
Peer-to-Peer Resource Discovery in Grids:

Models and Systems ?

P. Trunfio a, D. Talia a, C. Papadakis b, P. Fragopoulou b,∗,
M. Mordacchini c, M. Pennanen d, K. Popov e, V. Vlassov f ,

S. Haridi f

aDEIS, University of Calabria, Via Pietro Bucci 41C, 87036 Rende (CS), Italy
bInstitute of Computer Science, Foundation for Research and Technology-Hellas

P.O. Box 1385, 71 110 Heraklion-Crete, Greece
cUniversita Ca Foscari di Venezia and INFN Sezione di Padova, Italy

dVTT Information Technology Tietoverkot, P.O.Box 1203 FIN-02044, Finland
eSwedish Institute of Computer Science, Box 1263, SE-164 29 Kista, Sweden

fSchool of Information and Communication Technology, Royal Institute of
Technology, Electrum 229, SE-164 40 Kista, Sweden

Abstract

Resource location or discovery is a key issue for Grid systems in which applications
are composed of hardware and software resources that need to be located. Classical
approaches to Grid resource location are either centralized or hierarchical and will
prove inefficient as the scale of Grid systems rapidly increases. On the other hand,
the Peer-to-Peer (P2P) paradigm emerged as a successful model that achieves scal-
ability in distributed systems. One possibility would be to borrow existing methods
from the P2P paradigm and to adopt them to Grid systems taking into considera-
tion the existing differences. Several such attempts have been made during the last
couple of years. This paper aims to serve as a review of the most promising Grid
systems that use P2P techniques to facilitate resource discovery in order to perform
a qualitative comparison of the existing approaches and to draw conclusions about
their advantages and weaknesses. Future research directions are also discussed.

? This research work is carried out under the FP6 Network of Excellence CoreGRID
funded by the European Commission (Contract IST-2002-004265).∗ Corresponding author.

Email addresses: trunfio@deis.unical.it (P. Trunfio),
talia@deis.unical.it (D. Talia), adanar@ics.forth.gr (C. Papadakis),
fragopou@ics.forth.gr (P. Fragopoulou), mordacchini@dsi.unive.it (M.
Mordacchini), mika.pennanen@vtt.fi (M. Pennanen), kost@sics.se (K. Popov),
vlad@imit.kth.se (V. Vlassov), seif@imit.kth.se (S. Haridi).

Preprint submitted to Elsevier Science 3 August 2006

1 Introduction

The ultimate target of any resource sharing environment is to pool together
large sets of resources and to make them available to its users and the deployed
applications. A fundamental service in these environments is resource location
which allows the discovery of resources across multiple administrative domains
based on a list of predefined attributes. After specifying the attributes of
existing resources, the system returns a list of locations where the required
resources currently reside.

Grid and P2P are the two most common types of resource sharing systems
currently in wide use. These two systems evolved from different communi-
ties and serve different needs. Grid systems interconnect computer clusters,
storage systems, instruments, and in general available infrastructure of large
scientific computing centers in order to make possible the sharing of existing
resources, such as CPU time, storage, equipment, data, software applications.
Most Grid systems are of moderate-size, they are centrally or hierarchically
administered and there are strict rules governing the availability of the partic-
ipating resources (i.e., a large percentage of the CPU time of a participating
cluster should be dedicated for Grid use 24 hours a day). Grids are used
for complex scientific applications which are time critical and they comply
to strict QoS rules. Grid resources are highly dynamic and their values vary
significantly over time (i.e., available CPU time, memory, available storage,
network bandwidth). The resources required by applications are described by
specifying a set of attributes (multi-attribute queries) like available computing
power and memory. On the other hand, the most popular service provided by
P2P systems is file sharing (e.g., Gnutella, KaZaA). Other applications are
real time data transfer (e.g., telephony such as Skype), cycle stealing (e.g.,
SETI@Home), or collaboration (e.g., Groove). The typical participant in such
systems enters from a common desktop asking to download music or video
files over Internet TCP connections. Participation is highly dynamic as users
can enter, depart, and rejoin the system totally unpredictably. Finally, most
resource location queries are not attribute-dependent as in Grids but they
either specify a file name, they are keyword searches or range queries.

Grid and P2P are both resource sharing systems having as their ultimate goal
the harnessing of resources across multiple administrative domains. They have
many common characteristics such as dynamic behavior and heterogeneity of
the involved components. Apart from their similarities, Grid and P2P systems
exhibit essential differences reflected mostly by the behavior of the involved
users, the dynamic nature of Grid resources (i.e., CPU load, available memory,
network bandwidth, software versions) as opposed to pure file sharing which is
by far the most common service in P2P systems. Another essential difference
results from the demanding nature of sensitive Grid applications that are time

2

and data critical and have strict fault tolerance and security requirements
as opposed to P2P applications which use commodity hardware and exhibit
best effort behavior. The basic differences between Grid and P2P systems are
summarized in Table 1.

Table 1
The basic differences between Grid and P2P systems.

In terms of ... Grids P2P

Users Scientific community Any desktop user

Computing Workstations, multiprocessors, Common desktops

computer clusters

Network High speed dedicated network Internet TCP connections

Administration Centralized or hierarchical Distributed

Applications Complex scientific applications such as File sharing, real-time data

large scale simulations, data analysis streaming, cycle steeling

Scale Connect a relatively small number of Connection is possible from any

specialized sites (moderate size) desktop (large size)

Security Secure services for job submission and Protocols for file sharing

interactive execution

Participation Static or slowly changing participation Nodes can enter or leave totally

of nodes over time unpredictably

Trust Trusted users Untrusted, anonymous users

Although Grid and P2P systems emerged from different communities in order
to serve different needs and to provide different functionalities, they both
constitute successful resource sharing paradigms. It has been argued in the
literature that Grid and P2P systems will eventually converge [50,24]. The
techniques used in each of these two different types of systems will result to
a mutual benefit. As the scale of Grid systems rapidly increases, centralized
management will prove inefficient and other methods will be considered. The
QoS constraints that currently govern most Grid applications will loosen up as
Grids will move towards more popular and diverse application scenarios. Strict
resource participation rules will be relaxed as participating organizations may
need to have their infrastructure for own use at certain periods and for Grid
jobs at other times and the use of commodity hardware will be allowed. On
the other hand, P2P systems will open up to more sophisticated applications
and they will have to support more complex queries and different QoS levels.
P2P is not just for file sharing, but opens a new era of group based resource-
aware communications for many new applications and services for connected
lifestyles [25]. Adding together location information, presence information, and
many other parameters available in the end-to-end communication path and
local resources, new P2P service scenarios can be envisioned. The market is
driving P2P services based on IP into wireless mobile devices. Some current
examples of such services are VoIP, Instant Messaging, file sharing, navigation
systems and multi-party video conferencing. Associated P2P/Grid application

3

such as mobile Grid for access to Grid resources or distribute/store shared
information across Virtual Organizations (VOs), such as web, digital cameras,
own digital community-TV broadcast, music, etc, will also emerge. Tomorrow’s
resource sharing systems will be of large scale, highly dynamic (in terms of
resource availability and infrastructure participation), and will exhibit high
heterogeneity. Resources can become unavailable at any time and machines
can enter or leave the resource sharing system unpredictably while QoS will
still be an issue for specific applications.

The purpose of the present report is to serve as a review of the most promis-
ing Grid systems that incorporate P2P resource location methods, in order to
perform a qualitative comparison of the existing approaches and to draw con-
clusions about their advantages and their weaknesses. The systems discussed in
this report make use of different P2P approaches, ranging from unstructured
[23,51,33,32,39] to structured ones [8,6,36,47]. Along with the presentation
of the systems, their capabilities in terms of scalability, reliability, efficiency,
ease of implementation, ease of use, self-organization, fault-tolerance, secu-
rity, robustness are also discussed. Furthermore, we elaborate on P2P-based
approaches for building scalable Grid resource discovery services based on se-
mantic information in order to improve the precision of resource discovery
[26,30,22,44,57]. Finally, future research directions in the field are discussed.

The remainder of this report is organized as follows. Section 2 discusses the
P2P paradigm, describing the different models (including unstructured, struc-
tured, and hybrid) and comparing them on the basis of their performances
and capabilities. Section 3 presents a review of systems that adopt a P2P ap-
proach to Grid resource discovery. Section 4 discusses the role of semantics in
the design of P2P-based Grid resource discovery systems. Finally, Section 5
provides a comparison of the different P2P models and systems for resource
discovery in Grid environments.

2 Resource discovery in Peer-to-Peer systems

The P2P paradigm is based on the principle that every component of the
system has the same responsibilities acting simultaneously as a client and as
a server, as opposed to the traditional client-server model. P2P systems are
divided into two main categories based on the connection protocol they employ
and the way peers are organized structured and unstructured. Structured P2P
systems employ a rigid structure to interconnect the peers and to organize the
file indices, while in unstructured systems each peer is randomly connected to
a fixed number of other peers and there is no information about the location of
files. Several hybrid approaches have been proposed to overcome the drawbacks
of the two main approaches while retaining their benefits.

4

2.1 Unstructured P2P systems

Napster was introduced in 1999 and is historically the first P2P system. It
comprised a central server which stored the index of all files shared by the
participating peers. To locate a file a user queried the central server using the
name of the file and received as a result the IP address of a peer containing the
file. A direct connection was established between the requesting peer and the
peer containing the file in order for the download to be effected. The central
index server used in Napster is not easy to scale and was a single point of
failure. Although Napster is historically considered as the first unstructured
P2P system, the existence of a central index differentiates it considerably from
today’s unstructured P2P systems.

In today’s unstructured P2P systems, each peer maintains a constant number
of connections to other peers, called its neighbors, thus an overlay network of
peers is formed. Gnutella and KaZaA are considered two of the most popular
unstructured systems (Fig. 1). Due to the lack of an underline structure in
those systems, there is no information about the location of files, thus the
prevailing resource location method is “flooding”. A peer looking for a file
issues a query which is broadcast in the network. All matching query responses
are send to the originating peer through the reverse path. Clearly flooding
is not scalable since it creates a large volume of unnecessary traffic in the
network. To limit the number of messages generated by flooding, each message
is tagged with a Time-To-Live (TTL) field. The TTL indicates the number
of hops away from its source a query should propagate. A small TTL value
can reduce the network coverage, defined as the percentage of network nodes
that receive a query, thus a file may fail to be located although present in the
system.

In order to limit the vast amount of messages produced by flooding, mod-
ern unstructured P2P systems employ a controlled flooding mechanism, also
known as Dynamic Querying [2]. In dynamic querying the peer that initiates
a query tries to control the query’s propagation by sending it only to a subset
of its neighbors and with a small TTL. If this first attempt does not pro-
duce a sufficient number of results, the originating peer may broadcast the
query again to a different set of neighbors with increased TTL. This process
is repeated until a satisfactory amount of results is received, or until all the
neighbors are exhausted. Many other techniques have been proposed in the
literature to alleviate the excessive traffic problem caused by flooding and to
deal with the traffic/coverage trade-off [52] such as random walks, multiple
random walks, hybrid methods that combine flooding and random walks [18],
directed searches based on statistical information [31], forwarding indices [12],
or the incorporation of semantic information [13,48,55].

5

Fig. 1. The architecture of Gnutella.

Experiments demonstrated that peers with low bandwidth connections (i.e.,
nodes connected over dial-up modems) are easily saturated by flooding re-
quest and thus slow down resource location in unstructured P2P systems. To
exploiting peer heterogeneity to the system’s benefit low bandwidth peers had
to be isolated from query routing. By curbing the definition of P2P systems,
in [54,10] a distinction between peers was introduced and a two level hierarchy
of peers was constructed. High bandwidth peers, the Superpeers (also known
as Ultrapeers), formed an unstructured overlay network, while peers with low
bandwidth, the leaves, were connected only to Superpeers. Each Superpeer has
an index of all the files contained in its leaves. Any request originating at a
leaf peer is forwarded through the Superpeers it is connected to, while flooding
is performed only at the Superpeer overlay network. This modification allows
the system to retain its simplicity while offering improved scalability.

2.2 Structured P2P systems

Structured P2P systems are equipped with a distributed indexing service
which is based on hashing, and is known as Distributed Hash Table (DHT).
Peers and files are mapped, usually through the same hash function, to a key
space. Peers and file indices are organized in a rigid structure according to
their keys, which facilitates the location of files. Most structured P2P systems
support naturally exact match queries in O(log N) hops, where N is the size
of the key space, and range queries. However they do not support directly
keyword searches which constitute the core of queries in real P2P systems.

Chord [49] is the first structured P2P system to be proposed. In Chord, both
peers and files are mapped through the same hash function to an m-bit key
space. The peers in Chord are organized in an 1-dimensional circle according
to their keys 2. Each peer stores the index of all files whose keys fall in the
range between the key of its predecessor and its own key. The lookup process
emulates the binary search, thus requires O(log N) steps and messages. The

6

Fig. 2. The architecture of Chord.

arrival or departure of a peer does not have a global effect but affects at most
log N other peers. Whenever a peer joins the network, it takes responsibility
of certain file keys previously assigned to its successor. When a peer leaves the
network, all of its assigned file keys become the responsibility of its successor.
In general, each peer is responsible for an equal number of keys with high
probability, thus load balancing is achieved.

The Content-Addressable Network (CAN) [40] tries to limit to a constant the
number of each peer’s neighbors, regardless the size of the network or the key
space. The peers in CAN are organized in a d-dimensional torus. Each peer’s
key consists of d numbers and corresponds to a point in a d-dimensional space.
Each peer is connected to its next and previous peer in each dimension, thus
having O(d) neighbors. The d-dimensional space is divided equally among the
available peers and each peer is responsible for all file keys corresponding to
points in its own subspace. Each lookup request can be forwarded over any
of the d dimensions, leading to a lookup cost of O(N1/d) in time and number
of messages. Peer arrivals and departures in CAN have a very localized effect,
since they only affect O(d) other peers. In order for a new peer to join, it
contacts a peer already in the system, which splits its subspace in two halves
and assigns responsibility of one halve to the new peer. Neighbors are set
accordingly. An extension of CAN employs more than one hash functions in
order to support replication and thus to reduce lookup cost and to provide
fault tolerance in case of unpredictable peer departures.

Koorde [16] has the same lookup costs as Chord, while maintaining a constant
number of neighbors per peer. This is achieved by exploiting the properties
of the de Bruijn graph. Each peer in Koorde is mapped to a binary key and
is connected to two other peers, whose keys are formed by shifting the peer’s
key once to the left, dropping the high order bit and inserting as low order
bits 0 and 1. File lookup is performed by emulating routing in the de Bruijn

7

graph and thus requires O(log N) hops.

Recent examples of structured systems include Tapestry [56], Cyclone [43], and
HiPeer [53]. Tapestry is very similar to Pastry but it includes a mechanism
for hotspot alleviation. Although uniform hashing assigns ID keys to data
uniformly, the high replication of some files, or their popularity may lead to
load imbalances, something that Tapestry tries to avoid. Cyclone and HiPeer
are examples of hierarchical DHTs. Hierarchy is added to the common, flat
DHT design for reasons such as fault isolation, bandwidth utilization, adaption
to the underlying network, etc. Cyclone forms subnetworks inside a DHT by
dividing an ID key into a group ID part and a node ID part. However, in
contrast to common practice, it assigns the lowest priority ID bits to the
group ID. As a result, the nodes of a single group are distributed over the
entire ID space. HiPeer, just like Koorde, exploits the attributes of De-Bruijn
graphs. Unlike Koorde however, it creates a structure of co-centric rings, each
being a De-Bruijn graph. Each outer ring can contain double the number of
peers of the immediate inner ring. Peers in the inner rings are assumed to be
more reliable than peers in the outer rings. The rings are interconnected in a
way that De-Bruijn routing can be used to move between rings the same way
it is done for peers of the same ring. This capability of ”horizontal” as well as
”vertical” routing enables HiPeer to locate a file in a number of hops equal to
the number of rings in the system.

Structured P2P systems are more scalable than unstructured ones, in terms of
traffic load, but need to have strong self-organization capabilities in order to be
able to maintain their rigid structure. Structured systems are prone to node
failure, and unpredictable node departures. Although in the past few years
considerable effort has been devoted the research on structured P2P systems,
they have also earned a lot of criticism for their high maintenance cost in the
presence of high churn, their difficulties to support more general queries, and
their exclusive support for exact matches which constitute a relatively small
percentage of queries in real P2P systems [10].

2.3 Hybrid approaches

Both unstructured and structured approaches have advantages and disadvan-
tages. Several hybrid approaches have been proposed to overcome the draw-
backs of each while retaining their benefits.

In Pastry [42] each peer is mapped to a random 128-bit node identifier (nodeId).
Pastry nodes are organized in a circle according to their nodeIds. Each peer
recursively divides in two parts the space its nodeId belongs. The target is for
each peer to maintain knowledge of at least one peer belonging to each result-

8

ing subdivision. Each lookup message is routed to the peer whose nodeId has
the longest common prefix with the lookup Id. After each routing step, the
common prefix of the lookup Id with the current peer Id increases in length
by one. Thus, each file can be located in log N steps. For robustness, peers
in Pastry maintain knowledge of the 2k closest peers, instead of just the next
and the previous ones.

In Kademlia [34] each peer is mapped to a 160-bit key through the SHA-1
hash function. Each peer subdivides the space of possible distances between
any keys, defined as their XOR. Each peer is aware of at least one peer, whose
distance from its key is between 2i and 2i+1, for 0 ≤ i < log N . Those ranges
are called “buckets”. For redundancy and fault-tolerance, each peer tries to
maintain knowledge of k peers in each bucket. For the same reason, each file
key is also stored on the k peers closest to its key. Routing is performed by
calculating the XOR of the requesting peer’s key with the lookup key and
forwarding the lookup request to a peer of the appropriate bucket. Kademlia
peers monitor incoming traffic to become aware of alive peers in the network in
order to update their buckets with more “fresh” contacts, at no cost. Resorting
to lookups to refresh a bucket’s contact is thus performed rarely, usually by
new peers, during their bootstrap phase. Furthermore, there is no need for a
departing peer to leave gracefully, since stale bucket entries are purged.

Kademlia and Pastry are similarly structured. Their structure exhibits less
“strictness” compared to Chord and CAN, in the sense that for each defined
subspace, any peer belonging to that subspace can serve as a contact. In Chord
and CAN, all neighbor connections are strictly defined. Kademlia is the first
hybrid P2P system to achieve global-scale deployment.

2.4 Comparison summary

The global-scale deployment of P2P systems makes scalability a very impor-
tant issue. Unstructured P2P systems, lack in this aspect, due to the traffic
generated by flooding. Improvements such as random walks have been pro-
posed, to reduce the traffic generated, at the great expense of increased re-
sponse time and reduced network coverage. Other proposals include sending
the broadcast only to neighbors that have the highest history of returning
results, or even disconnect from neighbors that do not return enough results
(neighbor selection). On the other hand, structure makes scalability feasible,
but it is difficult to maintain under high churn. This turns out to be a se-
rious consideration since P2P systems are intended for the intermittent user
that joins, departs, and rejoin the system totally unpredictably. Furthermore,
for each data item in the system, the peer with the appropriate Id must be
notified periodically. This results to either increased traffic, if the period is

9

too small, or stale information (a peer holds information for a file shared by
another peer that has left the system), if the period is too large. Although
this problem is not vital in file-sharing P2P systems, it would be an issue if
structured P2P systems are going to be used in Grid resource discovery, since
resources are highly dynamic (CPU load, free memory, etc). In unstructured
systems, where each peer answers queries about its own data only, each re-
quest will be checked against the latest data. On the other hand, the order
and the data locality inherited in structured P2P systems is a valuable asset
for Grid resource discovery, since it enables ranged queries to be performed
efficiently. In contrast, to perform range queries in unstructured systems, one
would have to contact every single peer.

In Table 2 a qualitative comparison between unstructured and structured sys-
tems is attempted based on the following criteria:

• Scalability (time): Number of hops a query propagates;
• Scalability (traffic): Number of query messages required;
• Robustness : Resilience under high churn;
• Periodic update: Need for data to be republished periodically;
• Range queries : Ability to efficiently support range queries.

Table 2
Unstructured vs structured P2P systems.
P2P system Scalability Scalability Robustness Periodic update Range queries

(time) (traffic)

Unstructured O(log N) N*avg degree High No No

Structured O(log N) O(log N) Lower Yes Yes

Regarding system scalability in time and traffic the worse-case bound is given
for a system with N peers. Furthermore, we assume unstructured P2P system
of N nodes with a random overlay, thus O(log N) diameter.

3 P2P-based Grid resource discovery systems

As the Grid size increases, centralized and hierarchical approaches to Grid in-
formation systems do not guarantee scalability and fault tolerance. As pointed
out earlier, a practical approach towards scalable solutions is offered by P2P
models. The remainder of this section reviews some recently proposed systems
that adopt a P2P approach to Grid resource discovery. As in the previous sec-
tions, also here frameworks are classified into unstructured and structured
systems.

10

3.1 Unstructured systems

Iamnitchi et al.

In [23] Iamnitchi et al. propose a fully decentralized P2P architecture for
resource discovery in Grid environments. In this architecture every participant
in a Virtual Organization (VO) publishes information on one or more local
servers, called nodes or peers, that store and provide access to local resource
information. A node may provide information about one resource (e.g., itself)
or multiple resources (e.g., all resources shared by an organization). Users send
their requests to some known (typically local) node. The node responds with
a matching resource description if it has them locally, otherwise it forwards
the requests to another node. Intermediate nodes forward a request until its
TTL expires or matching resources are found, whichever occur first. If a node
has information matching a forwarded request, it sends the response directly
to the node that initiated the forwarding, which in turn will send it to its user.

The architecture partitions the resource discovery solution into four compo-
nents: membership protocol, overlay construction, preprocessing, and request
processing. The membership protocol specifies how new nodes join the network
and how nodes learn about each others. The overlay construction function
selects the set of collaborators from the local membership list. Preprocess-
ing refers to off-line processing used to enhance search performance prior to
executing requests. The request processing implements the request propaga-
tion strategy. This strategy decides to which node (among the locally known
ones) a request is to be forwarded. In addition to contact addresses, nodes
can store additional information about their neighbors, such as statistical
information about previously answered requests. The tradeoff between the
amount of information kept for each neighbor and the search performance
generates four request propagation strategies: random walk, learning-based,
best-neighbor, learning-based + best-neighbor.

In the random walk strategy the node to which a request is forwarded is cho-
sen randomly. In the learning-based strategy nodes learn from experience by
recording the requests answered by other nodes. A request is forwarded to
the peer that answered similar requests previously. If no relevant experience
exists, the request is forwarded to a randomly chosen node. The best neigh-
bor algorithm records the number of answers received from each peer, and
a request is forwarded to the peer that answered the largest number of re-
quests. Finally, the learning-based + best-neighbor strategy is identical with
the learning-based strategy except that, when no relevant experience exists,
the request is forwarded to the best neighbor.

Experimental results obtained on a Grid emulator showed that the learning-

11

P2P Layer

PS

PS

VO-G

IS

IS IS IS

VO-H

IS

IS IS IS

VO-F

IS

IS IS

VO-D

IS

IS IS IS

VO-E

IS

IS IS IS

VO-A

IS

IS IS IS

VO-C

IS

IS IS

VO-B

IS

IS IS IS

CS

global query

local query

PSPS

PS PS

CS

PS PS

CS

PS

IS

= Contact Service

= Peer Service

= Index Service

Client

Applic.

Fig. 3. The architecture proposed by Talia et al. [51].

based strategy is the best regardless of request distribution. Key to the per-
formance of the learning-based strategy is the fact that it takes advantage of
similarity in requests by using a possibly large cache. It starts with low perfor-
mance until it builds its cache. As expected, the random-forwarding algorithm
resulted the least efficient, but has the advantage that no additional storage
space is required on nodes to record history.

Talia et al.

In [51] Talia et al. propose a P2P architecture for resource discovery in OGSA-
compliant Grids. The architecture is composed of two layers (see Fig. 3): the
lower one is a hierarchy of Index Services (as provided by Globus Toolkit
versions 3 and 4), which publish information owned by each VO; the upper
one is a P2P Layer, which collects and distributes this information. The P2P
Layer includes two types of OGSA-compliant Web Services: Peer Services used
to perform resource discovery, and Contact Services that allow Peer Services
to organize themselves in a P2P network.

There is one Peer Service per VO. Each Peer Service is connected with a set
of Peer Services - its neighbors - and exchanges query/response messages with
them in a P2P mode. A connection between two neighbors is a logical state
that enables them to directly exchange messages. Direct communication is
allowed only between neighbors. Therefore, a query message is sent by a Peer
Service only to its neighbors, which in turn will forward it to their neighbors.
A query message is processed by a Peer Service by invoking the top-level Index
Service of the corresponding VO. A query response is sent back along the same
path that carried the incoming query message. To join the P2P network, a Peer
Service must know the URL of at least one Peer Services to connect to. An
appropriate number of Contact Services is distributed in the Grid to support
this procedure. Contact Services cache the URLs of known Peer Services; a
Peer Service may contact one or more well known Contact Services to obtain

12

the URLs of registered Peer Services.

An extension of the Gnutella protocol is adopted to exchange discovery mes-
sages among Peer Services at the P2P Layer. This protocol uses ad hoc tech-
niques to make Web Services effective as a way to exchange discovery messages
in a P2P fashion. In particular, two main strategies are adopted (1) message
buffering : messages to be delivered to the same peer are buffered and sent in
a single packet at regular time intervals; and (2) message merging : messages
with the same header (i.e., same type, identifier, and receiver) are merged
into a single message with a cumulative body. Experimental results showed
that appropriate message buffering and merging strategies produce significant
performance improvements, both in terms of number and distribution of Web
Service operations processed.

Mastroianni et al.

In [33] Mastroianni et al. adopt the super-peer model to design a P2P-based
Grid information service. The super-peer model has been originally proposed
to achieve a balance between the inherent efficiency of centralized search, and
the autonomy, load balancing and fault-tolerant features offered by distributed
search [54]. A super-peer node acts as a centralized server for a number of
regular peers, while super-peers connect to each other to form an overlay
network that exploits P2P mechanisms at a higher level.

The super-peer model is advantageously exploited in the Grid context because
it is naturally appropriate for large-scale Grid environments. In fact, a large-
scale Grid can be viewed as a network interconnecting small-scale, proprietary
Physical Organizations (POs), where each PO is composed of a set of Grid
nodes within one administrative domain. Within each PO, one or more nodes
(e.g., those with the largest capacity) act as super-peers, while the other nodes
use super-peers to access the Grid and search for resources and services. A
super-peer has two major roles: it is responsible for the communication with
the other POs and it maintains metadata of all nodes in the local PO.

The resource discovery protocol works as follows. Query messages generated
by a Grid node are forwarded to the local super-peer. The super-peer examines
the local information service to verify if the requested resources are present
in the nodes of the local PO. If this is the case it sends to the requesting
node a queryHit containing the IDs of the nodes containing the requested re-
sources. Otherwise, the super-peer forwards a copy of the query to a selected
number of neighbor super-peers, which in turn contact the respective infor-
mation system, and so on. Whenever a resource matching the query criteria
is found in a remote PO, a queryHit is generated and is forwarded along the
same path to the requesting node, and a notification message is sent by the

13

remote super-peer to the node that handles the discovered resource. The set
of neighbors to which a query is forwarded is determined based on statisti-
cal information about previous queryHits received from the the neighboring
super-peers. Moreover, a number of strategies are adopted to decrease the net-
work load, reduce the response time, and increase the probability of success
(i.e., the probability that a query issued by a peer will be followed by at least
one queryHit).

Puppin et al.

Puppin et al. propose another Grid information service based on the super-
peer model [39]. Grid nodes are grouped into clusters, where each cluster may
include one or more super-peer nodes. The system defines two main compo-
nents: the Agent and the Aggregator. The Agents works as an OGSA-compliant
Grid Service available at each network node. It publishes all information made
available by the information providers. The information providers periodically
query the resources and store the gathered information as Service Data Ele-
ment (SDE). When a resource is published, the name of its Service Data is
broadcast to all the Aggregators in the cluster.

Aggregators work as super-peers, acting as servers within their cluster, and as
peers in the network created by all the Aggregators. Each Aggregator is thus
responsible for collecting data, replying to queries, forwarding queries to other
Aggregators, and keeping an index of the information stored in each neighbor
Aggregator. The Hop-Count Routing Index (HRI) is used in this system to
improve the performance of routing and to prevent the P2P network from
being flooded. The HRI is used to exchange queries among super-peers and,
in particular, to select the neighbor super-peers with the highest probability
of success.

Marzolla et al.

In [32] Marzolla et al. propose another system for discovering Grid resources
based on routing indexes. In this system, nodes are organized in a tree-
structured overlay network, where each node maintains information about
the set of resources it manages directly and a condensed description of the
resources present in the sub-trees rooted in each of its neighboring nodes. The
data location algorithm exploits those indexes to route queries towards areas
where matches can be found.

Data about resources is mapped in the following way. For each possible at-
tribute of a resource item, the domain of the attribute is split into k sub-
intervals. The value of k may differ from one attribute type to another. Given
a resource, the index for attribute A of the resource is represented by a k-bit

14

vector, with all of its entries set to 0, except the one corresponding to the
sub-interval that contains the actual value of A. The index that represents
attribute A for all the local resources of a peer P is easily obtained by per-
forming a logical OR operation of all the attribute bit vectors of the local items.
Moreover, for each attribute, node P receives from each neighbor Np an index
that is the bitwise union (OR) of the local bit vectors of all peers present in
the sub-tree routed at Np.

C 0110

0001

1011

D 0001

0010

1111

A 0001

1111

B 0010

1111

E 0010

0111

1000

F 1000

0111

0011

Fig. 4. Example of a network with bit vector indexes, as proposed by Marzolla et
al. [32].

When a peer P receives a multi-attribute range query it decomposes it into
a set of sub-queries, one per attribute. Each sub-query Q is then mapped
into a binary vector of the same length k of the vector that represents the
attribute related to the query. All the entries that correspond to sub-intervals
contained in the range specified by the sub-query are set to 1. Subsequently,
the sub-queries are first matched against local indexes, in order to find out
whether there are local resources satisfying the query. Then, the sub-queries
are matched against the routing indexes and are eventually routed only to
those neighbors whose indexes satisfy all the sub-queries. Whenever there
are data value changes, update messages are sent to neighbors only if the
new bitmap representation of the resources differs from the old one, already
known by the neighbors. Simulation results show that the proposed update
and query processing algorithms have good scalability properties, meaning
that query messages are routed to a relatively small number of peers without
flooding the network and update messages involve a constant number of peers,
regardless of network size.

3.1.1 Comparison Summary

The unstructured systems described in this section adopt different architec-
tures, including flat P2P networks [23,51], tree-based overlays [32], and super-
peer networks [33,39]. In particular, some experiments [33] show that the
super-peer model is naturally appropriate to the organization-based nature

15

of current Grids, ensuring limited network load and reduced response time
with respect to pure-decentralized P2P systems. Moreover, diverse strategies
have been adopted to provide up-to-date results with limited network traffic,
including experience-based query forwarding [23,33], message buffering and
merging [51], and routing indexes [39,32]. All this strategies experimented sig-
nificant benefits with respect to naive techniques, such as simple flooding.
Table 3 summarizes the main features of the unstructured systems described
above in terms of architecture, resource indexing, and query resolution.

Table 3
Qualitative comparison of Grid discovery systems based on unstructured P2P ar-
chitectures.

System Architecture Resource indexing Query resolution

Iamnitchi
et al. [23]

Flat P2P overlay
network, including
one or more peers
per VO.

Each peer provides in-
formation about one or
more resources.

Queries can be forwarded using
different strategies: random walk,
learning-based, best-neighbor,
learning-based + best-neighbor.

Talia
et al. [51]

Flat P2P over-
lay network,
including one
OGSA-compliant
Peer Service per
VO.

Within each VO, a hier-
archy of Index Services
provides information
about local resources.

Discovery messages are routed
across Peer Services using a mod-
ified Gnutella protocol. Message
buffering and merging techniques
are used to reduce Web Service
overhead.

Mastroianni
et al. [33]

Within each or-
ganization, one or
more nodes act as
super-peers.

A super-peer maintains
metadata of all nodes in
the local organization.

The set of super-peers to which a
query is forwarded is determined on
the basis of statistical information
about previous discovery tasks.

Puppin
et al. [39]

Nodes are grouped
into clusters, where
each cluster may
include one or more
super-peer nodes.

On each node, an Agent
publishes information
about resources. The
information is broadcast
to all super-peers in the
cluster.

The Hop-Count Routing Index is
used to select the neighbor super-
peers with the highest probability
of success.

Marzolla
et al. [32]

Nodes are or-
ganized in a
tree-structured
overlay network.

Each node maintains a
condensed description of
the resources present in
the sub-trees rooted in
each of its neighboring
nodes.

A multi-attribute query is decom-
posed into a set of sub-queries. The
sub-queries are matched against the
routing indexes and routed only to
those neighbors whose indexes sat-
isfy all the sub-queries.

3.2 Structured systems

MAAN

The authors of MAAN [8] propose an extension of the Chord protocol to han-
dle multi-attribute range queries. Each node of the system is part of a Chord
overlay network. The values of the resources are mapped to the Chord m-bit
key space using a uniform locality preserving hash function and having one
different registration for each of the resource attributes. Each registration is
composed by a pair < attribute-value, resource-info >. Each node is respon-
sible of maintaining the information of the registered keys that fall into the
key space sector it supervises.

The resolution of multi-attribute range queries is implemented in two different

16

ways. The first one is an iterative approach: if a query is composed of M sub-
queries, each sub-query is resolved separately in the proper attribute space.
The results are then collected and intersected at the query originator node.
This is the most simple and, at the same time, inefficient way of resolving
queries. Its complexity is O(

∑M
i=1 (logN + N × si)), where M is the number

of sub-queries, N the number of peers and si the selectivity of sub-query i.
The second method is defined as a single attribute dominated routing. Let
X be the set of resources that satisfies query Q. Then X should satisfy all
the sub-queries of Q, so we have X =

⋂
1≤i≤M Xi, where Xi is the set that

satisfies the sub-query on attribute ai. The system uses the Chord to find a
single set of candidate resources Xk for attribute ak. Xk is a superset of X,
so all the solutions for query Q are contained in Xk. Since all the resources
store a < attribute-value, resource-info > pair, it is possible to exploit the
resource-info field to find the Xk’s resources that match all the other sub-
queries. This method has a complexity of O(logN + N × Smin), where Smin

is the minimum selectivity for all attributes. Load balancing of resources is
achieved by constructing a locality preserving hash function which produces
a uniform distribution of hash values. In order for the construction of this
hash function to be feasible the distribution of input attribute values should
be continued, monotonically increasing, and known in advance, which is the
case for many common distribution functions.

Andrzejak et al.

In [6] Andrzejak and Xu propose an extension of the DHT-based CAN system
to allow range queries for a Grid information service. In this framework, all
Grid resources are described by a set of attributes. For each attribute either a
standard DHT or the proposed CAN extension is used depending on its type.
In particular, attributes which have a limited number of values are handled
by standard DHT systems, while for “continuous” types of attributes the
extended CAN system is adopted. To locate resources specified by several
attributes, the information infrastructure queries for each attribute present
in the query the appropriate DHT and then concatenates the results in a
database-like “join” operation.

A subset of the servers participating in the Grid acts as nodes in a CAN-
based P2P-network and store the pairs < attribute-value, resource-ID >.
Each one of them is responsible for a certain subinterval of the attribute val-
ues. Such a server is called an Interval Keeper (IK) and the corresponding
subinterval its interval. Each server in the Grid reports its current attribute
value to an IK with the appropriate interval. The authors propose different
strategies for propagating range-query requests and to minimize the commu-
nication overhead during the attribute updates. The effectiveness of these
strategies have been demonstrated through simulations using both synthetic

17

and real-life workloads.

SWORD

SWORD [36] locates a set of machines matching user-specified constraints on
both static and dynamic node characteristics, including both single-node and
inter-node characteristics. SWORD provides a range of mechanisms and func-
tionalities, including: (1) techniques for efficient handling of multi-attribute
range queries that describe application resource requirements; (2) an inte-
grated mechanism for scalably measuring and querying inter-node attributes
without requiring O(n2) time and space; (3) a mechanism for users to encode
a restricted form of utility function indicating how the system should filter
candidate nodes when more are available than the user needs; and (4) an op-
timizer that performs this node selection based on per-node and inter-node
characteristics.

In SWORD there are two kinds on nodes: reporting nodes, which periodically
send measurement reports on resources, and DHT server nodes, which receive
resource information and handle queries from users. Server nodes are organized
using Bamboo, which is a structured peer-to-peer system similar to Pastry.
For each of the n single-node attributes A1, A2, . . . , An that can appear in
a query, each reporting node periodically sends a tuple of all its attribute
values to n DHT keys k1, k2, . . . , kn, where each km is computed based on the
corresponding value of attribute Am. Upon receiving such a tuple, a server
stores the tuple in a hash table indexed by the identity of the node described
by the report. For each attribute A, the range of possible values is mapped
to a contiguous region of the DHT keyspace using a given function fA. Thus,
a list can be obtained of all nodes that are reporting A values in some range
xmin − xmax by visiting the DHT nodes that “own” all DHT keys between
fA(xmin) and fA(xmax).

To issue a query, a user opens a TCP connection to any SWORD instance
and sends the query. The contacted SWORD instance initiates the distributed
range search, followed by the retrieval of the needed inter-node measurements
and the invocation of the optimizer. That node then returns the result to the
user over the same TCP connection.

XenoSearch

The system proposed in [47] exploits and extends the Pastry indexing and rout-
ing system. XenoSearch allows multi-dimensional searchings by constructing a
separate Pastry ring for each resource attribute. A peer (XenoServer) registers
itself separately in each ring. Range queries for a single attribute are possible
thanks to the fact that the information is conceptually stored in a tree where

18

the leaves are the XenoServer nodes. The tree internal nodes are called Ag-
gregation Points (AP). Each AP summarizes the range of values of the nodes
below it in the tree. An AP is distinguished by a key in the same key space
as the attributes. The key of an AP is a prefix of the keys of its child nodes.
By knowing the key of an AP, we can determine the range of values of the
leaf-nodes of that AP, i.e., the value range of the leaf-nodes XenoServers at-
tributes. An AP key is mapped into the Pastry ring and the closest XenoServer
in the key space is in charge for maintaining the information related to that
AP.

Multi-attribute queries are resolved by decomposing each query in a set of
sub-queries, one per attribute. Then, for each sub-query, a single attribute
range query is performed. The retrieved results are then intersected in order
to find the final set of resources that satisfies the original query. The client
that originated the query is given a set of possibly matching XenoServers.
The client has to further query the nodes to know the real server’s resource
state. This is necessary because the information in the system is refreshed only
periodically. Thus, the results obtained by XenoSearch may not be always up-
to-date.

Mercury

Mercury [7] is a Grid system that supports multi-attribute queries. It uses
Symphony, a one-dimensional DHT as its underlying architecture. Each sin-
gle attribute is assigned to a different DHT, called the Hub. Each resource is
registered to the hub of each different attribute in its attribute set. To avoid
querying more than one Hub during the resolution of a multi-attribute query,
each resource stores all its attribute-value pairs in all Hubs it is registered.
Since each hub indexes the resources it stores according to only one attribute,
a range query is resolved based on one attribute only. Thus, a multi-attribute
query is resolved by selecting the attribute with the smallest range, and query-
ing the appropriate hub. The query uses the underlying DHT system to locate
the resources with the smallest value in the range of the query. It then pro-
ceeds to the next values, until the largest value in the range of the query. The
query responds with a list of all the resources in the traversed range whose
other attribute values also matched the corresponding ranges in the query.

Load-balancing is performed by periodically probing the system to find load-
imbalances. A Symphony graph has been proven to be an expander, meaning
that a random walk of logN hops is enough to perform a near-perfect uniform
random sampling of the network. Using this random walk, a heavily loaded
node can locate a lightly-loaded one. Upon this discovery, the first node will
send a special message to the second node, which will leave the network and
rejoin in such a way that it will become neighbor of the first node, thus sharing

19

its load (leave-rejoin protocol).

Schmidt et al.

The system proposed in Schmidt et al. [45] supports multi-attribute queries
by using a single one-dimensional DHT. A space filling curve is used, to map
all possible d-dimensional attribute values to a single dimension. In particular,
each resource with a set of attribute values is mapped to the node whose ID
is generated by interleaving the binary representations of its attribute values.
For example a resource with three attributes with values (1 (01), 2 (10), 3(11))
will be stored in node with ID 011101. Notice here that if one needs to store
resources with many attributes and each attribute has a wide range of possible
values, this might require a DHT with IDs of many bits. However, the number
of contacts a node has to maintain in a DHT of logarithmic lookup time,
increases linearly with the number of bits. Each resource computes its node’s
ID according to its attribute values.

Range queries are similar to point queries but may contain some undefined
bits. For example, a query of resources with attribute values (1, 2, 0-3) is
01*00*. Notice that range query sizes can only be powers of two and can only
start from values that are also powers of two. For instance, we can not make
a query of the form (1, 2, 1-3). Ranged queries are resolved much like point
queries, albeit, when an undefined query bit is encountered the query will be
propagated in more than one directions. The query is propagated to any node
with additional common prefix bit with the query ID than the present node.
Thus, if the querying node’s ID is 1*****, it will forward the query to any
node whose ID is in the form 0*****. In turn, that node will propagate it to
any node of the form 01****. That node, in turn, will propagate the message
twice. Once to a node of the form 01000* and once to a node of the form
01100* and so on. Tree-like structures usually suffer in the sense that lookup
always starts at the root node, transforming it into a bottleneck. However, in
this case, any node with a first ID bit same with the first ID bit of the query
can be used as a root node, thus eliminating this drawback.

Ratnasamy et al.

Ratnasamy et al. [41] propose a system that utilizes a uniform hash function
to distribute the storage load evenly across the participating nodes. Since the
locality of attribute values is not preserved, another overlay on top of the un-
derlying DHT is used to enable efficient range query resolution. All attributes
are stores in a common DHT, however a different overlay structure is used
for each attribute. Each resource registers itself in one overlay structure for
every attribute it contains. A multi-attribute query is resolved in parallel in

20

each overlay structure (separately for each attribute it contains) and the inter-
section of the results is calculated at the query originator node. The overlay
structure used is a binary tree called a tier. There is a different tier for each
attribute. The root node of a tier is assigned the whole attribute space while
each one of its children is assigned half the range. Each resource is registered
only at the leaf node whose range contains its attribute value. The recursive
subdivision of a node’s range occurs only when the node becomes overloaded
with resources. Initially, only the root node exists and all resources register
to it. When the number of resources becomes high, the root node creates two
children nodes and splits the load to them. Each tier node is assigned to a
DHT node at random using a uniform hash function. For instance, a tier node
of attribute A responsible for the range of values from x to y will be mapped
to the DHT node with ID = hash(A, x, y).

Lookup is performed by recursively dividing the attribute value range by two,
to find the smallest range that contains the whole of the query range. Then, the
DHT lookup functionality is used to find the node responsible for that range.
Then, the subtree of that node is broadcasted, to locate all leaf nodes of that
tree. This leads to a logarithmic time cost and 2*P*n message cost. Since
hashing is used, storage load is not an issue. However, even though a query
start by locating the root of the smallest subtree that contains the required
range (and not the absolute root), the points where a range is subdivided is
static. This means that, any query range, however small, that spans a border
where two siblings are divided, will need to start from their parent.

3.2.1 Comparison Summary

Table 4 summarizes the main features of the structured systems described
above in terms of architecture, protocol, resource registration, query resolu-
tion, and load balancing. As shown in the table, most architectures either
adopt one DHT for all attributes [36,45], or arrange attribute values on mul-
tiple DHTs, one per attribute [8,6,47,7]. Both single-DHT and multi-DHT
approaches have proved effective. Multi-DHT architectures are easier to im-
plement and provide multi-attribute search capabilities in a simple way. On
the other hand, in terms of required memory, multi-DHT architectures can be
more expensive than single-DHT ones in case of resources with a high number
of attributes.

All structured systems described in this section provide support for multi-
attribute queries. To resolve multi-attribute queries, most systems resolve sub-
queries in parallel and intersect the results at the querying node [8,6,47,41].
Different solutions have been proposed to reduce the complexity of this task.
For example, MAAN uses single attribute dominated routing, but its conve-
nience depends on the selectivity of the attributes. Another approach is that

21

Table 4
Qualitative comparison of Grid discovery systems based on structured P2P archi-
tectures.

System Architecture
Basic
protocol

Multi-attribute
resource
registration

Multi-attribute
query resolution

Range
query
resolution

Load
balancing

MAAN [8] One DHT per at-
tribute

Chord
Each attribute is
registered in the
appropriate DHT

Each sub-query is re-
solved separately and the
results are intersected at
the querying node. Sin-
gle attribute dominated
routing

Sequential

Uniform, locality
preserving hash
function. Value
distribution
is known in
advance

Andrzejak
et al. [6]

One DHT per at-
tribute

CAN

Each attribute is
registered in the
appropriate DHT

Each sub-query is re-
solved separately, and re-
sults are intersected at
the querying node

Flooding
Simple neigh-
bour load ex-
change

SWORD
[36]

Each attribute is
assigned a differ-
ent subregion of
a common DHT

Bamboo

Each attribute is
registered in the
appropriate region
of the common
DHT

The query is sent to the
sub-region of the most se-
lective attribute, or an at-
tribute chosen at random

Tree-like

Leave-rejoin
protocol. Cus-
tomized hash
functions

XenoSearch
[47]

One DHT per at-
tribute

Pastry
Each attribute is
registered in the
appropriate DHT

Each sub-query is re-
solved separately and the
results are intersected at
the querying node

Tree-like None

Mercury [7] One DHT per at-
tribute

Symphony
All attributes are
registered in every
DHT

Lookup on the DHT of
the attribute with the
smallest range

Sequential

Periodical net-
work sampling
to find load-
imbalances
(leave-rejoin
protocol)

Schmidt
et al. [45]

One DHT for all
attributes

Chord
Point query to reg-
ister the attribute

Ranged query contains
unknown bits. Each step
forwards query to neigh-
bour with an additional
common prefix bit. For-
ward twice for each un-
known bit

Tree-like
Exchange of
load between
neighbors

Ratnasamy
et al. [41]

A range divid-
ing tree per at-
tribute. All trees
mapped in a sin-
gle DHT

Any
Each attribute is
registered in the
appropriate tier

Each sub-query is re-
solved separately and the
results are intersected at
the querying node

Tree-like

Uniform hash
and attribute
range subdivi-
sion

of Mercury, which adopts a sequential search starting from the attribute with
the smallest range. Even in this case, the convenience of the approach in terms
of response time may depend on the distribution of the value ranges.

Another important feature of most structured systems discussed here is the
explicit management of load balancing [8,6,36,47,7,45,41], which is of main
importance in large-scale Grids. The adopted solutions include: exchange of
load between neighbours [6,45], leave-rejoin protocols [36,7], and the use of
customized hashing functions [8,36,41]. The first two approaches are more
effective but more expensive, since they require to periodically redistribute the
workload by rearranging information. On the other hand, the use of customized
hashing functions requires that the distribution of attribute values is known
in advance, which could not be feasible in some contexts.

22

4 Grid resource discovery based on semantic information

As resource discovery in Grids is about finding relevant resources, the overall
quality of a discovery service is determined not only by usual QoS measures
such as performance, reliability and availability, but also by its precision that
measures how many of the discovered resources are relevant, and how relevant
they are. Precise resource discovery should be able to find best approximate
matches usable for the requester. Resource discovery in Grids has to deal with
a large number of volatile resources described using different approaches and
languages, and managed by distinct VOs. In such heterogeneous and dynamic
environments, syntactic keyword and taxonomy-based matching is insufficient
to achieve high precision resource discovery. In order to improve the precision
of a discovery service, resources must be given well-defined meaning carried by
semantic information added to resource descriptions [15,19,17,9]. This seman-
tic metadata describe the capabilities, interface, and internal organization, as
well as the functional and non-functional properties of a resource. Semantic
information is defined in terms of concepts and relations specified in an ontol-
ogy. Ontology is an explicit specification of a conceptualization that serves as
a foundation for formal representation of knowledge . It formally specifies how
to represent objects, concepts and other entities that are assumed to exist in
some area of interest and the relationships among them . In semantic-based
resource-discovery, common ontologies facilitate communication between ser-
vice providers and consumers.

Several researchers proposed to use (un)structured P2P networks as a medium
for propagation of service discovery queries. For example, Web Services P2P
Discovery Service (WSPDS), a fully decentralized and interoperable discovery
service with semantic-level matching capability is presented in [26]. The dis-
covery service is provided and consumed in a P2P network of WSPDS peers
called servents where a servent can receive discovery requests from its user
and its neighboring servents, and resolve the requests by querying its local
site for matching services or/and by propagating requests to the neighbor-
ing servents. The authors present two architectures of the discovery service:
(1) an unstructured P2P network of servents based on the Gnutella protocol
and a keyword-matching where the servents collaborate to propagate discovery
queries based on the probabilistic TTL-bounded flooding dissemination mech-
anism; (2) a semantic-enabled content-based P2P network of WSPDS servents
called a Querical Data Network (QDN) [27] where identity for each node is
defined by its data content. In the second prototype, Web Services Descrip-
tion Language (WSDL) service descriptions are augmented using DAML-S,
which is a Web Service ontology based on the DARPA Agent Markup Lan-
guage (DAML). In addition to keyword-matching, the WSPDS query engine
also supports semantic-matching of the operational service interfaces using the
matchmaking algorithm proposed in [38]. Each QDN virtual node represents a

23

service operation; one physical node can carry several virtual QDN nodes. The
identity of QDN virtual nodes is defined as the ontologies associated with the
input/output service parameters. When a node joins the network it is linked
to the nodes that have semantically the most similar input/output. In query
propagation, each servent that receives a query forwards it to the neighbor
with the most similar identity to the query. A related approach is presented
in [11] where overlay network topology is inspired by small-world graphs with
node proximity defined according to their semantic similarity. Similarly in [?]
authors build a CAN-based document repository network where CAN keys
are generated according to the so-called Latent Semantic Indexing (LSI).

The scalable semantic routing architecture for Grid service discovery, pre-
sented in [30], goes beyond [26] in the sense that it utilizes a hierarchical
structure to improve the scalability and robustness. The Resource Descrip-
tion Framework (RDF) is used to represent both resources and queries. A
hierarchical routing algorithm supports complex queries without resorting to
network flooding. The routing algorithms use Bloom filters for aggregation re-
source information and to help route the queries. Experimental results prove
the efficiency and scalability of the scheme. In [35] a related approach called
schema-based networks is presented, which is based on super-peer topologies.

Distributed hash tables can be used for storing semantic information in Grids.
For example, in [22], the authors present an approach to semantic resource dis-
covery in the Grid. A P2P network maintains a resource catalogue using DHT
algorithms. Peers provide resource descriptions and background knowledge in
ontologies based on description logic, and each peer can query the network
for available resources. Each peer may have its own ontology represented as
a classification DAG (Directed Acyclic Graph), which captures subsumption
relations between concepts in the ontology. The peer’s ontology is possibly
incomplete, but it can be completed by ontologies of other peers. The authors
propose a DHT algorithm that distributes local classification DAGs among
nodes of the P2P network to form a distributed virtual classification DAG
used by all peers for resource discovery. The DHT algorithm uses a concept
name as a key to determine the node which will store the information for
this concept including a list of super-concepts according to the DAG and a
list of resources – instances of the concept. When querying for a simple con-
cept, the DHT is looked up using the concept name to determine the node
which is responsible for the concept being queried. A complex query is for-
mulated in terms of simple concepts, and the discovery result is built up by
querying the network for instances of every simple concept which occurs in
the complex concept. When a new node joins the network, it iterates through
its classification DAG to identify the nodes which need to be informed about
new super-concepts or new instances. The nodes collaborate to disseminate
the new information in the network. This way, the distributed ontology grows
as more and more peers joining the network publish their local knowledge.

24

When a node leaves the network, a dedicated distributed algorithm removes
semantic information on concept instances for which the node was responsible.
Simulation results demonstrate that this approach scales well for large number
of concepts and nodes.

Another ontology-based search scheme using DHTs is proposed in [44]. Semantic-
aware network (SA Net) is a structured P2P overlay architecture that supports
basic functionalities of personalized resource discovery. Semantic resource dis-
covery reflecting user interests is enabled by ontology-based resource repre-
sentations. In the paper, the SA Net search scheme called Semantic-driven
Hashing (SDH) is presented. SDH uses lexical-based ontology that allows in-
dexing and searching in structured P2P overlay infrastructure.

A two-level service discovery architecture is proposed in [57]. The lower level
organizes community overlays of different service categories defined in the ser-
vice ontology. Message propagation is limited into related communities only.
The upper layer is based on a DHT which provides efficient navigation between
communities. The intra-community search for service providers is based on a
simple and lightweight greedy search based service location (GSBSL) method.
Simulation results show that while the search efficiency is improved compared
to flat overlays, the management overhead is still acceptable and controllable.
A related approach [29] builds a SkipNet-based [20] category overlay organiz-
ing unstructured communities of semantically-similar nodes.

5 Final remarks and future research directions

P2P has emerged as a successful paradigm in distributed computing thanks
to its inherent scalability and robustness, which promises to enable the de-
velopment of global-scale, cooperative, distributed applications. This is also
witnessed by the fact that several P2P systems for resource discovery in Grid
environments have been recently proposed. Such systems adopt different mod-
els and solutions, including structured or unstructured overlay networks, fully
decentralized or super-peer architectures, and diverse strategies for improving
routing performance and search precision. Moreover, they provide very differ-
ent search capabilities, ranging from single-attribute search to multi-attribute
and range queries.

An important aspect that distinguishes Grid from P2P systems is the organi-
zation of resources. As opposed to P2P systems, large-scale Grids are generally
built as federations of smaller Grids managed by diverse organizations. This
organization-based architecture applies to most of the systems discussed earlier
in this paper, in which typically one node per organization participates in the
P2P network [23,51,33,39]. Supporting very dynamic environments is funda-

25

mental, since the availability and status of resources within each node change
dynamically over time. Another fundamental requirement in Grid systems is
the ability to perform multi-attribute and range queries. In what follows we
discuss the ability of each of the main types of P2P systems, unstructured,
structured, and hybrid, in relation to the basic requirements which have been
introduced in Section 2: scalability, reliability, and support for dynamicity.

With respect to scalability, structured systems perform better than unstruc-
tured systems, since Distributed Hash Tables (DHTs) are more scalable, self-
organizing and load balanced than pure-P2P overlay networks. Another im-
portant advantage of DHTs is their ability to efficiently support range queries
inherited from their data locality property. All structured systems described
in this paper provide support for range queries, and most of them also provide
multi-attribute search capabilities [8,36,47]. On the other hand, structured
systems can be more difficult to maintain in very dynamic Grid environments,
where the availability and status of resources vary significantly over time.
As discussed in Section 2, for each resource in the system, the peer with
the appropriate ID must be notified periodically, resulting to either increased
traffic (if the period is too small), or stale information (if the period is too
large). Unstructured systems, on the other hand, adopt diverse strategies to
provide up-to-date results with limited network traffic, including experience-
based query forwarding [23,33], message buffering and merging [51], routing
indexes [39,32], and super-peer architectures [33,39]. In particular, some ex-
periments [33] show that the super-peer model is naturally appropriate to
the organization-based nature of current Grids, ensuring limited network load
and reduced response time with respect to pure-decentralized P2P systems.
As stated in Section 2, both unstructured and structured systems show advan-
tages and disadvantages. Hybrid P2P approaches can be adopted to combine
the efficiency of structured systems and the dynamicity of unstructured sys-
tem, while overcoming their inherent drawbacks. For instance, structured pro-
tocols could be adopted for relatively static information, whereas unstructured
approaches could be employed for more dynamic information. Moreover, the
organization-based nature of Grids suggests the use of a super-peer architec-
ture, in which different strategies (e.g. structured or unstructured protocols)
may be adopted for intra-organization and inter-organization resource discov-
ery. Finally, the OGSA model can be of great importance to federate different
information services into a Grid resource discovery system, using Web ser-
vices conventions as a means to ensure interoperability among the various
peer subsystems [51,33,39].

Another aspect of the problem is to extend resource descriptions with semantic
annotations that give well-defined meaning to resource information to better
enable VOs to cooperate in resource discovery. Adding semantic information
to resource descriptions also allows improving precision of a discovery service
that should be able to find best approximate matches usable for the requester

26

as it is unrealistic to expect requested and offered services to be exactly identi-
cal. Even though the use of semantic information in resource discovery is very
important for interoperability, it raises a problem of semantic interoperability,
i.e. it requires using common ontologies in service descriptions in order to reach
semantic agreement. Using semantic information for precise resource discovery
in large-scale, dynamic and heterogeneous environments is a relatively new and
fragmented research topic. We believe that more studies should be devoted to
comparing relative merits of proposed approaches and architectures. We also
believe that approaches to scalable resource discovery in P2P systems can be
useful for building scalable semantic-based resource discovery in Grids, in par-
ticular, for building a distributed knowledge-base for resources descriptions as
well as a distributed storage for ontologies. We envision that resource discov-
ery services that use P2P-based networks for scalable and reliable storage of
semantic information can appear soon in standard Grid middleware such as
Globus and gLite. The distributed matchmaking and semantic-based routing
promise improvements in discovery precision and cost. Also, P2P-based service
composition/workflow construction using semantic service descriptions should
be studied from the resource discovery respective, i.e. as a form of resource
discovery.

References

[1] eDonkey2000. http://edonkey2000.com

[2] Dynamic Query Protocol.
http://www.the-gdf.org/wiki/index.php?title=Dynamic Query Protocol

[3] Gnutella Protocol Development.
http://rfc-gnutella.sourceforge.net/src/rfc-0 6-draft.html

[4] GUESS Protocol Specification.

[5] Napster. http://www.napster.com

[6] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries for Grid
Information Services”, Proc. 2nd Int. Conf. on Peer-to-Peer Computing (P2P
2002), pp. 33-40, 2002.

[7] A.R. Bharambe, M. Agrawal and S. Seshan, “Mercury: Supporting Scalable
Multi-Attribute Range Queries”, Proc. ACM SIGCOMM 2004 Conf.
on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pp. 353-366, 2004.

[8] M. Cai, M. Frank, J. Chen and P. Szekely, “MAAN: A Multi-Attribute
Addressable Network for Grid Information Services”. Proc. 4th Int. Workshop
on Grid Computing (GRID 2003), pp. 184-191, 2003.

[9] M. Cannataro and D. Talia, “Semantics and Knowledge Grids: Building the
Next-Generation Grid”, IEEE Intelligent Systems, vol. 19, no. 1, pp. 56-63,
2004.

27

[10] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham and S. Shenker, “Making
Gnutella-like P2P Systems Scalable”. Proc. ACM SIGCOMM 2003 Conf.
on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pp. 407-418, 2003.

[11] Hanhua Chen, Hai Jin, Xiaoming Ning, “Semantic Peer-to-Peer Overlay for
Efficient Content Locating”. Proc. Int. Work. on Advanced Web and Network
Technologies (APWeb 2006), pp. 545–554, 2006.

[12] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-Peer Systems”.
Proc. 22nd Int. Conf. on Distributed Computing Systems (ICDCS’02), pp.
23-30, 2002.

[13] A. Crespo and H. Garcia-Molina, “Semantic Overlay Networks for P2P
Systems”. Technical Report, Stanford University, 2003.

[14] F. Dabek, E. Brunskill, M. Frans Kaashoek, D.R. Karger, R. Morris, I.
Stoica and H. Balakrishnan, “Building Peer-to-Peer Systems With Chord, a
Distributed Lookup Service”. Proc. 8th Workshop on Hot Topics in Operating
Systems (HotOS-VIII), pp. 81-86, 2001.

[15] D. De Roure, N. R. Jennings and N. Shadbolt, “The Semantic Grid: Past,
Present and Future”. Proc. IEEE, 93, 2005.

[16] M. Frans Kaashoek and D.R. Karger, “Koorde: A Simple Degree-optimal
Distributed Hash Table”. Proc. Second Int. Workshop on Peer-to-Peer Systems
(IPTPS 2003), pp. 98-107, 2003.

[17] I.T. Foster, N.R. Jennings and C. Kesselman, “Brain Meets Brawn: Why
Grid and Agents Need Each Other”. Proc. Third Int. Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’04), 2004.

[18] C. Gkantsidis, M. Mihail and A. Saberi, “Hybrid Search Schemes for
Unstructured Peer-to-Peer Networks”. Proc. IEEE INFOCOM, 2005.

[19] C.A. Goble and D. De Roure, “The Semantic Grid: Myth Busting and Bridge
Building”. Proc. 16th European Conf. on Artificial Intelligence (ECAI-2004),
pp. 1129-1135, 2004.

[20] N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman, “SkipNet: A
Scalable Overlay Network with Practical Locality Properties”, Proc. USENIX
Symp. on Internet Technologies and Systems, 2003.

[21] D. Heimbigner, “Adapting Publish/Subscribe Middleware to Achieve
Gnutella-like Functionality”. Proc. 2001 ACM Symposium on Applied
Computing (SAC), pp. 176-181, 2001.

[22] F. Heine, M. Hovestadt, and O. Kao. Towards ontology-driven P2P Grid
resource discovery. In 5th IEEE/ACM International Workshop on Grid
Computing, November 2004.

[23] A. Iamnitchi and I.T. Foster, “A Peer-to-Peer Approach to Resource Location
in Grid Environments”, In: J. Weglarz, J. Nabrzyski, J. Schopf and M.
Stroinski (Eds.), Grid Resource Management, Kluwer, 2003.

28

[24] A. Iamnitchi and D. Talia, “P2P computing and interaction with grids”, Future
Generation Computer Systems, vol 21, no. 3, pp. 331-332, 2005.

[25] B. Iannucci, “Connected Lifestyles: The Next Big Wave”, Infotech day,
November 2005, University of Oulu.
http://www.infotech.oulu.fi/paiva/2005/bob iannucci.pdf

[26] F.B. Kashani, C.C. Chen and C. Shahabi, “WSPDS: Web Services Peer-to-
Peer Discovery Service”. Proc. Int. Conf. on Internet Computing (IC’04),
2004.

[27] F.B. Kashani and C. Shahabi, “Searchable Querical Data Networks”. Proc.
First Int. Workshop on Databases, Information Systems, and Peer-to-Peer
Computing (DBISP2P), LNCS, vol. 2944, pp. 17-32, Springer 2003.

[28] M. Li, P. van Santen, D.W. Walker, O.F. Rana and M.A. Baker, “SGrid: A
Service-Oriented Model for the Semantic Grid”. Future Generation Computer
Systems (FGCS), vol. 20, no. 1, pp. 7-18, 2004.

[29] Juan Li and Son Vuong. “Grid Resource Discovery Based on Semantic P2P
Communities”. Proc. ACM Symp. Applied Computing (SAC2006), pp. 754-
758, 2006.

[30] J. Li and S. Vuong, “A Scalable Semantic Routing Architecture for Grid
Resource Discovery”. Proc. 11th Int. Conf. on Parallel and Distributed Systems
(ICPADS’05), vol. 1, pp. 29-35, 2005.

[31] Q. Lv, P. Cao, E. Cohen, K. Li and S. Shenker, “Search and Replication in
Unstructured Peer-to-Peer Networks”. Proc. 16th Annual ACM Int. Conf. on
Supercomputing (ICS 2002), pp. 84-95, 2002.

[32] M. Marzolla, M. Mordacchini and S. Orlando, “Resource Discovery in a
Dynamic Grid Environment”, Proc. DEXA Workshop 2005, pp. 356-360, 2005.

[33] C. Mastroianni, D. Talia and O. Verta, “A Super-Peer Model for Building
Resource Discovery Services in Grids: Design and Simulation Analysis”.
Proc. European Grid Conference (EGC 2005), LNCS, vol. 3470, pp. 132-143,
Springer 2005.

[34] P. Maymounkov and D. Mazières, “Kademlia: A Peer-to-Peer Information
System Based on the XOR Metric”. Proc. First Int. Workshop on Peer-to-
Peer Systems (IPTPS), pp. 53-65, 2002.

[35] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst,
and A. Löser, “Super-peer-based Routing and Clustering Strategies for RDF-
based Peer-to-peer Networks. Proc. 12th Int. Conf. World Wide Web (WWW
’03), pp. 536–543, 2003.

[36] D. Oppenheimer, J. Albrecht, D. Patterson and A. Vahdat, “Scalable Wide-
Area Resource Discovery”. TR CSD04-1334, Univ. of California, 2004.

29

[37] C. Papadakis, P. Fragopoulou, E. Athanasopoulos, M. Dikaiakos, A. Labrinidis
and E. Markatos, “A Feedback-based Approach to Reduce Duplicate Messages
in Unstructured Peer-to-Peer Networks”, Integrated Workshop on Grid
Research, 2005.

[38] M. Paolucci, T. Kawamura, T.R. Payne and K.P. Sycara, “Semantic Matching
of Web Services Capabilities”. Proc. First Int. Semantic Web Conf. on The
Semantic Web, pp. 333-347, 2002. Springer-Verlag.

[39] D. Puppin, S. Moncelli, R. Baraglia, N. Tonelotto and F. Silvestri, “A Grid
Information Service Based on Peer-to-Peer”. Proc. 11th Euro-Par Conf. (Euro-
Per 2005), LNCS, vol. 3648, pp. 454-464, Springer 2005.

[40] S. Ratnasamy, P. Francis, M. Handley, R.M. Karp and S. Shenker, “A
Scalable Content-Addressable Network”. Proc. ACM SIGCOMM 2001 Conf.
on Applications, Technologies, Architectures, and Protocols for Computer
Communication, pp. 161-172, 2001.

[41] S. Ratnasamy, J.M. Hellerstein and S. Shenker, “Range Queries over DHTs”,
IRB-TR-03-009, Intel Corporation 2003.

[42] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized Object
Location and Routing for Large Scale Peer-to-Peer Systems”. Proc. IFIP/ACM
Int. Conf. on Distributed Systems Platforms (Middleware 2001), pp. 329-350,
2001, LNCS, vol 2218, Springer 2001.

[43] M. Sanchez, P. Garcia, J. Pujol, A. Skarkemta, “Cyclone: a Novel Design
Schema for Hierarchical DHTs”. Proc. Fifth IEEE Int. Conf. Peer-to-Peer
Computing (P2P 2005), pp. 49-56, 2005

[44] C. Sangpachatanaruk and T. Znati, “Semantic Driven Hashing (SDH): An
Ontology-Based Search Scheme for the Semantic Aware Network (SA Net)”.
Proc. Fourth Int. Conf. on Peer-to-Peer Computing (P2P’04), pp. 270-271,
2004.

[45] C. Schmidt and M. Parashar, “Flexible Information Discovery in Decentralized
Distributed Systems”, Proc. 12th Int. Symp. on High-Performance Distributed
Computing (HPDC-12 2003), pp. 226-235, 2003.

[46] A. Singla and C. Rohrs, “Ultrapeers: Another Step Towards Gnutella
Scalability”.
http://rfc-gnutella.sourceforge.net/src/Ultrapeers 1.0.html

[47] D. Spence and T. Harris, “XenoSearch: Distributed Resource Discovery in the
XenoServer Open Platform”, Proc. Twelfth IEEE Int. Symposium on High
Performance Distributed Computing (HPDC-12), pp. 216-225, 2003.

[48] K. Sripanidkulchai, B. Maggs and H. Zhang, “Efficient Content Location using
Interest-Based Locality in Peer-to-Peer Systems”. Proc. IEEE INFOCOM,
2003.

30

[49] I. Stoica, R. Morris, D.R. Karger, M.Frans Kaashoek and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for
Internet Applications”. Proc. ACM SIGCOMM 2001 Conf. on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pp.
149-160, 2001.

[50] D. Talia and P. Trunfio, “Toward a Synergy between P2P and Grids”. IEEE
Internet Computing, vol. 7, no. 4, pp. 94-96, 2003.

[51] D. Talia and P. Trunfio, “Peer-to-Peer Protocols and Grid Services for
Resource Discovery on Grids”. In: L. Grandinetti (Ed.), Grid Computing:
The New Frontier of High Performance Computing, Advances in Parallel
Computing, vol. 14, Elsevier Science, 2005.

[52] D. Tsoumakos and N. Roussopoulos, “A Comparison of Peer-to-Peer Search
Methods”. Proc. Int. Workshop on Web and Databases (WebDB 2003), pp.61-
66, 2003.

[53] G. Wepiwe and P.L. Simeonov, “HiPeer: A High Reliable P2P System”. IEICE
Tans. Inf. & Syst., vol. E98-D, no. 2, pp. 570-58-, 2006.

[54] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Network”. Proc. Int.
Conference on Data Engineering (ICDE 2003), pp. 49-60, 2003.

[55] D. Zeinalipour-Yazti, V. Kalogeraki and D. Gunopulos, “Exploiting Locality
for Scalable Information Retrieval in Peer-to-Peer Systems”. Information
Systems J., vol. 30, no. 4, pp. 277-298, 2005.

[56] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatowicz,
“Tapestry: A Resilient Global-scale Overlay for Service Deployment”. IEEE
J. on Selected Areas in Communications, vol. 22, no. 1, pp. 41-53, 2004.

[57] C. Zhu, Z. Liu, W. Zhang, W. Xiao and J. Huang, “An Efficient Decentralized
Grid Service Discovery Approach Based on Service Ontology”. Proc. Web
Intelligence, IEEE/WIC/ACM Int. Conf. (WI’04), pp. 570-573, 2004.

31

