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Abstract. This paper examines a decentralized and self-organizing approach 

inspired by ant behavior for building an information system in which metadata 

related to Grid resources is disseminated and logically organized. Each 

agent/ant, by analyzing its own past activity, copies and moves resource 

metadata among Grid hosts and contributes to collect resources belonging to the 

same class in a restricted region of the Grid, so decreasing the system entropy. 

A semi-informed resource discovery protocol exploits the ants’ work: 

asynchronous query messages issued by clients are driven towards 

“representative peers” which maintain information about a large number of 

resources having the required characteristics. Agents control their activities, and 

query messages travel the network, according to self-organizing mechanisms 

based, respectively, on sematectonic and marker-based stigmergy, with no 

information about the global system state. Simulation analysis suggests that the 

combined use of the proposed resource mapping protocol (ARMAP) and 

resource discovery protocol (ARDIP) is profitable: as resources are 

progressively reorganized by the ARMAP process, users are able to find more 

and more results in a smaller amount of time. 

Keywords: agents, autonomous systems, grid, peer-to-peer, resource discovery, 

resource replication, swarm intelligence. 
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1 Introduction 

A Grid information system provides resource discovery and browsing services which are 

invoked by Grid clients when they need to use hardware or software resources matching given 

criteria and characteristics. In currently deployed Grids, for example in the Web Services 

Resource Framework (WSRF [24]), resources are available in the form of Grid services, i.e. 

Web services having enriched functionalities such as state and lifecycle management.  

In most Grid/cluster systems (for example in Condor submission systems), users do not 

generally need to find a particular resource, but a number of resources belonging to a given 

class, so that they can subsequently select the resource which is the best suited for their 

application [6, 16]. A resource class can be seen as a set of resources satisfying a given set of 

syntactic and semantic constraints on the values of resource metadata parameters, for example 

of WSRF Resource Properties. Resource matchmaking can be realized by means of XML 

queries operated on XML metadata documents describing Grid services. A survey on the 

management of metadata for describing and discovering Grid resources and services can be 

found in [15].  

Currently used Grid framework, for example those based on the Globus Toolkit, often 

adopt centralized or hierarchical information systems, which are not suitable for very large 

Grids for their intrinsic poor scalability features. The design of decentralized information 

systems is therefore urgent. An agent-based protocol (i.e. ARMAP, Ant-based Replication 

and MApping Protocol) was proposed in [9] for building and managing a decentralized Grid 

information system. ARMAP exploits the features of (i) epidemic mechanisms tailored to the 

dissemination of information in distributed systems [17, 5] and (ii) self adaptive systems in 

which a sort of “swarm intelligence” emerges from the work of a large number of agents 

which interact with the environment [3].  

ARMAP disseminates metadata documents describing Grid resources in a controlled way, 

by spatially mapping such documents according to the semantic classification of resources. A 

metadata document is composed of a syntactical description of the service (i.e. a WSDL 

document) and/or an ontology description of service capabilities. By mapping metadata 

documents on Grid hosts it is possible to achieve a logical reorganization of resources. For 

the sake of simplicity, in the following an information document describing a Grid resource 
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will be simply referred to as a resource. When distinction is important, the term logical 

resource or resource descriptor will be used, while the real resource described by the 

metadata document will be named physical resource.  

With ARMAP, resources are replicated and mapped on the Grid so that resources 

belonging to the same class are placed in nearby Grid hosts. This is managed through a multi-

agent approach that emulates the behavior of ants which cluster and map items within their 

environment [8]. It is here assumed that an underlying peer-to-peer (P2P) infrastructure 

interconnects Grid nodes and can be used by agents to explore the Grid [11]. ARMAP agents 

traverse the Grid and copy or move resources from one host to another, by means of 

appropriate pick and drop random functions.  

A semi-informed discovery protocol (namely ARDIP, Ant-based Resource DIscovery 

Protocol) is proposed to exploit the logical resource organization achieved by ARMAP. The 

rationale is the following: if a large number of resources of a specific class are accumulated in 

a restricted region of the Grid, it becomes convenient to drive query messages (issued by 

peers to search for resources of that class) towards that region, in order to maximize the 

number of discovered resources and minimize the response time. An ARDIP discovery 

operation is performed in two phases. In the first phase, the random walk technique is adopted 

[14]: a number of asynchronous query messages are issued by the requesting peer and will 

travel the Grid in parallel through a blind mechanism. In the second phase, whenever a query 

message gets close enough to a Grid region which is collecting the needed class of resources, 

the search becomes informed: the query message will be driven towards this Grid region – 

more specifically, towards a representative peer that is selected within this region - and will 

easily discover a large number of useful resources. 

The semi-informed ARDIP protocol aims at combining the benefits of both blind and 

informed resource discovery approaches which are currently used in P2P networks [22]. In 

fact, a pure blind approach (e.g. using flooding or random walk techniques) is very simple and 

scalable but has limited performance and can cause an excessive network load, whereas a pure 

informed approach (e.g. based on routing indices [6] or adaptive probabilistic search [21]) 

generally requires a very structured resource organization which is impractical in a large, 

heterogeneous and dynamic Grid. 
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Simulation analysis shows that ARMAP and ARDIP protocols can be profitably used 

together. In particular, as the resource mapping performed by ARMAP proceeds, a single 

query can find more and more useful resources while response times and traffic load decrease. 

Moreover, results allow for implicitly comparing the proposed approach with the classical 

random walk technique [14]; indeed if no reorganization of resources is performed, the 

ARDIP protocol can never enter the informed phase, so it becomes equivalent to the random 

walk paradigm. 

An interesting and distinguishing feature of the approach proposed in this paper is that 

both ARMAP agents and ARDIP query messages control their activities and travel the 

network only on the basis of local information, without any knowledge of the global Grid 

state. In particular, a pheromone-based decentralized mechanism is used by ARMAP agents 

to choose their modality (copy or move) and by ARDIP query messages to choose their search 

policy (blind or informed).  The self-organizing and decentralized nature of the involved 

algorithms, along with the analysis of performance results obtained with variable Grid sizes, 

seem to suggest that the proposed approach is scalable and can be adopted in a Grid 

framework regardless of the Grid size. 

The remainder of the paper is organized as follows. Section 2 illustrates the ant-based 

approach for the management and discovery of resources in Grids. In Section 2.1, the key 

points of the ARMAP protocol are summarized (more details can be found in [9]) while 

Section 2.2 describes the mechanism used by ARMAP to deal with the dynamic nature of the 

Grid environment. Section 2.3 introduces the new ARDIP protocol and focuses on the three 

modules which compose ARDIP: (i) the module for the selection of representative peers, (ii) 

the semi-informed search mechanism and (iii) the pheromone mechanism used by query 

messages to exchange information about the presence of representative peers. Section 3 

focuses on the discussion of simulation results, which demonstrate the effectiveness of the 

ARDIP resource discovery protocol in a Grid environment, if it is used in conjunction with 

the ARMAP resource mapping protocol. In particular, Section 3.1 introduces the main system 

and protocol parameters, Section 3.2 illustrates the performance results related to the ARMAP 

protocol, and Section 3.3 focuses on the performance of the ARDIP protocol. The paper 

discusses related work in Section 4 and concludes in Section 5. 
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2 Ant-Based Protocols for the Management and Discovery of Resources 

2.1 The ARMAP protocol 

The aim of the ARMAP protocol (Ant-based Replication and MApping Protocol) is to 

achieve a logical organization of Grid resources by spatially mapping them on the Grid 

according to their semantic classification. It is assumed that resources have been previously 

classified into a number of classes Nc, according to their semantics and functionalities (see 

[6] and [16]). ARMAP exploits the random movements and operations of a number of mobile 

agents that travel the Grid using P2P interconnections. This approach is inspired by ant 

systems [3, 7, 8], in which swarm intelligence emerges from the activity of a large number of 

very simple mobile agents (ants), and a complex overall objective is achieved.  

The ARMAP protocol has been analyzed in a P2P network in which peers are arranged in 

a 2-dimension toroidal space, and each peer is connected to at most 8 neighbor peers. Such a 

mesh topology was chosen to obtain an intuitive and immediate graphical representation of 

system evolution, which helps to understand the involved dynamics. However, it is also 

assumed that peers can leave and re-join the network, as discussed in Section 2.2; therefore at 

a specific time a peer is actually connected to a random number of active peers (at most 8), so 

relaxing the mesh assumption. 

The ARMAP process is driven by the pick and drop probability functions [9], as briefly 

discussed in the following. 

Pick operation 

Once an agent specialized in a given class gets to a Grid host, if it is currently unloaded, it 

must decide whether or not to pick the resource descriptors of that class which are managed 

by that host. In order to achieve the replication and mapping functionalities, a pick random 

function Ppick is defined with the intention that the probability of picking the resource 

descriptors of a given class decreases as the local region of the Grid accumulates such 

descriptors. This way resource mapping is further facilitated. The Ppick random function, 

defined in formula (1), is the product of two factors, which take into account, respectively, the 

relative accumulation of resource descriptors of a given class (with respect to the other 
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classes), and their absolute accumulation (with respect to the initial number of resource 

descriptors of that class). 
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In particular, the fr fraction is computed as the number of resource descriptors of the 

class of interest, accumulated in the peers located in the visibility region, divided by the 

overall number of resource descriptors that are accumulated in the same region. The visibility 

region includes all the peers that are reachable from the current peer with a given number of 

hops (i.e. within the visibility radius). Here it is assumed that the visibility radius is equal to 

one, so that the visibility region is composed of at most 9 hosts, the current one included. The 

fa fraction is computed as the number of physical resources owned by the hosts located in the 

visibility region out of the number of resource (both logical and physical) that are maintained 

by such hosts, including the descriptors deposited by the agents. The inverse of fa gives an 

estimation of the extent to which such hosts have accumulated resource descriptors of the 

class of interest. k1 and k2 are non-negative constants which are both set to 0.1 [3]. If the 

copy modality is used, the agent, when executing a pick operation, leaves the logical resources 

on the current host, generates a replica of them, and carries the replicas until it will drop them 

in another host. Conversely, with the move modality, as an agent picks the resources, it 

removes them from the current host, thus preventing an excessive proliferation of replicas. 

Drop operation 

Whenever an agent specialized in a given class gets to a new Grid host, it must decide 

whether or not to drop the resource descriptors of that class, in the case that it is carrying any 

of them. As opposed to the pick operation, the dropping probability is directly proportional to 

the relative and absolute accumulation of resource descriptors of the class of interest in the 

visibility region. The Pdrop function is shown in formula (2); the threshold constants k3 and 

k4 are set to 0.3 and 0.1, respectively. 
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System entropy  

A system entropy function, defined in [9] and reported in formula (3), evaluates the 

effectiveness of the ARMAP protocol in the spatial mapping of resources. For each peer p, 

the entropy Ep gives an estimation of the extent to which the visibility region centered in p 

has accumulated resource replicas belonging to a single class.  This function, inspired by the 

Shannon entropy formula, is constructed upon the value of fr(i), defined as the fraction of 

resources of class Ci within the visibility region. The Ep formula is normalized, so that 

possible values are comprised between 0 (if all the resources in the visibility region belong to 

just one class) and 1 (if the resources are equally distributed among the different classes). The 

overall spatial entropy E of the network is defined as the average of the entropy values Ep 

computed at all Grid hosts.  

(3)   
Np

pE

E   ,
Nclog

)i(fr
1log)i(fr

E Gridp

2

Nc..1i
2

p
  

∑∑
=

⋅
= = ε  

The overall entropy can be minimized if each agent exploits both the ARMAP modalities, 

i.e. copy and move. In a first phase, the copy modality is used to generate an adequate number 

of resource replicas on the network. However, the copy modality cannot be maintained for a 

long time, since eventually every host would have a huge number of resources of all classes, 

thus weakening the efficacy of resource mapping. Conversely, if the modality switch is 

performed when the entropy begins to increase, then the agents can continue their mapping 

work and the entropy decreases to a much lower value. Therefore, each agent at a certain time 

must switch from the copy to the move modality. An approach that allows for determining the 

correct time at which this modality switch must be performed is described in [9]. This 

approach is based on the observation that a decreasing trend of agents’ activity (i.e. of the 

frequency of pick and drop operations that they perform) is an indication that the overall 

entropy is beginning to increase. This led to the definition of a decentralized and self-

organizing mechanism, inspired by ants’ pheromone [7], through which each agent can tune 

its modality by itself, analyzing its own past activity. It must be remarked that the use of a 

decentralized mechanism is a key feature and is indeed a requisite for any resource 

management algorithm designed for a distributed environment like a Grid. In particular, it 
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would not be possible to guarantee the scalability of the ARMAP protocol if agents had to 

acquire a global knowledge of the system state in order to properly tune their behavior. 

2.2 Managing a dynamic Grid with ARMAP 

In a dynamic Grid, peers can, more or less frequently, go down and connect again. As a 

consequence of this dynamic nature, two different and opposite issues must be tackled. The 

first is related to the management of new resources provided by new or reconnected hosts: if 

all the agents switch to the move modality, it becomes impossible to replicate and disseminate 

information about the new resources; hence agents cannot live forever, and must be gradually 

replaced by new agents that set off in the copy modality. At the same time, the system must 

deal with obsolete resources, i.e. with resources provided by peers that have left the system, 

that are no longer exploitable.  

To tackle these two issues, it is necessary to manage the lifecycle and the gradual turnover 

of agents, and control the overall number of agents that travel the Grid. The proposed solution 

is to correlate the lifecycle of agents to the lifecycle of peers. An assumption is made that the 

average amount of time for which a peer remains connected to the Grid is known and equal to 

PlifeTime*. When joining the Grid, each peer generates a number of agents given by a 

discrete Gamma stochastic function, with average Ngen, and sets the life time of these new 

agents to PlifeTime. This setting assures that (i) the relation between the number of peers 

and the number of agents is maintained over the time (more specifically, the overall number 

of agents is approximately equal to Ngen times the number of active peers) and (ii) a proper 

turnover of agents is achieved, which allows for the permanent dissemination of logical 

resources, since new agents start with the copy modality. Furthermore a peer, when leaving 

the Grid, loses information about the logical resources that it has collected during its 

connection time. This solves the problem of managing obsolete resources: indeed the replicas 

related to an obsolete resource are gradually eliminated by the Grid, as the peers that are 

storing such replicas leave the system and the agents that are carrying them expire. 

                                                           
* In this paper we assume for simplicity that the average connection time is the same for all the peers. However, in a real 

system it would only be required that each peer knows its own average connection time. This estimation can approximately 
be done on the basis of peer’s past activity. 
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2.3 The ARDIP protocol 

The ARDIP (Ant-based Resource DIscovery Protocol) protocol is used by clients to discover 

Grid resources having specific characteristics, i.e. belonging to a given class. The objective of 

ARDIP is to drive a query message towards a region of the Grid in which the needed class of 

resources is being accumulated. Because ARDIP fully exploits the replication and spatial 

mapping of resources achieved by ARMAP, the two protocols should be used together: as 

ARMAP agents perform the logical reorganization of resources and build the Grid 

information system, the number of useful resources that can be discovered by a query 

message increases and at the same time the query response time decreases, as shown in 

Section 3.3. The ARDIP protocol is based upon three modules: (a) a module for the 

identification of representative peers which work as attractors for query messages; (b) a 

module which defines the semi-informed search algorithm; (c) a stigmergy mechanism that 

allows query messages to take advantage of the positive outcome of previous queries. These 

modules are described in the following. 

Identification of representative peers 

As resources of a given class are accumulated in a Grid region, the peer that, within this 

region, collects the maximum number of resources belonging to that class is elected as a 

representative peer for that class.  The objective of a search operation is to let a query 

message get to a representative peer in an amount of time as low as possible, since such a peer, 

as well as its neighbors, certainly manages a large number of useful resources. Each peer 

periodically verifies if it can elect itself as a representative peer for a class of resources. The 

ARDIP protocol assumes that a peer is a representative peer of a given class if the following 

condition is satisfied:  

- the peer maintains a number of logical resources of that class that exceeds Fg times the 

mean number of physical resources belonging to the same class; hereafter, Fg is referred to as 

gathering factor. 

Moreover, to limit the number of representative peers in the same region, each 

representative peer periodically checks if other representative peers are present in its 

neighborhood, specifically within the comparison radius Rc: two neighbor representative 
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peers must compare the number of resources that they maintain, and the “loser” will be 

downgraded to a simple peer. 

Semi-informed search 

When a client or user needs to discover resources belonging to a given class, a number of 

asynchronous query messages are issued by ARDIP. The semi-informed search algorithm 

includes a blind search phase and an informed search phase. For the blind search phase, the 

random walk paradigm [14] is used: query messages travel the Grid through P2P 

interconnections following a random path. The network load is limited by means of a caching 

mechanism that avoids the formation of cycles and the use of a time-to-live parameter TTL: 

the TTL value is equivalent to the maximum number of hops that can be performed by a query 

message before being discarded. The blind search procedure is switched to informed as soon 

as one of the query messages approaches a representative peer of the class of interest, i.e. 

when such a message is delivered to a peer which knows the existence of a representative peer 

in the neighborhood and knows a route to it (see the description of the stigmergy module 

below). During the informed search phase, the query is driven towards the representative peer, 

and the TTL parameter is ignored so that the query cannot be discarded until it actually 

reaches the representative peer. The semi-informed walk of a query message ends in one of 

the two following cases: (i) when the TTL is decremented to 0 during the blind phase; (ii) 

when the query reaches a representative peer. In both cases a queryHit message is created, and 

all the resources of the class of interest, which are found in the current peer, are put in this 

message. The queryHit follows the same path back to the requesting peer and, along the way, 

collects all the resources of the class of interest that are managed by the peers through which 

it passes. 

Stigmergy mechanism 

The French entomologist Grassé coined the term “stigmergy” in the 1950’s [10] to describe a 

broad class of multi-agent coordination mechanisms that rely on information exchange 

through a shared environment. For example, in ant colonies, each ant adjusts its activity 

according to the state of the environment, which in turn can be modified by the activity of 

other ants. An ant that finds a food source leaves a pheromone along its way back to the nest, 
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and such a pheromone will signal to other ants the presence of food. The term is formed from 

the Greek words stigma “sign” and ergon “action”, and captures the notion that an agent’s 

actions leave signs in the environment, signs that it and other agents sense and that determine 

their subsequent actions. Two varieties of stigmergy are distinguished [4]. Such a distinction 

is whether the signs consist of special markers that agents deposit in the environment 

(“marker-based stigmergy”) or whether agents base their actions on the current state of the 

environment (“sematectonic stigmergy”). 

The approach proposed in this paper uses both types of stigmergy. Indeed sematectonic 

stigmergy is used by ARMAP agents to choose their operation modality (copy or move), as 

mentioned in Section 2.1. Conversely marker-based stigmergy is exploited by the ARDIP 

protocol: when a query accidentally gets to a representative peer for the first time, the 

returning queryHit will deposit an amount of pheromone in the peers that it encounters as it 

retreats from the representative peer. In this work, it is assumed the pheromone is deposited 

only in the first two peers of the queryHit path. A pheromone base is maintained for each 

resource class, and information is given about the right direction (i.e. the next neighbor peer) 

to get to the representative peer of the desired class. Accordingly, when a query gets to a peer 

along its blind search, it checks the amount of pheromone which has been deposited in that 

peer for the resource class of interest; if the pheromone exceeds a threshold Tf, it means that a 

representative peer is close, so the search becomes informed and the query is driven towards 

the representative peer. Since the set of representative peers can change as the ARMAP 

clustering process proceeds, an evaporation mechanism is defined to assure that the 

pheromone deposited on a peer does not drive queryHits to ex-representative peers. The 

pheromone level at each peer is computed every time interval of 5 minutes, which is equal to 

the mean time interval between the issues of two successive query messages from a peer (see 

Table 1 in Section 3.1). The amount of pheromone Φi, after the i-th time interval, is given by 

formula (4). 

(4)   E iii 1 ϕ+Φ⋅=Φ −  

The evaporation rate Ev is set to 0.9; ϕ i is equal to 1 if a pheromone deposit has been 

made in the last time interval by at least one agent, otherwise it is equal to 0. The pheromone 
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level can assume values comprised between 0 and 10: the superior limit can be obtained by 

equalizing Φi to Φi-1 and setting ϕ i to 1 in formula (4). The threshold Tf is set to 2. 

With these parameters, it is assured that the threshold is exceeded as soon as a few number 

of queryHits deposit their pheromone in different time intervals, while the algorithm is more 

conservative when it has to recognize that a representative peer has been “downgraded”: 

indeed, up to 15 time intervals are necessary to let such a level assume a value lower than the 

threshold. 

It can also happen, though quite rarely, that a peer collects pheromone deposited by two 

(or more) different queryHits which are related to the same resource class but come from two 

(or more) different representative peers. To which neighbor should a query for that resource 

class be forwarded? In such cases the peer maintains a different pheromone quantity for each 

neighbor. The query is forwarded to the neighbor peer associated to the higher amount of 

pheromone, provided that it succeeds the threshold. It corresponds to sending the query to the 

“oldest” representative peer, which intuitively is most likely the representative peer that has 

collected the largest number of resources so far. 

3 Performance Analysis of ARMAP and ARDIP Protocols 

3.1 Description of the environment 

A wide set of simulation runs were performed by exploiting a Java event-based object-

oriented simulator, implemented by the paper’s authors, that has already been used for other 

research issues [16]. In the simulator, both peers and agents are associated to simulation 

objects which communicate among them through events. Such events are ordered on the basis 

of their expiration time, i.e. the time at which they have to be delivered to destination objects. 

When an event is received by an object, the latter (e.g. a peer) reacts according to its 

automaton, and may send other events to other objects (e.g. a peer forwards an ARDIP query 

message to neighbor peers). Furthermore, the simulator was extended in order to integrate and 

exploit a set of libraries offered by the SWARM environment [19]: graphical libraries which 

allowed for monitoring the behavior of the ARMAP and ARDIP protocols, and libraries for 

setting the network topology. For each simulation session, 10 simulation runs were performed 
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and, by tuning the length of each run, all performance values were computed with a pre-

determined statistical relevance, i.e. with at least 0.95 probability that the statistical error was 

below 5%.   

Table 1 reports the main parameters used in the simulation analysis, categorized in 

network parameters, ARMAP parameters and ARDIP parameters. The number of peers Np 

(or Grid size) is set to 2500, and each peer is connected to a maximum of 8 neighbor peers, as 

discussed in Section 2. Grid resources are classified into Nc different classes, with Nc set to 5 

in this work. The number of physical Grid resources owned and published by a single peer is 

determined through a Gamma stochastic function having an average value equal to 15 (see 

[11]). Such resources are uniformly distributed among the Nc classes.  
 

Table 1. Network, ARMAP and ARDIP parameters 

Grid Parameter Symbol Value 

Grid size (number of peer) Np 2500 

Maximum number of neighbor peers not used 8 

Mean number of resources published by a peer not used 15 

Number of resource classes  Nc 5 

ARMAP Parameter Symbol Value 

Number of ARMAP agents  Na Np/2 

Mean life time of a peer Plifetime 100,000 s 

Mean time interval between two successive movements of an ARMAP agent  not used 60 s 

Maximum number of hops for each ARMAP agent’s movement  Hmax 3 

Visibility radius  Rv 1 

ARDIP Parameter Symbol Value 

Mean query generation frequency not used 1/300 (1/s) 

Number of query messages generated when issuing a query Nqm 2-8 

Time to live  TTL 3-7 

Gathering factor for the identification of representative peers Fg 24-48 

Comparison radius for the identification of representative peers Rc 2 

Mean message processing time not used 50 ms 

Mean link delay not used 50 ms 
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ARMAP parameters are defined in the second section of Table 1; their impact was 

analyzed in [9]. Each peer, whenever connecting to the Grid, spawns a random number of 

ARMAP agents; this number is generated by a Gamma random function the average of which 

is equal to Pgen. In this work, unless otherwise stated, Pgen is set to 0.5, so that the number 

of agents Na is approximately equal to half the number of peers Np. The average connection 

time of a peer (PlifeTime) is set to 100,000 s. At random times, specifically every 60 s on 

average, each agent moves in the P2P network (each movement is composed of a number of 

hops not greater than Hmax, which is set to 3), and possibly performs a pick or drop operation, 

as described in Section 2.1. The visibility radius Rv, defined in Section 2.1, is set to 1. 

ARDIP parameters are defined in the last section of Table 1. When a peer issues a query 

for a class of resources (queries are uniformly distributed among the Nc classes), a number 

Nqm of asynchronous query messages, with Nqm set to values ranging from 2 to 8 in different 

simulation sessions, are forwarded to neighbor peers. They follow different directions and 

move in parallel through the Grid according to the semi-informed mechanism described in 

Section 2.3. The TTL parameter was varied from 3 to 7. Table 1 also specifies the values of the 

gathering factor Fg and of the comparison radius Rc, used to elect the representative peers. 

Finally, the mean amount of time for processing a query or queryHit message and the mean 

link delay between two neighbor peers were both assumed to be 50 ms on average, with 

Gamma statistical distributions. 

3.2 Performance of the ARMAP protocol 

A graphical description of the mapping process performed by ARMAP is shown in Figure 1: 

the 50x50 grid represents the simulated Grid, and each cell represents a peer. Note that the 

network is wrapped, i.e. the nodes on the left (upper) edge are “adjacent” to the nodes on the 

right (lower) edge. The values of system parameters are set as specified in Section 3.1, except 

for the number of resource classes which is set to 3 in order to facilitate the graphical 

illustration of the process. Circle, square and cross symbols correspond to class C1, C2 and C3, 

respectively. Each peer is marked with a circle (square, cross) if in the corresponding peer the 

number of resources of class C1 (C2, C3) exceeds the number of resources belonging to the 

other 2 classes. Furthermore, the thickness of the symbol is proportional to the number of 
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resources of the most numerous class. To depict the gradual accumulation of resources, four 

snapshots of the network are shown. Such snapshots are taken at time 0 (when the ARMAP 

protocol is started), and after 25,000, 50,000 and 100,000 seconds, respectively. It can be 

observed that resources belonging to the same class are collected in nearby Grid hosts, and 

specialized regions emerge as the ARMAP process goes on. 

 

 
Fig. 1. Gradual mapping of logical resources in a network with 2,500 peers and 3 resource 

classes. Each peer contains a symbol (circle, square or cross) that corresponds to the most 

numerous class of resources contained in such a peer. The symbol thickness is proportional to 

the number of resources of the dominant class. 
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The performance of the ARMAP protocol was also proved by evaluating a set of 

performance indices which are reported in Table 2. The overall entropy E, defined in Section 

2.1, is the most important index, because the primary objective of ARMAP is the logical 

reorganization of resources, which corresponds to decreasing the system entropy. The Nrpp 

index is defined as the average number of resources that are managed by a Grid peer at a 

given time. Fop is the frequency of operations (pick and drop) that are performed by each 

agent; this index gives an estimation of both agents’ activeness and system stability, since 

operations are less frequent when a low level of entropy has already been achieved. Two 

indices are defined to evaluate the overhead related to the use of mobile agents: the traffic 

load L, defined as the number of hops per second that are globally performed by all the agents, 

and the mean agent memory Mag, defined as the average amount of data which is carried by 

an ARMAP agent, under the assumption that a resource metadata document requires 1 Kbytes 

of data. 

 

Table 2. Performance indices for the ARMAP protocol 

Performance Index Definition 

Mean Spatial Entropy, E Average of the entropy values computed at all Grid 
hosts, see Section 2.1 

Mean number of resources per peer, Nrpp Mean number of resources that are maintained by a 
Grid host 

Mean frequency of operations, Fop 
Mean number of pick or drop operations that are 
performed by a single agent per unit time 
(operations/s) 

Traffic load, L Average number of hops performed by ARMAP 
agents per unit time (hops/s) 

Mean agent memory, Mag Average amount of data that is stored and carried 
by an ARMAP agent (Kbytes) 

 

 

Figure 2 gives an overview on the work of the ARMAP protocol, on the assumption that 

the mapping operations are started at time 0. The trends of the first three performance indices 

listed in Table 2 are depicted in this figure: proper multiplication/reduction factors, as detailed 

in the figure legend, are used in order to depict such performance indices within the same 

chart. It can be noted that both the entropy value and the mean number of resources vary with 
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a very fast rate in the first phase (in which most agents work with the copy modality) and with 

a slower rate in the second phase (in which most agents work with the move modality). As a 

result of the copy/move modality switch, the entropy is a decreasing monotonic function. 

Conversely, in [9] it was shown that without this switch, the entropy would decrease to a 

certain extent, than it would increase again because of an excessive proliferation of resource 

replicas. The operation frequency initially increases, than it begins to decrease when the 

mapping process reaches an advanced stage, since the pick and drop functions are activated 

with lower and lower probabilities. The trend shown in Figure 2 is the value averaged for all 

the active agents, but it was found that every single agent experiences a similar trend starting 

from the time at which it is generated by a peer that joins to the Grid. A self-organization 

approach based on ants’ pheromone enables each agent to perform the modality switch (from 

copy to move) by itself, only on the basis of local information. More specifically, each agent 

maintains a pheromone base which increases as the pick and drop operations that it performs 

become more and more infrequent. When a proper pheromone threshold is reached, the agent 

switches to the move modality, thus preventing an excessive proliferation of replicas. Further 

details about this self-organizing mechanism can be found in [9]. 

 

 

Fig. 2. Mean spatial entropy, mean number of resources per peer and operation frequency vs. 

time; the copy/move modality switch is activated by each agent according to a pheromone 

mechanism. 
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 To evaluate the scalability characteristics of the ARMAP protocol, performance indices 

were computed for different values of the Grid size, i.e. of the number of peers Np. Figures 3 

and 4 are related, respectively, to the overall entropy and the average number of resources per 

peer. It can be seen that both indices are hardly affected by the Grid size: the curves obtained 

for different numbers of peers are almost identical and the differences among them are 

smaller than, or comparable with, the statistical confidence interval. This suggests that a 

single peer does not need to have knowledge about the size of the network to regulate its 

behavior, which of course is a strong requisite for a decentralized system.  

Figure 5 reports the trend of the overall system entropy obtained with different numbers of 

agents (i.e. with different values of Pgen). It is observed that an increase in the number of 

agents makes the system entropy decrease faster. Moreover, a higher activity of agents also 

causes an increase in the traffic load (Figure 6). When observing the average amount of data 

stored by an agent (Figure 7), it is interesting to note that a lower number of agents does not 

notably increase the maximum value of this index, but does increase the duration of the time 

interval in which agents must carry a significant amount of data.  

Therefore, a correct setting of the ratio Na/Np should take into account the trend of these 

performance indices and in general should depend on system features and requirements, for 

example on the system capacity of sustaining a high traffic load. However, Figure 5 suggests 

that this setting can increase the rapidity of the first phase of the ARMAP process, but it does 

not have a significant impact on the value of system entropy that is reached in a stable 

situation. Hence, the stable reorganization of resources is anyhow guaranteed. 

 

Fig. 3. Overall spatial entropy vs. time, with different values of the network size Np. 
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Fig. 4. Mean number of resources per peer vs. time, with different values of the network size 

Np. 

 

 
Fig. 5. Mean spatial entropy vs. time, with different numbers of ARMAP agents. 

 
Fig. 6. Mean traffic load generated by ARMAP agents (hops/s), with different numbers of 

agents. 
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Fig. 7. Mean amount of data carried by an ARMAP agent (Kbytes) vs. time, with different 

numbers of agents. 

3.3 Performance of the ARDIP protocol 

The performance of the ARDIP protocol was analyzed by evaluating the performance indices 

defined in Table 3. In the following such indices are plotted w.r.t. time, to evaluate the 

expected outcome of a discovery request at different stages of the ARMAP process. It is 

worth highlighting that results obtained at time 0 are achieved without exploiting the ARDIP 

informed phase, because no representative peers have been yet selected. Therefore it is 

possible to compare the ARDIP protocol with the classical random walk technique, since in 

the ARDIP blind phase the random walk paradigm is adopted. 

The Nrep index is the number of representative peers of all classes that are selected by 

ARDIP with the mechanism described in Section 2.3. Figure 8 depicts the trend of this index 

as the ARMAP mapping process proceeds. Curves obtained with different values of the 

gathering factor Fg are compared: since Fg is a threshold used to elect the representative 

peers, obviously its increase causes a decrease in the number of representative peers. The 

gathering factor is hereafter set to 36. With this value, Nrep converges to a value slightly 

higher than 200, corresponding to about 40 representative peers (out of 2500 peers) per class. 

A snapshot of the state of the network was taken 300,000 seconds after the start of the 

ARMAP process, because at that time the system has reached a stable condition, as can be 

observed in previous figures. Figure 9 shows the representative peers for two of the five 
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resource classes, and confirms that representative peers are located in the core of the 

respective accumulation regions and that nearby peers are able to drive query messages to a 

representative peer. The presence of a significant number of representative peers of the same 

class guarantees a high probability of reaching at least one of those in a limited amount of 

time. 

The index Fsq is defined as the fraction of queries for which at least one of the Nqm issued 

query messages enters the informed phase and gets to a representative peer. In the following, 

a query message that reaches a representative peer, as well as the related discovery request, 

are referred to as striking (query) message and striking query, respectively. Since the ARDIP 

discovery protocol aims at driving query messages towards representative peers, the index 

Fsq is essential to evaluate the extent to which the replication and organization of resources 

performed by ARMAP helps to increase the effectiveness of ARDIP. 

 

Table 3. Performance indices for the ARDIP protocol 

Performance Index Definition 

Number of representative peers, Nrep 
Number of representative peers of all classes that are selected 
by ARDIP to attract query messages 

Fraction of striking queries, Fsq 
Fraction of discovery requests that are successfully driven 
towards a representative peer 

Mean number of results, Nres,  
Nres(stk), Nres(no-stk) 

Mean number of resources that a node discovers after its query 
(computed for all the queries and separately for striking and 
non-striking queries) 

Average response times, Tavg, 
Tavg(stk), Tavg(no-stk) 

Mean amount of time that elapses between the generation of a 
query and the reception of a corresponding queryHit (computed 
for all the queries and separately for striking and non-striking 
queries) 

Response times of the first queryHit,  
Tfst, Tfst(stk), Tfst(no-stk) 

Mean amount of time that elapses between the generation of a 
query and the reception of the first corresponding queryHit 
(computed for all the queries and separately for striking and 
non-striking queries) 

Query traffic load, Lq, Lq(rep) 
Mean frequency of query messages (messages/s) that are 
received by a peer (calculated for all the peers and for the 
representative peers only) 
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Fig. 8. Selection of representative peers as the ARMAP mapping process proceeds. The 

number of representative peers is reported for different values of the gathering factor Fg. 

 
 

 

Fig. 9. Representative peers, belonging to two classes (out of five), selected by ARDIP 

300,000 seconds after the start of the ARMAP process, with a gathering factor Fg set to 36. In 

the two figures, the squares are the representative peers respectively belonging to classes A 

and B, the dots are the peers that drive query messages to a nearby representative peer, and the 

number of resources of the respective classes is represented with a grey scale. 

 

Figures 10 and 11 confirm the valuable effect caused by the combined use of ARMAP and 

ARDIP protocols. In fact, after a very small amount of time, the work of ARMAP produces a 
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significant increase in Fsq. Results in Figure 10 are obtained by setting the parameter Nqm to 4 

and varying the TTL parameter from 3 to 7, whereas in Figure 11 TTL is set to 5 and Nqm 

ranges from 2 to 8. Figure 10 shows that Fsq increases with the value of TTL, since a 

discovery request can extend the blind search phase and has more chances to get to a 

representative peer. An analogous effect is achieved by increasing the Nqm parameter, since 

representative peers are searched by a larger number of query messages in parallel. 

The most important performance measure is obviously Nres, the mean number of results 

that are discovered by a query – to be precise by all the query messages generated by a single 

discovery request - issued to search resources belonging to a specific class. Indeed, it is 

generally argued that the satisfaction of the query depends on the number of discovered 

resources returned to the user that issued the query: for example, in [26] a resource discovery 

operation is considered satisfactory only if the number of results exceeds a given threshold. 

Figure 12 shows the number of results that are collected on average by striking queries, by 

non-striking queries, and by all the queries, for two different values of TTL and Nqm set to 4. 

Many interesting conclusions can be drawn by observing this figure. The most obvious one is 

that the number of results increases with the TTL value, since a larger fraction of the network 

can be explored; however response times and traffic increase as well, as shown later. More 

important, the mean number of results increases as resources are being organized by ARMAP, 

meaning that specialized regions are able to offer a significant number of resources. Moreover, 

it is noted that striking queries can discover considerably more results than non-striking 

queries, and such a difference increases with time, mostly because the progressive clustering 

of resources reduces the number of results that can be collected by non-striking queries 

(which soon become very rare, as Figure 11 shows). Similar considerations raise from the 

observation of Figure 13, in which the TTL value is set to 7 and the number of query messages 

ranges from 2 to 8. The number of results increases with the Nqm parameter, but the traffic 

load increases as well, as will be shown in the following. 

The use of the ARMAP/ARDIP protocols not only increases the number of results, but 

also allows users to discover them in a shorter amount of time. Figure 14 and 15 show the 

average response times experienced when varying the TTL value and the parameter Nqm, 

respectively. From Figure 14, it appears that a higher TTL causes an increase in the response 
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time, due to the fact that the queryHit messages have to travel a longer path. Whereas the 

response time of non-striking queries is almost constant over time, since all the query 

messages exploit the entire value of the TTL parameter, the reorganization of resources 

produces a significant decreases of average response times for striking queries and, since the 

relative weight of striking queries increases, for generic queries as well. In fact, when a query 

message gets to a representative peer, the discovery operation is stopped even if the TTL value 

is still greater than 0, and a queryHit is immediately issued. Therefore the presence of a 

striking message decreases the average response time. This can be also observed in Figure 15: 

the average response time of a striking query decreases with the value of Nqm because the 

relative impact of the response times experienced by striking messages is higher for a lower 

number of query messages. 

Figures 16 and 17 depict the values of the response times corresponding to the first 

received queryHit, obtained by varying the TTL value and the parameter Nqm, respectively. 

These response times are significantly lower than average response times (Figures 14-15), due 

to two phenomena. The first is related to the statistical nature of message processing time (the 

minimum processing time is lower than the average), and has impact on all the queries; the 

second, which has impact only on striking queries, comes from the fact that the first queryHit 

most likely corresponds to a striking query message, which generally performs a lower 

number of hops. It is also interesting to note, from Figure 17, that the time of the first result 

decreases as the Nqm parameter increases, which is different to what happens on average 

response times. The reason is that a larger number of query messages allows for a more 

massive exploration of the Grid and hence a faster discovery of representative peers.  

The query traffic load, defined in Table 3, is depicted in Figures 18 and 19. It increases 

with the TTL value and with the number of query messages Nqm. Since an increase in these 

two parameters also allows for achieving a larger number of results, it is necessary to reach a 

trade-off that takes into account the expected number of results and the processing load that a 

Grid node can undergo. However, a very interesting consideration is that over time the logical 

reorganization of resources and the use of the ARDIP protocol allow for decreasing the query 

traffic load experienced by a single peer. Indeed, when a query messages is driven towards a 

representative peers, on average it performs a lower number of hops than that experienced 
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with a blind search. A further benefit is that a representative peer experiences an even lower 

query load than a generic peer. In fact, when a query is issued by a peer which is adjacent to a 

representative one, the route to the representative peer is most likely known in advance, 

thanks to the pheromone mechanism described in Section 2.3, and the blind search phase can 

be entirely skipped. In such a case, only one query message is generated by the requesting 

peer instead of Nqm (in fact all the Nqm queries would follow the same informed path that leads 

to the adjacent representative peer and would collect the same results), thus reducing the 

query traffic load at the nearby representative peer. 
 

 
Fig. 10. Use of ARMAP representative peers: fraction of discovery requests that are 

successfully driven to a representative peer, for different values of TTL and Nqm set to 4. 

 
Fig. 11. Use of ARMAP representative peers: fraction of discovery requests that are 

successfully driven to a representative peer, for different values of Nqm and TTL set to 7. 
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Fig. 12. Mean number of results. Performance values, for different values of TTL and Nqm set 

to 4, are reported for all the queries, and separately for striking and non striking queries. 

 
Fig. 13. Mean number of results. Performance values, for different values of Nqm and TTL set 

to 7, are reported separately for striking and non striking queries. 

 
Fig. 14. Average response time. Performance values, for different values of TTL and Nqm set 

to 4, are reported for all the queries and separately for striking and non-striking queries. 
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Fig. 15. Average response time. Performance values, calculated for different values of Nqm 

and TTL set to 7, are reported separately for striking and non striking queries.  

 
Fig. 16. Response time of the first queryHit. Performance values, for different values of TTL 

and Nqm set to 4, are reported for all the queries, and for striking and non striking queries. 

 
Fig. 17. Response time of the first queryHit. Performance values, for different values of Nqm 

and TTL set to 7, are reported separately for striking and non striking queries. 
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Fig. 18. Query traffic load experienced by generic peers and representative peers. 

Performance values are calculated for different values of TTL and Nqm set to 4.  

 
Fig. 19. Query traffic load experienced by generic peers and representative peers. 

Performance values are calculated for different values of Nqm and TTL set to 7.  

 

4 Related Work 

In very large Grids, hosts can provide a large set of distributed and heterogeneous resources. 

In this kind of environment, the information service is a pillar component because it is 

essential to assure an efficient management of resources that allows users to discover and use 

the resources that they need for their applications. Current Grid information services offer 

centralized or hierarchical information services, but this kind of approach is going to be 

replaced by a decentralized one, supported by P2P interconnection among Grid hosts.  
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In the last years, a number of P2P techniques and protocols have been proposed to deploy 

Grid information services: for example, super-peer networks [16, 25] achieve a balance 

between the inherent efficiency of centralized search, and the autonomy, load balancing and 

fault-tolerant features offered by distributed search. P2P search methods can be categorized as 

structured or unstructured. The structured approach assumes that hosts and resources are 

made available on the network by means of a global overlay planning. In Grids, users do not 

usually search for specific resources (e.g. MP3 or MPEG files), but for software or hardware 

resources that match an extensible set of features. Accordingly, while structured protocols, 

based on highly structured overlays and Distributed Hash Tables (e.g. Chord [18]), are usually 

very efficient in file sharing P2P networks, unstructured or hybrid protocols seem to be 

preferable in largely heterogeneous Grids. Unstructured search methods can be further 

classified into blind and informed ones [22]. If nodes have no information on where the 

resources are actually located, a search request must be performed through a random 

exploration of the network, therefore a blind search mechanism is adopted, such as the 

flooding or the random walk technique [14]. If a centralized or distributed information service 

maintains information about resource location, it is possible to drive query messages with an 

informed mechanism, such as the routing indices mechanism [6] or the adaptive probabilistic 

search [21]. As discussed in Section 2.3, the ARDIP semi-informed discovery protocol 

presented in this paper aims to combine the flexible and scalable features of a blind approach 

with the efficiency and rapidity of an informed approach. 

The ARMAP protocol, which is the base of the ant-based approach presented in this paper, 

exploits the features of Multi-Agent Systems (MAS), and in particular of ant-based 

algorithms. A MAS can be defined as a loosely coupled network of problem solvers (agents) 

that interact to solve problems that are beyond the individual capabilities or knowledge of 

each problem solver [20]. Research in MASs is concerned with the study, behavior, and 

construction of a collection of autonomous agents that interact with each other and the 

environment. Ant-based algorithms are a class of agent systems which aim to solve very 

complex problems by imitating the behavior of some species of ants [3]. 

The Anthill system [2] is a framework that supports the design, implementation and 

evaluation of P2P applications based on multi-agent and evolutionary programming. In 

Anthill, societies of adaptive agents travel through the network, interacting with nodes and 
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cooperating with other agents in order to solve complex problems. Recently, an approach 

based on ant behavior and genetic algorithms to search resources on a P2P network has been 

introduced [7]. A sub-optimal route of query messages is learnt by using positive and negative 

pheromone feedbacks and a genetic method that combines and improves the routes discovered 

by different ants. Whereas in [7] the approach is tailored to improve search routes with a 

given distribution of resources in the network, the ARMAP algorithm logically reorganizes 

and replicates resources in order to decrease the intrinsic complexity of discovery operations. 

Instead of directly using ant-based algorithms to search resources, the ARMAP protocol 

exploits an ant-based replication and mapping algorithm to replicate and reorganize resources 

according to their categorization.  

The problem of driving the behavior of agents, so making them able to take actions 

autonomously, without having an overall view of the system, is discussed in [23]. There, a 

decentralized scheme, inspired by insect pheromone, is used to limit the activity of a single 

agent when it is no more concurring to accomplish the system goal. Information 

dissemination is a fundamental and frequently occurring problem in large, dynamic, 

distributed systems, since it consents to lower query response times and increase system 

reliability. In [5], the authors examine a number of techniques that can improve the 

effectiveness of blind search by proactively replicating data. In particular, two natural but 

very different replication strategies are described: uniform and proportional. The uniform 

strategy, replicating everything equally, appears naive, whereas the proportional strategy, 

where more popular items are more replicated, is designed to perform better but fails to do 

that. Actually, it is shown that any strategy that lies between the two performs better than the 

two extreme strategies. In [12] it is proposed to disseminate information selectively to groups 

of users with common interests, so that data is sent only to where it is wanted. In our paper, 

instead of classifying users, it is proposed to exploit a given classification of resources: 

resources, or resource metadata documents, are replicated and disseminated with the purpose 

of creating low-entropy regions of the network that are specialized in a specific class of 

resources. The so obtained information system allows for the definition and usage of the 

ARDIP semi-informed discovery protocol. 

ARMAP and ARDIP protocols assume that the classification of resources has already 

been performed. This assumption is common in similar works: in [6], performance of a 
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discovery technique is evaluated by assuming that resources have been previously classified 

in 4 disjoint classes. Classification can be done by characterizing the resources with a set of 

parameters that can have discrete or continuous values. Classes can be determined with the 

use of Hilbert curves that represent the different parameters on one dimension [1]; 

alternatively, an n-dimension distance metric can be used to determine the similarity among 

resources [13]. 

5 Conclusions and Future Work 

This paper introduced an approach based on multi agent systems for building an efficient 

information system in Grids. A number of self-organizing agents travel the network by 

exploiting P2P interconnections; agents replicate and gather information related to resources 

having similar characteristics in restricted regions of the Grid. Such a logical reorganization 

of resources is exploited by a semi-informed resource discovery protocol, namely the ARDIP 

protocol, which is tailored to route a query message towards a “representative peer” that 

collects a large number of resources having the desired characteristics. 

Simulation analysis showed that, as the reorganization of resources proceeds, the ARDIP 

protocol allows users to discover more and more resources in a shorter amount of time, and at 

the same time to decrease the traffic load experienced by Grid hosts. It must be remarked that 

performance results are related to a particular choice of parameter values: for example 

resources are categorized in 5 different classes and most results are computed for a Grid of 

2,500 hosts. However, performance evaluation w.r.t several parameters, e.g. Grid size, 

number of agents, and TTL, suggests that an imperfect choice of parameter values cannot 

spoil the reorganization and discovery process, but can only make such process faster or 

slower, and final achievements (for example the decrease in overall entropy and the increase 

in the number of results) seem to be preserved in any case. Furthermore the self-organizing 

and decentralized nature of the involved algorithms, along with the analysis of performance 

results obtained with variable Grid sizes, suggest that the proposed approach is scalable and 

can be adopted in a Grid framework regardless of the Grid size. 

Current work focuses on the implementation of ARDIP for the discovery of WSRF-

compliant Web services. Web services can be categorized according to their syntactic and 
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semantic features (e.g. WSDL specification of input and output parameters, pre and post 

conditions, ontology concepts) and QoS information (e.g. information about service 

availability, reliability, execution time, price). By tuning ARMAP pick and drop probability 

functions, agents can favor the dissemination of metadata documents associated to Web 

services having high QoS rankings and hinder the dissemination of low-QoS services. The 

goal is to evaluate how this enhancement can improve the QoS features of Web services 

discovered by ARDIP queries. 

Another enhancement under evaluation is the possibility of dynamically adapting the 

ARMAP algorithm, depending on users’ and system requirements. For example, if a larger 

number of resource replicas is desired, this goal could be fulfilled by delaying the copy/move 

modality switch. Since this change cannot be communicated instantaneously to all the agents, 

a decentralized method for gradually informing peers and agents about the parameter updating 

must be envisaged and evaluated. 
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