmax is updated to disttmp (line 15) and
imax is updated to i (line 16).

After having iterated on all points in {pcut, ..., pn}, if distmax is greater than zero (i.e.
a new cut-off point was found) (line 17), cut is updated to imax (line 18). Finally, when
distmax is equal to zero (i.e., there are no points below y = 1 − th − x) (line 19), the
algorithm returns the convex polygons cpcut as RoI R (line 20).

Figure 4 shows an example in which G-RoI selection procedure iterates three times
to find the cut-off point. At the first iteration, the algorithm analyses the points in
{p0, ..., pn} and finds the first cut-off point pcut1 (see Figure 4(a)). At the second itera-
tion, the algorithm analyses the points in {pcut1, ..., pn} and finds a new cut-off point
pcut2 (see Figure 4(b)). At the third iteration, the algorithm analyses the points in
{pcut2, ..., pn} but it does not find any cut-off point (see Figure 4(c)). Therefore, the al-
gorithm returns as RoI R the convex polygon corresponding to pcut2.
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(a) Iteration 1: Found cut-off point pcut1.
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(b) Iteration 2: Found cut-off point pcut2.
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(c) Iteration 3: No cut-off point found.

Fig. 4. G-RoI selection procedure: An example with three iterations.

4.3. Complexity analysis
In the following we show that the time complexity of G-RoI is O(n3 log n), where n is
the number of input coordinates (i.e., the size of C). To this end, we analyze separately
the complexity of the G-RoI reduction and G-RoI selection procedures.

The complexity of G-RoI reduction is O(n3 log n). In fact, the first part of the proce-
dure (lines 1-3 of Algorithm 1) has the complexity of calculating the initial convex hull
polygon, which is equal to O(n log n) (as proven in [Graham 1972]). The second part of
the procedure (lines 4-22) has a complexity of O(n3 log n), as detailed in the following:

(1) The do-while block performs n iterations, because at each iteration the procedure
deletes one of the coordinates in C.

(2) The for block performs at most n iterations, because the number of vertices in cp is
at most n.

(3) Each for iteration has the complexity of calculating a convex hull polygon, which is
O(n log n).
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The complexity of G-RoI selection is O(n2). In fact, the first part of the procedure
(lines 1-4 of Algorithm 2) has the complexity of calculating the area of each convex
polygon generated by the G-RoI reduction procedure. Since the complexity of calculat-
ing the area is O(n) (as proven in [Braden 1986]), and the number of convex polygons
is O(n), the complexity of this part of the procedure is O(n2). Also the second part of
the procedure (lines 5-19) has a complexity of O(n2), as detailed in the following:

(1) The do-while block performs at most n iterations, because at each iteration the
procedure deletes at least one of the points in P .

(2) The for block performs n iterations, because it checks all the points in P .

Considering the whole of the two procedures, it can be concluded that the time com-
plexity of G-RoI is O(n3 log n).

5. EVALUATION
We experimentally evaluated the accuracy of G-RoI in detecting the RoIs associated
to a set of PoIs, comparing it with three existing techniques: Circle [Spyrou and My-
lonas 2016] (representative of the predefined-shapes approach), DBSCAN [Zheng et al.
2012] (density-based clustering), and Slope [Cai et al. 2014] (grid-based aggregation).
The analysis was carried out on 24 PoIs located in the center of Rome (St. Peter’s Basil-
ica, Colosseum, Circus Maximus, etc.) and 24 PoIs located in the center of Paris (Lou-
vre Museum, Eiffel Tower, etc.) using about 2.3 millions geotagged items published in
Flickr from January 2006 to May 2016 in the areas under analysis.

5.1. Performance metrics
To measure the accuracy of the algorithms in detecting RoIs, we use precision and
recall metrics. As in [de Graaff et al. 2013], let roireal be the real RoI for a PoI, and let
roifound be the RoI found by an algorithm. Let us define the true positive area roiTP

as the intersection of roifound and roireal. Precision Prec and recall Rec are defined as:

Prec =
Area(roiTP )

Area(roifound)
Rec =

Area(roiTP )

Area(roireal)
(1)

A roifound larger than roireal produces a high recall and a low precision, whereas
roifound smaller than roireal produces a low recall and a high precision. If roireal ⊆
roifound then roiTP = roireal and therefore the recall is 1 but the precision is lower
than 1. On the other hand, if roifound ⊆ roireal the precision is 1 but the recall is lower
than 1.

To rank the results, we combine precision and recall using the F1 score:

F1 =
2 · Prec ·Rec
Prec+Rec

(2)

5.2. Data source
The evaluation has been performed on geotagged data collected from Flickr3, which
is one of the most used social networks for photo sharing. Flickr shares more than
one billion of photos that can be gathered using public APIs, which allow to retrieve
metadata about all the photos matching the provided search criteria, e.g. the photos
taken in a radius from a given geographical point.

Using the APIs, we collected metadata about 2.3 millions geotagged items published
in Flickr from January 2006 to May 2016 in the central areas of Rome and Paris. For

3http://flickr.com
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each photo matching the search criteria, the Flickr APIs returned a metadata element
such as the one shown in Figure 5.

{ "id":"987654321",
"owner":{"id":"123456789@N00","username":"FlickrUser"},
"dateTaken":"May 3, 2015 4:39:24 PM",
"tags":[
{"value":"italy"},{"value":"rome"},{"value":"piazzadispagna"},
{"value":"itali"},{"value":"spanishteps"}

],
"title":"Night at Piazza di Spagna",
"description": "In the Piazza di Spagna, just below the Spanish Steps",
"geoData":{ "longitude":12.482045, "latitude":41.905888}
...

}

Fig. 5. An example of metadata element returned by the Flickr APIs.

Each metadata element was parsed to extract the relevant features associated to
geotagged items introduced in Section 2 (text, tags, coordinates, userId, timestamp).

5.3. Experimental results
The techniques under analysis need some parameters to work. We made several pre-
liminary tests to find parameter values that perform effectively in all the scenarios,
taking into account that the various PoIs are characterized by significant variability
of shape, area and density (number of Flickr photos divided by area). For the Circle
technique, the radius was set to 260 meters. With DBSCAN, the maximum distance
between points is 10 meters and the minimum number of cluster points is 150. For the
Slope technique, the square cell side is 55 meters and the minimum cell support is 150.
For G-RoI, the threshold th was set to 0.27. The next two sections present the results
obtained on 24 representative PoIs in Rome and 24 PoIs in Paris, respectively.

5.3.1. Rome. Figure 6 reports a graphical view of six (out of the 24 analyzed) rep-
resentative PoIs in Rome (St. Peter’s Basilica, Circus Maximus, Colosseum, Roman
Forum, Arch of Constantine and Trevi Fountain): i) purple lines represent the RoIs
found by Circle; ii) orange lines represent the RoIs identified by DBSCAN; ii) red lines
the RoIs found by Slope RoI; iii) blue lines those found using G-RoI; iv) black dotted
lines the real RoIs.

As shown in the figure, the RoIs identified by the Circle technique are very approxi-
mative compared to the real ones. This is due to two reasons: i) circles cannot be used to
represent elongated shapes (e.g. Circus Maximus); ii) with a given radius it is difficult
to represent well places with very different areas (e.g., Colosseum vs Trevi Fountain).
DBSCAN produced accurate results with St. Peter’s Basilica and Colosseum, but failed
in finding RoIs from two adjacent places (e.g., Colosseum and Arch of Constantine) or
of places with low density. The low accuracy of DBSCAN with low density places is
particularly evident in the case of Circus Maximus, where the RoI identified is very
small compared to the real one. This is due to the fact that, when the points are few
and distant each other, DBSCAN does not recognize them as part of the same cluster.
Also Slope failed in distinguishing RoIs from two adjacent places (e.g., Colosseum and
Roman Forum) that do not present significant density variations. Moreover, Slope fails
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(a) St. Peter’s Basilica. (b) Circus Maximus.

(c) Colosseum. (d) Roman Forum.

(e) Arch of Constantine. (f) Trevi Fountain.

Fig. 6. RoIs identified by different techniques: Circle (purple lines), DBSCAN (orange), Slope (red), G-RoI
(blue). Real RoIs shown as black dotted lines.

in finding good RoIs for places with low density (e.g., with Circus Maximus it found a
very small RoI compared to the real one).

Differently from the previous techniques, G-RoI is able to represent PoIs charac-
terized by different shapes, areas and densities. In fact, G-RoI works well with both
compact and elongated shapes (e.g., Trevi Fountain and Circus Maximus), with both
small and large areas (e.g., Arch of Constantine and Roman Forum), and with various
densities (from Circus Maximus to Colosseum). In addition, G-RoI accurately distin-
guishes RoIs of adjacent PoIs (e.g., Arch of Constantine and Colosseum).
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Table II. Precision, Recall, and F1 score of Circle, DBSCAN, Slope and G-RoI over 24 PoIs in Rome. For each
row, the best F1 score is indicated in bold.

PoI Circle DBSCAN Slope G-RoI
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

St. Peter’s Basilica 0.39 1.00 0.56 0.96 0.86 0.91 0.56 0.50 0.53 0.92 0.78 0.84
Circus Maximus 0.39 0.84 0.53 0.00 0.00 0.00 0.81 0.13 0.22 0.95 0.94 0.94
Colosseum 0.33 1.00 0.50 0.90 0.75 0.82 0.27 0.83 0.40 0.61 1.00 0.76
Roman Forum 0.62 0.85 0.71 0.61 0.25 0.00 0.44 0.62 0.51 0.95 0.80 0.87
Arch of Constantine 0.00 1.00 0.01 0.01 1.00 0.02 0.06 1.00 0.11 0.53 0.85 0.65
Trevi Fountain 0.01 1.00 0.03 0.42 1.00 0.59 0.14 1.00 0.24 0.49 1.00 0.66
Piazza Colonna 0.02 1.00 0.05 0.93 0.52 0.67 0.18 1.00 0.31 0.92 0.82 0.87
Tiber Island 0.14 1.00 0.24 1.00 0.02 0.03 0.40 0.26 0.31 0.72 0.81 0.76
Mausoleum of Hadrian 0.11 1.00 0.20 0.86 0.65 0.74 0.63 0.59 0.61 0.77 0.59 0.67
Piazza del Popolo 0.11 1.00 0.20 0.98 0.58 0.73 0.60 0.88 0.71 0.60 0.98 0.74
Villa Borghese 1.00 0.24 0.38 1.00 0.00 0.00 1.00 0.00 0.01 1.00 0.44 0.61
Piazza di Spagna 0.11 1.00 0.20 0.72 0.65 0.68 0.41 0.77 0.54 0.87 0.84 0.86
Piazza Venezia 0.09 1.00 0.17 0.57 0.78 0.66 0.13 0.99 0.22 0.52 0.96 0.68
Piazza Navona 0.06 1.00 0.11 0.71 0.96 0.81 0.23 1.00 0.38 0.49 0.99 0.66
Trastevere 1.00 0.36 0.53 1.00 0.01 0.02 1.00 0.04 0.08 1.00 0.55 0.71
Our Lady in Trastev. 0.02 1.00 0.03 0.62 0.98 0.76 0.14 1.00 0.25 0.83 0.94 0.88
Capitoline Hill 0.09 1.00 0.17 0.31 1.00 0.47 0.45 0.43 0.44 0.94 0.93 0.94
Vatican Museums 0.41 1.00 0.58 0.75 0.51 0.00 0.55 0.78 0.65 0.65 0.87 0.75
Pantheon 0.04 1.00 0.09 0.58 0.93 0.72 0.17 1.00 0.29 0.71 0.98 0.82
The Mouth of Truth 0.03 1.00 0.06 0.98 0.24 0.38 0.38 0.90 0.54 0.75 0.88 0.81
Palazzo Montecitorio 0.04 1.00 0.08 1.00 0.15 0.26 0.79 0.58 0.67 0.98 0.42 0.59
Campo de’ Fiori 0.02 1.00 0.04 0.56 1.00 0.72 0.24 0.98 0.39 0.77 0.96 0.85
St Mary Major 0.12 1.00 0.22 1.00 0.21 0.35 0.88 0.53 0.66 0.86 0.65 0.74
Janiculum 0.59 0.70 0.64 0.00 0.00 0.00 1.00 0.03 0.07 0.94 0.78 0.85
Mean values 0.24 0.92 0.26 0.69 0.54 0.43 0.48 0.66 0.38 0.78 0.82 0.77

Table II illustrates the performance (Precision, Recall, F1 score) of the four tech-
niques, for all the 24 PoIs that have been considered. The last row of the table reports
mean values computed over the 24 PoIs.

The results reported in the table confirm that using a predefined shape (the Circle)
does not bring to accurate results. In fact, Circle produces a very high recall with a low
precision (which result in a mean F1 score of 0.26), which means that the RoI identified
by the technique is too large compared to the real one. In most cases, the recall is equal
to 1 because the RoIs found contain the real ones (see also Section 5.1).

DBSCAN achieves the best results (F1 score ranging from 0.74 to 0.91) with four
PoIs - St. Peter’s Basilica, Colosseum, Piazza Navona and Mausoleum of Hadrian -
which are characterized by a similar density. On average, the precision of DBSCAN
was 0.69 and the recall was 0.54, which leads to a mean F1 score of 0.43. The fact that
the precision is higher than the recall, means that the RoIs identified by DBSCAN are
too small compared to the real ones.

Slope identifies the best RoI only with one PoI, Palazzo Montecitorio, with an F1

score of 0.67. On the mean, the precision of Slope was 0.48 and the recall was 0.66,
with a mean F1 score of 0.38. In this case, the precision is lower than the recall, which
means that the RoIs identified by this techniques are on average larger than the real
ones.

Finally, G-RoI outperformed the other RoI mining techniques in 19 out of 24 PoIs,
with a mean precision of 0.78, a mean recall of 0.82, and a mean F1 score of 0.77 (0.34
higher than the F1 score of DBSCAN). These results confirm the ability of G-RoI to
accurately identify RoIs regardless of shapes, areas and densities of PoIs, and without
being influenced by the proximity of different PoIs. In the few cases in which G-RoI
does not result the best technique (5 out 24 PoIs in the case of Rome), its accuracy
is very close to the best technique, i.e., it gets a F1 score that is lower than the F1
obtained with the best technique by just 0.08, on average. We noticed that in these
cases G-RoI is able to return the correct shape of the place, but the area is either larger
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Fig. 7. City of Rome: RoIs identified by G-RoI (blue lines) compared with real ones (black dotted lines).

or smaller than the actual one. In the first case the recall is high but the precision is low
(see, for example, Piazza Navona), in the second case is the opposite (e.g., Mausoleum
of Hadrian). In both cases, this results in a relatively low F1 score compared to that
of the traditional techniques. For a complete view of the results produced by G-RoI,
Figure 7 shows all the 24 RoIs of Rome found by G-RoI, compared with the real ones.

5.3.2. Paris. Figure 8 presents a graphical view of six (out of the 24 analyzed) repre-
sentative PoIs in Paris (Louvre Museum, Eiffel Tower, Champs-Élysées, Notre-Dame,
Pompidou Centre, Pont des Arts), while Table III presents the performance of the four
techniques (Circle, DBSCAN, Slope and G-RoI), for all the 24 PoIs that have been con-
sidered in Paris.

The experimental results confirm the behavior observed in Rome RoIs. Also in this
case, Circle does not compute accurate results, producing a very high recall with a low
precision (which results in a mean F1 score of 0.23).

DBSCAN achieves the best results only with four PoIs (i.e., Notre-Dame, Moulin
Rouge, Paris Opera, and Arc de Triomphe). On the mean, the precision of DBSCAN was
0.85 and the recall was 0.42, which means that the RoIs identified by this techniques
are on average smaller than the real ones. Furthermore, Slope identifies the best RoI
only for two PoIs (i.e. Eiffel Tower and Place de la Concorde). On average, the precision
of Slope was 0.45 and the recall was 0.64, with an average F1 score of 0.44. In this case,
the precision is lower than the recall, which means that the RoIs identified by this
techniques are on average larger than the real ones.

Finally, G-RoI outperformed the other RoI mining techniques in 18 out of 24 PoIs,
with a mean precision of 0.81, a mean recall of 0.66, and a mean F1 score of 0.70 (0.23
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(a) Louvre Museum. (b) Eiffel Tower.

(c) Champs-Élysées. (d) Notre-Dame.

(e) Pompidou Centre. (f) Pont des Arts.

Fig. 8. RoIs identified by different techniques in Paris: Circle (purple lines), DBSCAN (orange), Slope (red),
G-RoI (blue). Real RoIs shown as black dotted lines.

higher than the mean F1 score of DBSCAN). In particular, G-RoI results to be the only
technique able to identify an accurate RoI for the Champs-Élysées that are character-
ized by a very elongated shape, achieving a very high F1 score (0.77). The behavior of
G-RoI for the Eiffel Tower deserves to be discussed: differently from the other tech-
niques, G-RoI produces a larger RoI with an elongated shape. This is due to the fact
that anyone who wants to take a picture of the Eiffel Tower does not come strictly
under it, but at some distance in front of it or behind it. Specifically, most geotagged
items on this subject are located at Trocadéro, commonly considered the best place to
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Table III. Precision, Recall, and F1 score of Circle, DBSCAN, Slope and G-RoI over 24 PoIs in Paris. For each
row, the best F1 score is indicated in bold.

PoI Circle DBSCAN Slope G-RoI
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Louvre Museum 0.66 0.72 0.69 1.00 0.36 0.53 0.74 0.49 0.59 0.94 0.69 0.79
Tour Eiffel 0.28 1.00 0.44 1.00 0.38 0.55 0.56 0.98 0.72 0.46 0.57 0.51
Champs-Élysées 0.18 0.26 0.22 1.00 0.01 0.02 0.65 0.08 0.14 0.95 0.64 0.77
Notre-Dame 0.18 1.00 0.30 0.76 0.84 0.79 0.32 0.84 0.46 0.53 0.90 0.67
Pompidou Centre 0.13 1.00 0.23 0.82 0.66 0.73 0.37 0.98 0.54 0.78 0.98 0.87
Pont des Arts 0.01 1.00 0.02 0.31 1.00 0.48 0.11 0.75 0.19 0.42 1.00 0.59
Place de la Concorde 0.26 1.00 0.41 1.00 0.15 0.26 0.74 0.79 0.77 0.99 0.43 0.60
Moulin Rouge 0.02 1.00 0.04 0.81 0.86 0.84 0.00 0.00 0.00 0.72 0.62 0.67
Place de la Bastille 0.07 1.00 0.13 1.00 0.24 0.39 0.62 0.87 0.73 0.95 0.69 0.80
Sacré-Cœur Basilica 0.05 1.00 0.09 0.48 0.90 0.63 0.02 0.01 0.01 0.81 0.63 0.71
Jardin des Plantes 0.77 0.79 0.78 1.00 0.00 0.01 1.00 0.09 0.16 0.97 0.84 0.90
Saint-Sulpice 0.06 1.00 0.11 1.00 0.09 0.17 0.59 0.57 0.58 0.96 0.48 0.64
Pantheon 0.11 1.00 0.19 1.00 0.29 0.45 0.62 0.82 0.70 0.74 0.78 0.76
Trocadéro 0.20 1.00 0.34 1.00 0.28 0.43 0.83 0.52 0.64 0.89 0.70 0.78
Place de la République 0.08 1.00 0.14 0.97 0.46 0.62 0.58 0.77 0.66 0.98 0.59 0.74
Musée de l’Orangerie 0.02 1.00 0.05 1.00 0.52 0.68 0.24 0.88 0.38 0.91 0.70 0.79
Galeries Lafayette 0.07 1.00 0.12 0.92 0.26 0.41 0.36 0.83 0.50 0.87 0.76 0.81
Arab World Institute 0.04 1.00 0.07 0.96 0.49 0.65 0.28 0.99 0.44 0.96 0.55 0.70
Grand Palais 0.17 1.00 0.30 1.00 0.38 0.55 0.61 0.94 0.74 0.83 0.85 0.84
Petit Palais 0.05 1.00 0.10 1.00 0.36 0.53 0.07 0.33 0.11 0.78 0.59 0.67
Paris Opera 0.07 1.00 0.13 0.90 0.56 0.69 0.37 0.84 0.52 0.93 0.49 0.64
Pont Neuf 0.04 1.00 0.08 0.83 0.18 0.30 0.16 0.74 0.27 0.55 0.59 0.57
Arc de Triomphe 0.05 1.00 0.10 0.55 0.77 0.64 0.30 1.00 0.46 0.50 0.35 0.41
Sorbonne 0.20 1.00 0.33 0.00 0.00 0.00 0.75 0.21 0.33 0.99 0.47 0.64
Mean values 0.16 0.95 0.23 0.85 0.42 0.47 0.45 0.64 0.44 0.81 0.66 0.70

take picture with Eiffel Tower in background. Overall, also the results on Paris con-
firm the ability of G-RoI in identifying RoIs characterized by a variety of shapes, areas
and densities of PoIs.

5.3.3. Comparison with other techniques using preprocessed data. To further evaluate the
accuracy of G-RoI compared to that achieved by the other techniques, in this section we
present the results obtained by DBSCAN and Slope on all the cases of study presented
above (places of interest in Rome and Paris) by using the same preprocessed data
used by G-RoI. We recall that G-RoI has been designed to find the RoI of a place of
interest, given a set of geotagged data referring to that place. For this reason, G-RoI
preprocessing is a preliminary step in which the geotagged data referring to a place
are selected for subsequent analysis.

Table IV reports the F1 score achieved by DBSCAN and Slope with and without
preprocessing compared to that of G-RoI over the 24 PoIs in Rome. On average, us-
ing preprocessed data, DBSCAN and Slope improve their accuracy by 18% and 26%
respectively. However, even using preprocessing, in most cases the accuracy of both
techniques is lower than that achieved by G-RoI. Specifically, G-RoI is still the most
accurate technique in 18 out of 24 PoIs.

Table V reports the F1 score achieved by DBSCAN and Slope with and without
preprocessing compared to that of G-RoI over the 24 PoIs in Paris. DBSCAN and Slope
improve their accuracy using preprocessed data, with an average increase of 27% for
the former and 11% for the latter. Also in this case, in most cases the accuracy of both
techniques is lower than that achieved by G-RoI, even using preprocessing. In fact,
G-RoI remains the most accurate technique in 15 out of 24 PoIs.

It is worth noticing that, even using preprocessed data, DBSCAN and Slope are still
unable to cope with low-density places (e.g., Circus Maximus and Villa Borghese in
Rome, Champs-Élysées and Jardin des Plantes in Paris).
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Table IV. F1 score achieved by DBSCAN and Slope with and without preprocessing com-
pared to that of G-RoI over the 24 PoIs in Rome. For each row, the best F1 score is
indicated in bold.

PoI DBSCAN Slope G-RoI
No preproc. Preproc. No preproc. Preproc.

St. Peter’s Basilica 0.91 0.92 0.53 0.58 0.84
Circus Maximus 0.00 0.00 0.22 0.07 0.94
Colosseum 0.82 0.86 0.40 0.82 0.76
Roman Forum 0.00 0.50 0.51 0.38 0.87
Arch of Constantine 0.02 0.37 0.11 0.16 0.65
Trevi Fountain 0.59 0.43 0.24 0.42 0.66
Piazza Colonna 0.67 0.87 0.31 0.60 0.87
Tiber Island 0.03 0.07 0.31 0.26 0.76
Mausoleum of Hadrian 0.74 0.75 0.61 0.38 0.67
Piazza del Popolo 0.73 0.92 0.71 0.74 0.74
Villa Borghese 0.00 0.00 0.01 0.01 0.61
Piazza di Spagna 0.68 0.81 0.54 0.71 0.86
Piazza Venezia 0.66 0.61 0.22 0.48 0.68
Piazza Navona 0.81 0.65 0.38 0.58 0.66
Trastevere 0.02 0.03 0.08 0.02 0.71
Our Lady in Trastev. 0.76 0.66 0.25 0.81 0.88
Capitoline Hill 0.47 0.78 0.44 0.75 0.94
Vatican Museums 0.00 0.65 0.65 0.60 0.75
Pantheon 0.72 0.52 0.29 0.60 0.82
The Mouth of Truth 0.38 0.57 0.54 0.62 0.81
Palazzo Montecitorio 0.26 0.61 0.67 0.83 0.59
Campo de’ Fiori 0.72 0.00 0.39 0.64 0.85
St Mary Major 0.35 0.62 0.66 0.50 0.74
Janiculum 0.00 0.06 0.07 0.04 0.85
Mean values 0.43 0.51 0.38 0.48 0.77

Table V. F1 score achieved by DBSCAN and Slope with and without preprocessing com-
pared to that of G-RoI over the 24 PoIs in Paris. For each row, the best F1 score is indicated
in bold.

PoI DBSCAN Slope G-RoI
No preproc. Preproc. No preproc. Preproc.

Louvre Museum 0.53 0.78 0.59 0.59 0.79
Tour Eiffel 0.55 0.79 0.72 0.81 0.51
Champs-Élysées 0.02 0.00 0.14 0.04 0.77
Notre Dame 0.79 0.67 0.46 0.56 0.67
Pompidou Centre 0.73 0.75 0.54 0.76 0.87
Pont des Arts 0.48 0.36 0.19 0.29 0.59
Place de la Concorde 0.26 0.00 0.77 0.00 0.60
Moulin Rouge 0.84 0.66 0.00 0.00 0.67
Place de la Bastille 0.39 0.67 0.73 0.78 0.80
Sacré-Cœur Basilica 0.63 0.69 0.01 0.63 0.71
Jardin des Plantes 0.01 0.04 0.16 0.26 0.90
Saint-Sulpice 0.17 0.82 0.58 0.41 0.64
Pantheon 0.45 0.75 0.70 0.74 0.76
Trocadéro 0.43 0.49 0.64 0.66 0.78
Place de la République 0.62 0.73 0.66 0.53 0.74
Musée de l’Orangerie 0.68 0.76 0.38 0.67 0.79
Galeries Lafayette 0.41 0.64 0.50 0.65 0.81
Arab World Institute 0.65 0.81 0.44 0.74 0.70
Grand Palais 0.55 0.83 0.74 0.83 0.84
Petit Palais 0.53 0.91 0.11 0.00 0.67
Paris Opera 0.69 0.89 0.52 0.60 0.64
Pont Neuf 0.30 0.49 0.27 0.37 0.57
Arc de Triomphe 0.64 0.61 0.46 0.47 0.41
Sorbonne 0.00 0.18 0.33 0.34 0.64
Mean values 0.47 0.60 0.44 0.49 0.70
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6. CONCLUSION
RoI mining techniques are aimed at discovering Regions-of-Interest (RoIs) from
Places-of-Interest (PoIs) and other data. Existing RoI mining techniques are based
on the use of predefined shapes, density-based clustering or grid-based aggregation. In
this paper we presented G-RoI, a novel RoI mining technique that exploits the indi-
cations contained in geotagged social media items to discover the RoI of a PoI with a
high accuracy.

We experimentally evaluated the accuracy of G-RoI in detecting the RoIs associated
to a set of PoIs, comparing it with three existing techniques: Circle (predefined-shapes
approach), DBSCAN (density-based clustering), and Slope (grid-based aggregation).
The analysis was carried out on a set of PoIs located in the center of Rome, charac-
terized by different shapes, areas and densities, using a large set of geotagged photos
published in Flickr over six years. The experimental results show that G-RoI is able
to detect more accurate RoIs than existing techniques. Over a set of 24 PoIs in Rome,
G-RoI achieved better results than related techniques based on the three classes of
existing algorithms in 19 cases, with a mean precision of 0.78, a mean recall of 0.82,
and a mean F1 score of 0.77. In particular, the F1 score of G-RoI is 0.34 higher than that
obtained with the well-known DBSCAN algorithm.

To better assess the accuracy of G-RoI, further experiments have been run over an
additional set of 24 PoIs in Paris. Also in this case, G-RoI achieved best results in 18
cases, with a mean precision of 0.81, a mean recall of 0.66, and a mean F1 score of
0.70 (0.23 higher than that obtained with DBSCAN). These results confirm the ability
of G-RoI to accurately identify RoIs regardless of shapes, areas and densities of PoIs,
and without being influenced by the proximity of different PoIs. For the purpose of
reproducibility, an open-source version of G-RoI and all the input data used in the
experiments are available at https://github.com/scalabunical/G-RoI.
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