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a b s t r a c t

This paper examines a multi-agent approach to spatially sort and discovery information about the
resources offered by a Grid. Agents, whose behavior is inspired by ant colonies, replicate and distribute
resource descriptors according to the class to which the corresponding resources belong. This facilitates
resource discovery operations: query messages are attracted towards hosts that store information about
a large number of resources having the required characteristics. The presented reorganization and
discovery protocols feature self-organization and decentralization characteristics, since operations are
performed only on the basis of local information. Agents can either replicate or simply relocate resource
descriptors. These two operation modes are aimed, respectively, at fostering the dissemination or the
reorganization of information. The balance between these two objectives can be modulated by setting
the parameter of an ant-inspired pheromone mechanism. Balance can be static, i. e., decided a priori,
or dynamic, in the case that user and network requirements change with time. In the latter case, an
“epidemic” mechanism is used to communicate the value of this parameter to the hosts and agents of the
Grid. Simulation analysis confirms the effectiveness of the reorganization and discovery protocols and of
the mentioned epidemic tuning mechanism.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Grid computing [13] is an emerging computing model that
provides the ability to perform higher throughput computing by
taking advantage of many networked computers and distributing
process execution across a parallel infrastructure. Modern Grids
are based on the service oriented paradigm; for example, in the
Globus Toolkit 4 based on the Web Services Resource Framework
(WSRF [24]), resources are offered through the invocation of Web
services, which boast enriched functionalities such as lifecycle and
state management.

Grids are becoming more and more popular, but their effective
usage is made problematic both by their ever increasing size and
by the heterogeneity of hosts and resources of which they are
composed. In this scenario, an urgent issue is the deployment
of an information system featuring decentralized characteristics,
opposed to the centralized or hierarchical information systems
which are today provided by most Grid platforms, such as those
based on the WSRF framework.

This paper discusses a novel approach for the construction
of a Grid information system which allows for an efficient
management and discovery of resources. The approach, introduced
in [12] in its basic version, exploits the features of (i) epidemic
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mechanisms tailored to the dissemination of information in
distributed systems [20] and (ii) self-adaptive systems in which
“swarm intelligence” emerges from the behavior of a large number
of agentswhich interact with the environment [4,8]. This approach
is partly inspired by biological systems, such as ant and termite
colonies, which boast self-organizing, decentralized and scalable
features that can profitably be exploited in distributed computer
systems and specifically in Grids.

It is assumed that the resources are classified into a number
of classes, according to their semantics and functionalities. The
rationale of this classification is that users generally do not issue
a query to search for a single specific resource, but to collect
information about resources having specified characteristics [7],
for example a host with a given CPU power or a bioinformatic
software able to perform particular operations on protein data.
A class of resources is therefore defined as a set of Grid
services/resources having specified properties. After issuing a
query, a user can discover a number of resources of a given class,
and then can choose the resources which are the most appropriate
for his/her purposes.

As most Grid and P2P information systems, the bio-inspired
systemdescribed in this paper does not copewith actual resources,
but handles metadata documents, or descriptors, that provide
relevant information about Grid resources (for example, name,
author, publisher, location, access policy, etc.), in order to advertise
their presence and foster their use. A descriptor can be composed
of a syntactical description of the service (i.e. a WSDL – Web
Services Description Language – document) and/or an ontology
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description of service capabilities. Specifically, two protocols are
presented in this paper: the ARMAP protocol, for the replication
and reorganization of resource descriptors, and theARDIP protocol,
for resource discovery.

The ARMAP protocol (Ant-based Replication and MApping
Protocol) disseminates resource descriptors in a controlled way,
by spatially sorting (ormapping) such descriptors according to the
class to which the corresponding resources belong. Each ARMAP
agent travels the Grid through peer-to-peer (P2P) interconnections
among Grid hosts, and uses simple probability functions to decide
whether or not to pick descriptors from or drop descriptors into the
current Grid host. Reorganization of descriptors results from pick
and drop operations performed by a large number of agents. A self-
organization approach based on ant pheromone [27] enables each
agent to tune its operation mode on the basis of local information.
Indeed, each agent can work in the copymode (in this mode, it can
generate new descriptor replicas), or in themovemode (it can only
move descriptors from one host to another, without generating
new replicas).

The ARMAP protocol can effectively be used to build a Grid
information system inwhich (i) descriptors are properly replicated
and (ii) the overall entropy is reduced. These two features can
be contrasting, as shown in the evaluation section, so they must
be correctly balanced. The replication degree is an important
parameter, as the presence of many replicas can reduce the
search latency but the system may consume more memory
resources and increase the communication costs required for
replica updates [29]. Therefore, the replication degree should be
properly set in order to balance the search performance gain
and the resource overhead. In this work, this goal is achieved by
regulating a parameter of the pheromone mechanism which is
maintained by each agent. The value of this parameter affects the
time interval in which the agent operates under the copy mode.
This mechanism can be tuned in a static or dynamic fashion. In
the case of static tuning, the value of the mentioned parameter
is set before ARMAP protocol is started, whereas, in the case of
dynamic tuning, it can be tunedby a supervisor agentwhile ARMAP
is running. This introduces a two-fold control mechanism: each
agent uses local information to self-regulate its activity on the basis
of the parameter value that it stores. Moreover, a supervisor agent
can decide to increase or decrease the value of this parameter for
all agents, in order to foster or limit the replication of descriptors.
To achieve this, the new value of the pheromone parameter is
spread on the Grid via an epidemicmechanism [10]. The supervisor
initially communicates a new value of the parameter only to
the peer in which such agent resides. Since then, each agent
that visits this “infected” peer will also be infected and its own
parameter will be changed. In turn, whenever an infected agent
visits a non-infected peer, the latter will be contaminated and
will subsequently infect other agents. So, in a short time, all or
most agents will be infected with the new value of the pheromone
parameter.

The ARDIP (Ant-based Resource DIscovery Protocol) protocol
is a semi-informed discovery protocol that exploits the logical
resource reorganization achieved by ARMAP. The rationale is the
following: if a large number of descriptors of a specific class are
accumulated in a restricted region of the Grid, it is convenient to
drive search requests (issued by hosts to search for descriptors of
that class) towards that region, in order tomaximize the number of
discovered descriptors and minimize the response time. An ARDIP
discovery operation is performed in two phases. In the first phase
a blind mechanism, specifically the random walk technique [19], is
adopted: a number of querymessages are issued by the requesting
host and travel the Grid through the P2P interconnections. In the
second phase, whenever a query gets close enough to a Grid region
which is collecting descriptors of the needed class of resources, the
search becomes informed: the query is driven towards this Grid
region andwill easily discover a large number of useful descriptors.

Simulation analysis shows that ARMAP and ARDIP protocols,
if used together, allow a very high effectiveness in discovery
operations to be achieved. The remainder of the paper is organized
as follows. Section 2 discusses related work. Section 3 describes
the ARMAP protocol and Section 4 analyzes its performance,
in particular when using the epidemic mechanism that enables
dynamic tuning. Subsequently, Sections 5 and 6 introduce and
analyze the ARDIP protocol for resource discovery. Conclusions are
given in Section 7.

2. Related work

In most Grid frameworks deployed so far, the information
system is structured according to centralized or hierarchical
approaches, mostly because the client/server approach is still
used today in the majority of distributed systems and in Web
services frameworks. For example, the version 4 of the Globus
Toolkit, the standard de facto Grid framework, is based on
the Web Service Resource Framework, WSRF [24]. The central
component in the GT4 information system is the Index Service,
which collects information about Grid resources and makes this
information available to users and clients. An Index Service
retrieves information from multiple data sources or other Index
Services, giving the possibility of building the information system
according to hierarchical, decentralized or hybrid architectures.
However, the hierarchical model is still the most frequently
used [21].

Nowadays, the research and development community agrees
that the centralized approaches are becoming unbearable, since
they create administrative bottlenecks and are not scalable.
Conversely, the adoption of decentralized approaches, like the
P2P paradigm, can favor Grid scalability [14,23]. A hierarchical
information system can be viablewithin a single Organization or in
a small-scale Grid, but it can become impractical in a large multi-
institutional Grid for several reasons, among which:

– fault tolerance is limited by the presence of a bottleneck at the
tree root;

– a significant amount of memory space must be reserved in high
level information servers to store information about a large
number of resources, limiting the scalability of the Grid;

– information servers belonging to different levels must carry
very different computation and traffic loads, which leads to
challenging problems concerning load imbalance;

- the hierarchical organization can hinder the autonomous
administration of different Organizations.

Novel approaches for Grid management, and in particular
for the construction of a scalable and efficient information
system, should have the following properties: (i) self-organization
(meaning that Grid components are autonomous and do not rely
on any external supervisor), (ii) decentralization (decisions are
to be taken only on the basis of local information) and (iii)
adaptivity (mechanisms must be provided to cope with dynamic
characteristics of hosts and resources).

Requirements and properties of Self-Organizing Grids are
sketched in [9]. Some of the issues presented in the latter paper
are concretely applied in this work: for example, clustering of
resources in order to facilitate discovery operations, election of
representative nodes within clusters, adaptive dissemination of
information.

A self-organizing mechanism is also exploited in [5] to build an
adaptive overlay structure for the execution of a large number of
tasks in a Grid. Similarly to the latter work, the ARMAP and ARDIP
protocols discussed in this paper exhibit several characteristics
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of both biological systems and mobile agent systems (MAS), as
discussed in the Introduction. In many aspects these protocols are
specifically inspired by ant algorithms, which aim to solve very
complex problems by imitating the behavior of some species of
ants [4].

The two main objectives of ARMAP and ARDIP are the
replication and dissemination of resource descriptors and the their
efficient discovery. These issues are obviously correlated, since
an intelligent dissemination can facilitate discovery. Nevertheless,
information dissemination is also functional to other important
requirements, such as fault tolerance, load balancing, reduced ac-
cess latency and bandwidth consumption. Information dissemina-
tion is indeed a fundamental and frequently occurring problem
in large, dynamic and distributed systems. In [6], the authors ex-
amine a number of techniques that can improve the effectiveness
of blind search by proactively replicating data. In particular, two
natural but very different replication strategies are described: uni-
form and proportional. The uniform strategy, replicating every-
thing equally, appears naive, whereas the proportional strategy,
where more popular items are more replicated, is designed to per-
form better but fails to do so. Actually, it is shown that any strategy
that lies between the two performs better than the two extreme
strategies. Gossip-based schemes have attracted interest as a solu-
tion for information dissemination, as they are scalable, easy to de-
ploy and resilient to network and process failures. However, they
have two major drawbacks [17]: (i) they rely on each peer having
knowledge of the globalmembership and (ii) being oblivious to the
network topology, they can impose a high load on network links
when applied to wide-area settings. In [1] information dissemina-
tion is combinedwith the issue of effective replica placement, since
themain interest is to place replicas in the proximity of requesting
clients by taking into account changing demand patterns. Specif-
ically, a metadata document is replicated if its demand is higher
than a defined threshold and each replica is placed with a multi-
cast mechanism that aims to discover the data server which is the
closest to demanding clients. In [15] it is proposed to disseminate
information selectively to groups of users with common interests,
so that data is sent only to where it is wanted. In our paper, in-
stead of classifying users, the proposal is to exploit the classifica-
tion of resources: descriptors are replicated and disseminatedwith
the purpose of creating regions of the network that are specialized
in specific classes of resources.

As for the resource discovery issue, the ARDIP algorithm puts
itself along the research avenue of P2P resource discovery proto-
cols. Such protocols can be classified into blind and informed [26]. If
nodes have no information on where the resources are actually lo-
cated, a search request is performed through a random exploration
of the network; therefore a blind search mechanism is adopted,
such as “flooding” or “random walk” [19]. If a centralized or dis-
tributed information servicemaintains information about resource
location, it is possible to drive search requests through an informed
mechanism, such as “routing indices” [7] or “adaptive probabilistic
search” [25].

The ARDIP protocol can be categorized as semi-informed, since
it combines the benefits of both blind and informed resource
discovery approaches. In fact, a pure blind approach is simple to
implement but has limitedperformance and can cause an excessive
network load, whereas a pure informed approach (e.g. based
on routing indices [7] or adaptive probabilistic search [25])
generally requires a very structured resource organization which
is impractical in a large, heterogeneous and dynamic Grid.

Finally, ARMAP and ARDIP assume the pre-existence of an
algorithm for the classification of resources. This assumption is
common in similar works: in [7], performance of a discovery
technique is evaluated by assuming that resources have been
previously classified in 4 disjoint classes. Classification can be
made by characterizing the resources with a set of parameters
that can have discrete or continuous values. Classes can be
determined with the use of Hilbert curves that represent the
different parameters on one dimension [2]; alternatively, an n-
dimension distance metric can be used to determine the similarity
among resources [18].

3. Reorganization of resource descriptors

The aim of the ARMAP (Ant-based Replication and MApping
Protocol) protocol is to achieve a logical organization of Grid
resources by spatially sorting related descriptors on the Grid
according to the class to which they belong. It is assumed that Grid
resources are categorized into a number of classes, which will be
referred to as Nc.

When joining or connecting to the Grid, a host generates an
agent with probability Pgen, and sets the life time of this agent to
Tpeer , which is the value of the mean connection time of the host,
calculated on the basis of the host’s past activity. This mechanism
allows for controlling the number of agents that operate on the
Grid and assures a regular turnover of such agents. Indeed the
number of agents ismaintained to a valuewhich is about Pgen times
the number of hosts.

3.1. Agent operations

Agents perform pick and drop operations to replicate and
move descriptors from one host to another. Each host can store
descriptors of local resources, as well as descriptors of resources
published by other hosts. When distinction is relevant, such
descriptors will respectively be referred to as local and remote
descriptors.

The ARMAP algorithm is defined as follows. Periodically, each
ARMAP agent performs a small number of P2P hops among Grid
hosts. Whenever an agent arrives at a new Grid host, for every
resource class, it evaluates the pick or drop probability function,
specifically: (i) if the agent does not carry any descriptor of this
class, it evaluates the pick probability function, so as to decide
whether or not to pick the descriptors of this class from the current
host; (ii) if the agent already carries some descriptors of this class,
it evaluates the drop probability function, so as to decide whether
or not to leave these descriptors in the current host. After picking
the descriptors of a class, the agent will carry them until it drops
them into another host, and then will try to pick other descriptors
from another host.

The pick probability function Ppick is defined with the intention
that the probability of picking the descriptors of a given class
decreases as the local region of the Grid accumulates such
descriptors and vice versa. This assures that as soon as the
equilibrium condition is broken (i.e., descriptors belonging to
different classes begin to be accumulated in different regions), the
reorganization of descriptors is increasingly fostered.

The Ppick function, reported in formula (1), is the product of
two factors, which take into account the relative accumulation of
descriptors of a given class (with respect to the other classes), and
their absolute accumulation (with respect to the initial number of
descriptors of that class). The fa fraction, an index of the absolute
accumulation, is computed as the number of localdescriptors of the
class of interest, stored by the hosts located in the visibility region,
out of the overall number of descriptors of the class of interest
(i.e., both local and remote) that are stored by the same hosts. The
visibility region includes all the hosts that are reachable from the
current host with a given number of hops, i.e. within the visibility
radius Rv. As more remote descriptors of a class are accumulated in
the local region, fa decreases, and the first factor of the pick function
decreases as well (and vice versa), which is the desired behavior.
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Conversely, the fr fraction is computed as the number of descriptors
of the class of interest, accumulated in the hosts located in the
visibility region, divided by the overall number of descriptors that
are accumulated in the same region.

The parameter k1 and k2, whose values are comprised between
0 and 1, can be tuned to modulate the value of the probability
function. For example, the value of the second factor is equal to
0.25 when fr and k2 are comparable, while it approaches 1 when fr
is much lower than k2 (i.e., when the descriptor under evaluation
is an outlier in the local region) and 0 when fr is much larger than
k2 (i.e., if the descriptor belongs to the same class as most other
descriptors in this region). k1 and k2 are both set to 0.1, as in [4].

Ppick =

(
fa

k1 + fa

)2

·

(
k2

k2 + fr

)2

. (1)

The pick operation can be performed with two different modes.
If the copy mode is used, the agent, when executing a pick
operation, leaves the descriptors on the current host, generates a
replica of them, and carries such replicas until it will drop them
in another host. Conversely, with the move mode, as an agent
picks the descriptors, it removes them from the current host, thus
preventing an excessive proliferation of replicas.

As well as the pick function, the drop function is first used to
break the initial equilibrium and then to strengthen the mapping
of descriptors belonging to different classes in different Grid
regions. As opposed to the pick operation, the drop probability
function Pdrop, shown in formula (2), is proportional to the relative
accumulation of descriptors of the class of interest in the visibility
region. In (2) the parameter k3 is set to a higher value than k1
and k2, specifically to 0.3, in order to limit the frequency of drop
operations. Indeed, it was observed that if the drop probability
function tends to be too high, it is difficult for an agent to carry
a descriptor for an amount of time sufficient to move it into an
appropriate Grid region.

Pdrop =

(
fr

k3 + fr

)2

. (2)

3.2. System entropy and self-organization of agents

A spatial entropy function, based on the well-known Shannon’s
formula for the calculation of information content, is defined to
evaluate the effectiveness of the ARMAP protocol.

For eachpeer p, the local entropy Ep, defined in formula (3), gives
an estimation of the extent to which the descriptors have been
mapped within the visibility region centered in p. In (3), fr(i) is the
fraction of descriptors of class Ci (i = 1 . . . Cn) that are located in the
visibility region with respect to the overall number of descriptors
located in the same region. Ep is normalized, so that its value is
comprised between 0 and 1. In particular, an entropy equal to 1
corresponds to the presence of comparable numbers of descriptors
belonging to all the different classes, whereas a low entropy value
is obtained when the region centered in p has accumulated a large
number of descriptors belonging to one class, thus contributing to
the spatial ordering of descriptors. As shown in formula (4), the
overall entropy E is defined as the average of the entropy values Ep
computed at all the Grid hosts.

Ep =

∑
i=1...Nc

f r(i) · lg 1
f r(i)

lgNc
(3)

E =

∑
pεGrid

Ep

Np
. (4)
In [11] it was shown that the overall spatial entropy can be
minimized if each agent exploits both the ARMAP modes, i.e. copy
andmove. In the first phase, the agent copies the descriptors that it
picks from a Grid host, but when it realizes from its own activeness
that the mapping process is at an advanced stage, it begins simply
to move descriptors from one host to another, without creating
new replicas. In fact, the copy mode cannot be maintained for a
long time, since eventually every host would have a very large
number of descriptors of all classes, thus weakening the efficacy of
descriptor mapping. The protocol is effective only if agents, after
replicating a number of descriptors, switch from copy tomove.

A self-organization approach based on an ant pheromone
mechanism enables each agent to perform this mode switch only
on the basis of local information. This approach is inspired by the
observation that agents performmore operationswhen the system
entropy is high, but operation frequency gradually decreases as
descriptors are properly reorganized. Each agent increases its
pheromone level when its activeness tends to decrease, and
switches to the move mode as soon as the pheromone level
exceeds a defined threshold Tf . In particular, at given time intervals,
i.e. every 2000 s, each agent counts up the number of times that
it has evaluated the pick and drop probability functions, Nattempts,
and the number of times that it has actually performed pick
and drop operations, Noperations. At the end of each time interval,
the agent makes a deposit, into its pheromone base, which is
inversely proportional to the fraction of performed operations. An
evaporation mechanism is used to give a greater weight to the
recent behavior of the agent. Specifically, at the end of the ith time
interval, the pheromone levelΦi is computedwith formulas (5) and
(6). The evaporation rate EARM is set to 0.9.

Φi = EARM · Φi−1 + φi (5)

φi = 1 −
Noperations

Nattempts
. (6)

The pheromone level can assume values comprised between 0
and 10: the superior limit can be obtained by equalizing Φi to Φi−1
and setting φi to 1. As soon as the pheromone level exceeds the
threshold Tf (whose value must also be set between 0 and 10), the
agent realizes that the frequency of pick and drop operations has
remarkably reduced, so it switches its protocol mode from copy to
move. The value of Tf can be used to tune the number of agents that
work in copymode and are therefore able to create new descriptor
replicas. Tuning can be static or dynamic, as discussed, respectively,
in Sections 4.2 and 4.3. Beforehand, parameters and performance
indices are introduced in Section 4.1.

4. Performance of the reorganization protocol

4.1. Parameters and performance indices

The performance of the ARMAP and ARDIP protocols was evalu-
atedwith an event-based simulator written in Java. Simulation ob-
jects are used to emulate Grid peers and ant-inspired agents. Each
object reacts to external events according to a finite state automa-
ton and responds by performing specific operations and/or by gen-
erating new messages/events that are delivered to other objects.

For example, a peer visited by a replication agent gives it
information about the descriptors that this peer stores; afterwards
the agent uses probability functions to decide whether or not to
pick descriptors from or drop descriptors into the peer. Finally, the
agent sets the simulation time in which it will perform its next
movement on the Grid and creates a related event that will be
delivered to the destination peer at the specified time. Events are
ordered in a common queue and are delivered to corresponding
destination objects according to their expiration time, so that peers
and agents can operate concurrently along the simulation time.
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Table 1
Simulation parameters

Parameter Value

Grid size (number of peers), Np 2500
Mean peer connection time, Tpeer 100,000 s
Average number of neighbor peers 4
Mean number of resources published by a peer 15
Number of classes of resources, Nc 5
Number of agents, Na Np/2
Mean time between two successive
movements of an agent, Tmov 60 s
Maximum number of hops, Hmax 3
Visibility radius, Rv 1
Pheromone threshold, Tf 3–10

Table 1 reports the main simulation parameters used in our
analysis. Grid networks having a number of hosts Np equal to
2500 are considered in this work. Hosts are linked through P2P
interconnections, and each host is connected to 4 peer hosts on
average. The topology of the network is built by using the well-
known scale-free algorithm defined by Albert and Barabasi [3],
that incorporates the characteristic of preferential attachment
(the more connected a node is, the more likely it is to receive
new links) that was proved to exist widely in real networks. The
number of Grid resources owned and published by a single peer is
generated through a Gamma stochastic function with an average
value equal to 15 [16]. The number of classes Nc in which resources
are categorized is set to 5.

The average connection time of a specific peer, Tpeer , is generated
according to a Gamma distribution function, with an average value
set to 100,000 s. The use of the Gamma function assures that
the Grid contains very dynamic hosts, that frequently disconnect
and rejoin the network, as well as much more stable hosts. Every
time a peer disconnects from the Grid, it loses all descriptors
previously deposited by agents, thus contributing to the removal
of obsolete information. Moreover, a soft state mechanism [22] is
adopted to avoid the accumulation of obsolete descriptors in very
stable nodes. Each host periodically refreshes the descriptors of
the resources owned by other hosts, by contacting those hosts and
retrieving from them updated information about those resources.

The probability that a host generates an agent, Pgen, is set to
0.5; as a consequence, the average number of ARMAP agents Na

that travel the Grid is Np/2, as explained in Section 3. The average
time Tmov between two successive agent movements (i.e. between
two successive evaluations of pick and drop functions) is 60 s,
whereas the maximum number of P2P hops that are performed
within a single agent movement, Hmax, is set to 3, in order to limit
the traffic generated by agents. The visibility radius Rv, used for the
evaluation of pick and drop functions (see Section 3.1), is set to 1,
which means that these functions are based exclusively on very
local information. Finally, the pheromone threshold Tf , defined in
Section 3.2, is set to values ranging from 3 to 10.

A set of performance indices are defined for the performance
evaluation of ARMAP. The overall entropy E, defined in Section 3.2,
is used to estimate the effectiveness of the ARMAP protocol in the
reorganization of descriptors. The Nd index is defined as the mean
number of descriptors that are generated for each resource. The
processing load L is defined as the number of agents per second
that are received and processed by a single peer.

4.2. Static tuning

A first set of experiments were performed to evaluate the
performance of the ARMAP protocol and investigate the effect of
static tuning. Static tuning is obtained by setting the pheromone
threshold Tf before the ARMAP protocol is initiated. When ARMAP
is initiated, all agents (about 1250, half the number of peers)
Fig. 1. Static tuning. Overall system entropy, for different values of the pheromone
threshold Tf .

Fig. 2. Static tuning. Mean number of descriptors per resource, for different values
of the pheromone threshold Tf .

are generated in the copy mode, but subsequently several agents
switch to move, as soon as their pheromone value exceeds the
threshold Tf . If the pheromone threshold Tf is increased, the
average interval of time in which agents work in copy mode
becomes longer. As a consequence, the average number of agents
that work in copy (also called “copy agents” in the following) is
larger, therefore such agents are able to create more descriptor
replicas. Hence, a proper setting of the pheromone threshold
is a very efficient method to enforce or reduce the generation
of new replicas and the velocity and intensity of information
dissemination. However, a more intense dissemination is not
always associated to a better reorganization of descriptors, i.e. to
a more effective spatial separation of descriptors belonging to
different classes, and therefore to a lower overall entropy.

Fig. 1 shows that lower values of the overall entropy are
achieved with lower values of the pheromone threshold. For
example, with Tf = 3, the value of the overall entropy decreases
from the initial value of about 1 (maximum disorder) to about 0.7.
As an extreme case, virtually no entropy decrease is observed if all
the agents operate in copy (Tf = 10), which confirms that themode
switch of agents from copy tomove is strictly necessary to perform
an effective descriptor reorganization.

Fig. 2 shows the mean number of descriptors generated per
resource, and confirms that information dissemination is more
intense if the pheromone threshold is increased, because a
larger number of copy agents operate on the network. It can be
concluded that copy agents are useful to replicate and disseminate
descriptors, but it is the move agents that actually achieve the
reorganization of descriptors and are able to create Grid regions
specialized in specific classes of resources.
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As opposed to the indices described so far, the processing load
L, defined as the average number of agents per second that are
received, andmust be processed, by a peer, does not depend on the
pheromone threshold. This index only depends on the probability
that a host generates an agent, Pgen, and on the frequency of agent
movements across the Grid, 1/Tmov. Indeed, L can be obtained as
follows:

L =
Na

Np · Tmov
≈

Pgen
Tmov

. (7)

In the described scenario, each host receives and processes
about one agent every 120 s, which can be considered an
acceptable load. Even though the analysis is focused on a Grid
with 2500 hosts, the ARMAP protocol is intrinsically scalable due
to its decentralized nature, since each agent performs pick and
drop operations, and tunes its operating mode, only according
to local information collected by the hosts that it visits. Indeed,
results not shown in this paper confirm that the value of the main
performance indices (entropy and replication degree) are hardly
affected by the size of the network.

4.3. Dynamic tuning and epidemic mechanism

Whereas the previous subsection analyzes static tuning, in
which the value of Tf is set before ARMAP is initiated, this section
introduces dynamic tuning, the purpose of which is to regulate Tf
while ARMAP is running. The value of Tf should be increased if
more replicas are needed [29], while it should be reduced if a better
spatial mapping of descriptors is desired.

Dynamic tuning can be achieved by a few supervisor agents
that, according to the needs and the level of satisfaction of
users, communicate to ARMAP agents a new value of the
pheromone threshold, so as to enforce or reduce the activity
of agents. In ARMAP, an epidemic mechanism is exploited to
transmit information to all agents. The epidemic approach is an
effective solution for disseminating information in peer-to-peer
systems [10]. This type of mechanism mimics the spread of a
contagious disease in which infected entities contaminate other
“healthy” entities.

ARMAP dynamic tuning works as follows. When a supervisor
agent decides to change the replication degree, it communicates a
new value of the pheromone threshold Tf only to the host in which
such agent resides: “infection” will spread from this host. Since
then, each agent that visits this infected host is contaminated and
its own pheromone threshold is changed.1 In turn, whenever an
infected agent visits a non-infected host, the latter is contaminated
and will subsequently infect other agents. So, in a short time, all
or most agents are infected with the new value of the pheromone
threshold.

Fig. 3 shows the number of agents that operate in the copy
mode, referred to as Ncopy, in the case of dynamic tuning. In this
figure, dotted curves are related to the values of Ncopy obtained,
under static tuning, with Tf = 5 and Tf = 9. Continuous curves
correspond to a dynamic tuning scenario: the initial threshold
Tf is set to 5, but at time = 400,000 s, Tf is changed to 9 by a
supervisor agent located in one of the Grid host. The continuous
line labeled with stars corresponds to an ideal scenario in which
a global control mechanism is able to immediately communicate
the new pheromone threshold to all agents. On the other hand,
the continuous line labeled with circles is achieved by exploiting
the above described epidemic mechanism. The figure shows
1 This can affect the mode of the agent: for example, if the agent is in move and
the new value of Tf is changed to a value that is higher than the current agent
pheromone, then the agent mode switches to copy.
Fig. 3. Dynamic tuning. Number of copy agents Ncopy , when the pheromone
threshold is changed from Tf = 5 to Tf = 9. Comparison of global (ideal) and
epidemic control.

Fig. 4. Dynamic tuning. Mean number of descriptors per resource Nd , when the
pheromone threshold is changed from Tf = 5 to Tf = 9. Comparison of global (ideal)
and epidemic control.

that, with the increase in Tf , a number of agents switch from
move to copy, thus increasing the value of Ncopy. Of course, the
presence of more copy agents fosters the replication degree of the
system.

This is confirmedby Fig. 4,which shows the trend of the number
of replicas per resourceNd in the described scenario. It is noted that,
after the change of Tf , the value of Nd undergoes a transition phase
and then converges to the curve obtained with static tuning and
Tf = 9. The transition phase experienced with epidemic control
is slower than that measured with global control due to the time
necessary to propagate information to a significant number of
agents. Anyhow, the trend obtained with epidemic mechanism is
very close to the trend achieved with the “ideal” global control.

Analogous observations can bemade about the overall entropy.
Fig. 5 depicts the values of entropy obtained under static tuning
and dynamic tuning, and compares epidemic and global control.
The overall entropy increases from a value of about 0.76 with
Tf = 5, to about 0.88 with Tf = 9, both with global control and
epidemic control. As observed for the number of replicas, the trend
of the overall entropy obtained with global control approaches the
steady value more quickly than with epidemic control. However,
the additional delay experienced with the epidemic mechanism is
tolerable.

Overall, the epidemic mechanism is effective and requires
no extra message load, since information is carried at no
cost by the agents that travel the Grid. Conversely, global
control requires an onerous and well-synchronized mechanism to
transmit information to all agents.
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Fig. 5. Dynamic tuning. Overall system entropy E, when the pheromone threshold
is changed from Tf = 5 to Tf = 9. Comparison of global (ideal) and epidemic control.

5. The resource discovery protocol

The ARDIP (Ant-based Resource DIscovery Protocol) protocol is
used by clients to discover descriptors of Grid resources belonging
to a given class. The objective is to drive an ARDIP agent, i.e. a query
message, towards a region of the Grid in which the needed class
of descriptors has been accumulated. As ARDIP fully exploits the
replication and spatial sorting of descriptors achieved by ARMAP,
the two protocols should be used together: as ARMAP agents
perform the logical reorganization of descriptors and build theGrid
information system, it is increasingly likely that ARDIP agents can
find a remarkable number of useful descriptors in a small amount
of time.

The ARDIP protocol is based upon three main features: (a) an
algorithm for the election of representative peers that work as
attractors for query messages; (b) the semi-informed discovery
algorithm; (c) a stigmergy mechanism that allows query messages
to take advantage of the positive outcome of previous requests.
These features are described in the following.
Election of representative peers

The election algorithm is completely decentralized, and every
peer is autonomous in determining whether or not it should
assume the representative role for a class of resources. The
algorithm is performed by each peer periodically (i.e., every
2000 s), in three steps:

(1) the peer focuses on the class for which it stores the largest
number of descriptors, say class c.

(2) the peer verifies whether, for class c, it stores a number of
descriptors that is at least Kel times the average number of
descriptors stored by a generic peer (the last value can be easily
estimated, for a local region, through a simple exchange of
information performed by peers). If this occurs, it means that
the peer has accumulated a significant number of descriptors.
In such a case, the peer elects itself as a potential representative
peer for class c.

(3) though a simple exchange of short-distancemessages, the peer
verifies if, among all the peers that are 1 and 2 hops away, there
are other potential representative peers for the same class. In
this case it compares the number of descriptors of class c with
those peers. If the peer stores less descriptors than any of these
neighbor peers, it abandons the election algorithm, otherwise
it elects itself as a representative peer, and will work as an
attractor for query messages issued to discover descriptors of
class c.

The factor Kel used in the second step can be increased or
decreased in order to, respectively, reduce or increase the number
of representative peers. The goal of the third step is to avoid the
election of several representative peers in the same region, which
could give contrasting information to query messages.

Semi-informed discovery algorithm
When a user needs to discover descriptors belonging to a

given class, it initiates a discovery procedure, i.e., it issues a
number of querymessages. The semi-informed discovery algorithm
includes a blind search phase and an informed search phase. The
random walk paradigm is used during the blind search phase: the
query messages travel the Grid through P2P interconnections by
following a random path. The network load is limited with the use
of a TTL parameter, which is equivalent to the maximum number
of hops that can be performed by a query message before being
discarded.

A blind search procedure is switched to informed as soon as one
of the issued query messages approaches a representative peer,
i.e., when such a message is delivered to a peer which knows the
existence of a representative peer and knows a route to it (see the
description of the stigmergymechanism below).

During the informed search phase, a query message is driven
towards the representative peer and the TTL parameter is ignored,
so that the query cannot be discarded until it actually reaches
the representative peer. Therefore, the semi-informed walk of a
query message ends in one of the two cases: (i) when the TTL
is decremented to 0 during the blind phase; (ii) when the query
reaches a representative peer. In both cases, a queryHit message is
created, and all the descriptors of the class of interest, which are
found in the current peer, are put in this message. The queryHit
follows the same path back to the requesting peer and, along the
way, collects all the useful descriptors that are managed by the
peers through which it passes.

Stigmergy mechanism
The “stigmergy” paradigm, often observed in biological sys-

tems, allows elementary entities to communicate with each other
not directly, but through the shared environment. For example, in
ant colonies, an ant that finds a food source leaves a pheromone
along its way back to the nest, and such a pheromone will alert
other ants to the presence of the food source. The ARDIP protocol
exploits a similar mechanism: when a query message accidentally
gets to a representative peer for the first time, the returning query-
Hit will deposit an amount of pheromone in the peers that it en-
counters as it retreats from the representative peer. In this paper,
it is assumed that the pheromone is deposited only in the first two
peers of the queryHit path.

When a query message gets to a peer during its blind search,
it checks the amount of pheromone that is deposited there.
If the pheromone exceeds a threshold, TARD, it means that a
representative peer is close enough, and the discovery procedure
becomes informed. An evaporation mechanism assures that the
pheromone deposited on a peer does not drive queryHits to
ex-representative peers. The pheromone level at each peer is
computed every time interval of 5 min. The amount of pheromone
Φi, computed after the ith time interval, is given by formula (8).

Φi = EARD · Φi−1 + φi. (8)

The evaporation rate EARD is set to 0.9; φi is equal to 1 if a
pheromone deposit has been made in the last time interval by at
least one agent, otherwise it is equal to 0. The threshold TARD is set
to 2. With these settings, the threshold is exceeded as soon as a
few queryHits deposit their pheromone at different time intervals,
while the algorithm is more conservative when it has to recognize
that a representative peer has been “downgraded”: up to 15 time
intervals are necessary to let this level assume a value lower than
the threshold.
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Table 2
ARDIP parameters

Parameter Value

Number of query messages issued by 4
the requesting peer
Time to live, TTL 3–7
Factor Kel , for the identification 8
of representative peers
Mean message elaboration time at a peer 100 ms

Table 3
ARDIP performance indices

Performance index Definition

Fsq Fraction of queries that are successfully
driven towards a representative peer

Nres , Nres(rep), Nres(norep) Mean number of descriptors that a user
discovers after its request (for all the queries,
and for striking and non-striking queries)

Tr , Tr(rep), Tr(norep) Time interval between a request and the
reception of a queryHit (for all the queries,
and for striking and non-striking queries)

Tr(first) Time interval between a request
and the reception of the first K results

Fig. 6. Fraction of search requests that are successfully driven to a representative
peer, for different values of TTL.

6. Performance of resource discovery

This section evaluates the performance of the ARDIP protocol
and shows that discovery operations are more and more effective
as descriptors are reorganized by ARMAP agents. Table 2 reports
the values assumed by main ARDIP parameters, whereas perfor-
mance indices are defined and explained in Table 3.

The fraction of “striking” queries Fsq is essential to evaluate
if representative peers are actually able to attract queries. Fig. 6
proves the valuable effect caused by the combined use of ARMAP
and ARDIP protocols. In fact, after a very small amount of time,
the logical reorganization of descriptors produces a significant
increase in Fsq. Moreover, Fsq increases with the TTL value, since a
search request extends the blind phase and has more chances to
get to a representative peer.

The most important performance index is Nres, the mean
number of results that are discovered after a search request.
Indeed, it is generally argued that the satisfaction of the request
depends on the number of discovered descriptors returned to the
user [28]. The trend for the number of results is depicted in Fig. 7,
which shows that it is increasingly large as descriptors are being
organized by ARMAP. Notice that the mean number of results for
all requests, Nres, is lower than that of striking queries, Nres(rep),
since it includes the requests that do not reach a representative
peer (thus lowering the mean). Indeed, the striking queries can
Fig. 7. Average number of results, with different values of TTL, reported for
requests that reach a representative peer, for requests that do not reach a
representative peer, and for all the requests.

Fig. 8. Response time, with different values of TTL, reported for requests that reach
a representative peer, for requests that do not reach a representative peer, and for
all the requests.

discover considerably more results than non-striking queries, as
Fig. 7 shows.

The ARDIP protocol not only increases the number of results,
but also allows users to discover them in a shorter amount of
time. Fig. 8 shows that the response time decreases as the ARMAP
work proceeds, and also that it is notably smaller if the search
request reaches a representative peer. In this case, in fact, the
discovery operation is stopped even if the TTL value is still greater
than 0, and a queryHit is immediately issued (see Section 5).
This performance improvement is more evident as the TTL value
increases. By comparing Figs. 7 and 8, it can be seen that a larger
TTL allows more results to be obtained, but at the cost of a longer
response time.

If a user needs no more than a given number of results (for
example, K) it is advisable to let he/she obtain them as soon as
possible. To do this, the discovery protocol is modified as follows:
as a query collects K results, it immediately goes back to the
requesting peer, without waiting for the expiration of the TTL
parameter, or to reach a representative peer. The time Tr(first) is
calculated at the time that the first queryHit with K results returns
to the user. It is calculated for different values of the parameter K,
with the TTL fixed at 5. Fig. 9 shows that Tr(first) decreaseswith the
value of K, as expected. Comparison with the mean response time
Tr , shown through a dashed line, confirms the clear saving of time
that is accomplished by adopting this strategy.

7. Conclusions

This paper introduces an approach based on the multi-agent
paradigm, and inspired by biological systems such as ant and
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Fig. 9. Response time of the first results, Tr(first), with TTL=5, for different values
of the number of desired results K.

termite colonies, for building an efficient information system in
Grids. The approach is exploitable in very large networks, since it
is fully decentralized and self-organizing. Two complex objectives,
specifically reorganization anddiscovery of resources, are achieved
through simple operations performed by two different kinds of
agents. Some agents are in charge of replicating and moving
resource descriptors so to create accumulation regions specialized
in different classes of resources. Other agents guide query
messages toward the core of such regions,which allows to discover
a large number of resources belonging to a given class.

Along with the performance analysis of the protocols which
drive agent operations, this paper evaluates an epidemic approach
used to tune the activeness of agents. In fact replication and
reorganization of descriptors can be modulated by enlarging or
shortening the first phase of the life of reorganizing agents, in
which agents are allowed to create new descriptor replicas. This
is achieved by tuning the value of a pheromone parameter. A
supervisor agent, on the basis of users’ requirements, is enabled to
change the value of this parameter and an epidemic mechanism
is used to transmit information from peers to agents and from
agents to peers. Simulation shows that this epidemic mechanism
is equally effective and nearly efficient as an ideal mechanism
through which all agents are immediately informed regarding the
value of the pheromone parameter.

In this work, it is assumed that all the hosts have comparable
storage capabilities. Current work aims at the analysis of a more
realistic scenario in which the distribution of descriptors respects
the different capabilities of Grid hosts. This objective can be
achieved by properly modifying the pick and drop probabilities of
agents, so as to foster the pick operations in hosts with low storage
capabilities and the drop operations in hosts endowed with large
storage space. This way, hosts with higher storage capacity will be
assigned a larger number of descriptors than low capacity hosts.
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