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Abstract—In recent years machine learning (ML) has achieved
great results in providing solutions for many tasks such as
speech recognition, sentiment analysis, email spam filters, fraud
prevention and so on. The rapid spread of the Internet of
Things (IoT), with billions of connected devices, has generated
huge amounts of data and asks for decentralized solutions for
machine learning. However, performing complex learning tasks
at the edge of the network is posing great challenges in terms
of efficient management of data storing, transfer, and analysis.
For these reasons, a lot of research and development effort is
devoted to adapt different machine learning algorithms (e.g.,
neural networks, ensemble algorithms, SVM, k-means) so that
cooperative training and inference on local data occur directly
at the edge of the network (i.e., close to where the data is
generated). This scenario represents a major challenge today
due to the limited capacities of edge devices, the different
technologies with which these devices work and communicate,
and the lack of common software stacks to easily manage them.
In this paper, we analyze distributed machine learning algorithms
and how they should be adapted to run at the network edge
and, if needed, cooperate with the cloud to ensure low latency,
energy savings, privacy preserving and scalability. In particular,
we briefly discuss how the main machine learning algorithms
have been adapted to work in traditional distributed platforms
(such as clusters, clouds, and HPC systems) and the main
research work that has led these algorithms to run on resource-
constrained edge devices. Then, a layered approach is introduced
and discussed for adapting machine learning algorithms on edge-
cloud architectures. This is done by taking into account the
application and device constraints and the features of the multi-
layer supporting architecture. Finally, we conclude the paper by
describing some application scenarios that can benefit from this
approach.

Index Terms—Machine learning, distributed machine learning,
Internet of Things, edge computing, cloud computing, edge-cloud
continuum

I. INTRODUCTION

In the last decades artificial intelligence, especially machine
and deep learning, have become established as a solution
to solve several tasks that are part of our daily life, such
as speech recognition, email spam filters, fraud prevention
and others. One of the enabling factors for the development
of machine learning solutions in recent times has been Big
Data [1]. In fact, the availability of huge amounts of data
through which to train learning algorithms, and the growing
computational capacities available today provided a significant
boost to machine learning, which is able to extract potentially
useful information from data for decision making. Traditional
approaches to machine learning rely on the storage and

processing of such data in conventional distributed systems,
which for years have proved to be the ideal solution for solving
complex learning tasks, especially for those applications that
do not have low latency requirements.

However, the spread of Internet of Things (IoT) devices
(i.e., Internet-connected objects that can collect and transfer
data without human intervention, such as smart cameras and
vehicles, wearables, and smartphones) has led to an even
greater generation of data at the network edge. The network
edge is generally defined as the place where a device connects
to the Internet. Transferring all this data from the sources to
a centralized server for collecting, processing and analyzing
it through machine learning algorithms involves high commu-
nication costs, with possible repercussions on latency, which
may be critical for low latency applications, such as health
monitoring and security. To solve this problem, it is natural
to consider processing the data as close as possible to where
it is generated, i.e., the network edge where devices reside.
To meet this demand, edge computing [2] has emerged as a
paradigm that pushes computing tasks to the network edge.

Nonetheless, IoT devices at the edge of the network have
limited computational and energy power, storage capacity and
bandwidth, which makes it infeasible to fully perform heavy
learning tasks on such devices. They are usually defined as
resource-constrained devices, which means they can not be
integrated with additional resources [3]. For these reasons,
efforts in the last years have been devoted to adapting machine
learning algorithms to run cooperative training and inference
on local data directly on edge devices. However, this task
represents a major challenge today due to the limited capacities
of edge devices, the heterogeneous hardware and technologies
with which these devices work and communicate, and the lack
of common software stacks to easily manage them. Beyond
that, security and privacy are additional critical concerns that
need to be taken into account when data must be transferred to
other devices or to a remote server to train a model in parallel.
Communication is another challenge, as the bandwidth be-
tween edge devices can be much slower than local computation
time, making it necessary to develop communication-efficient
methods for the training process.

In this work, we analyze distributed machine learning
algorithms and how they should be adapted to be deployed
on the edge and, if needed, to cooperate with the cloud to
ensure low latency, energy savings, privacy-preserving and
scalability. Specifically, we briefly discuss how the main



machine learning algorithms have been adapted to work in
traditional distributed platforms such as clusters, clouds, and
High Performance Computing (HPC) systems, and outline the
state-of-the-art techniques to run these algorithms on resource-
constrained edge devices. In this respect, most of the work in
the literature has been devoted to deep learning applications,
thus traditional machine learning techniques such as Support
Vector Machine (SVM), k-means, ensemble learning (e.g.,
Random Forest) and so on, which, on the other hand, are
frequently used in artificial intelligence applications on edge
computing environments have not sufficiently investigated.
Then, we discuss a solution for adapting machine learning
algorithms on edge-cloud architectures, in what is called the
Edge-Cloud Continuum. The Edge-Cloud Continuum lever-
ages all the resources from the edge of the network (e.g., IoT
devices) to the core (e.g., cloud data centers). Data is generated
in the edge layer, where it can be first processed locally, while
aggregation and partial processing are done in the intermediate
nodes. Only if necessary, data is transferred to the cloud for
further analysis [4].

The structure of the paper is as follows. Section II analyzes
research work in the field of distributed machine learning at
the Edge-Cloud Continuum. Section III presents a review of
machine learning algorithms in traditional distributed high per-
formance platforms. Section IV presents a review of machine
learning algorithms proposed to be performed on resource-
constrained devices at the edge of the network, both in training
and inference. A brief discussion of privacy and security
issues is introduced with the federated learning paradigm in
Section V. Section VI introduces and discusses a layered
approach for adapting machine learning algorithms on edge-
cloud architectures. Section VII describes some application
scenarios that can benefit from this approach and finally
Section VIII concludes the paper.

II. RELATED WORK

Intelligent applications and services based on machine
learning have been increasingly used in edge computing
environments, mainly due to the demand for low latency in
real-time scenarios. However, the resource-constrained nature
of edge devices requires that they must collaborate to perform
distributed training and inference and possibly be supported by
cloud resources. This scenario provided the main motivation
for this work. Previous work on distributed machine learn-
ing at the Edge-Cloud Continuum does not cover traditional
machine learning algorithms, which instead are widely used.
For example, Zhou et al. [5] summarize the main solutions and
enabling technologies for model training and inference of deep
neural networks on edge devices, both from an application
and software perspective. Likewise, [6] reviewed emerging
techniques to speed up deep learning models on edge devices.

In a similar way to us, Murshed et al. [7] conducted an anal-
ysis on both traditional machine learning and deep learning in
resource-constrained edge computing environments. Particu-
larly, they discuss common software and hardware solutions

used in deep learning at the edge, but the discussion for tradi-
tional machine learning is limited to a detailed description of
applications in edge computing scenarios. Another interesting
work is proposed by Imteaj et al. in [3], where the federated
learning paradigm is examined and the main issues in training
distributed machine learning models for resource-constrained
IoT devices are discussed. In [4], Rosendo et al. focus on
distributed intelligence on the Edge-Cloud Continuum, by
reviewing work in the fields of machine and deep learning
and data analytics applied on Edge, Cloud, and Edge-Cloud
architectures. However, [4] mainly focuses on frameworks
and libraries for Big Data processing across the Edge-Cloud
Continuum and the leading state-of-the-art simulation and
deployment systems that support experimental research on the
Edge, Cloud, and Edge-Cloud Continuum.

In the following sections we will discuss i) how machine
learning algorithms have been adapted to traditional distributed
high performance platforms such as cluster, cloud and HPC
systems, ii) the main efforts for performing machine learning
on resource-constrained devices at the edge of the network
and iii) privacy and security issues in distributed learning
with the Federated learning paradigm. Table I summarizes
the main shortcomings of the state-of-the-art in distributed
machine learning at the Edge-Cloud Continuum.

III. DISTRIBUTED MACHINE LEARNING

Generally, machine learning tasks can be classified into
supervised, unsupervised, and reinforcement learning [38].
Briefly, training data is labelled in supervised learning, in con-
trast to unsupervised learning which does not require any label.
Differently, reinforcement learning is concerned with learning
from feedback coming from external interactions. Machine
learning algorithms are designed to run on powerful machines,
which are often equipped with acceleration hardware such as
GPUs and FPGA. However, nowadays due to the growing
size of training data and machine learning models, learning on
single machines can not be done either efficiently or effectively
due to limited hardware [39]. Distributed computing can
therefore help alleviate these problems. In distributed machine
learning multiple workers cooperate and communicate with
each other for training a model in parallel. In particular it
can be done with two different approaches: distributing the
data or distributing the model [40]. In the first approach data
is partitioned on the worker nodes of the distributed system,
which all execute the same algorithm on different partitions.
The models obtained by training the algorithm on the various
partitions must then be aggregated. In the second approach,
instead, the same data is processed by the worker nodes
by executing different partitions of the model and the final
model is therefore generated by the aggregation of all parts.
This approach can be applied to all those machine learning
algorithms in which parameters can be partitioned (e.g., neural
networks). Another approach is based on ensemble learning,
in which several instances of the same model are trained and
outputs are aggregated. In all of these approaches, worker
nodes can be organized in either a centralized architecture



Category ML algorithms Cloud Edge Edge-Cloud
Continuum Goal References

Distributed machine learning
(Section III)

Main machine learning algorithms
(e.g., k-means, DBSCAN, SVM,

Random Forest and others)
✓

Adapting ML algorithms to
traditional distributed high

performance systems
[8]–[23]

Machine learning on resource-
constrained edge devices

(Section IV)

Main machine learning algorithms
(e.g., k-means, kNN, trees

and others)
✓

Adapting ML algorithms to
resource-constrained devices

at the network edge
[24]–[30]

Federated machine learning
(Section V)

Mainly gradient-descent
and Random Forest ✓

Privacy and security
issues in distributed learning [31]–[37]

TABLE I: State-of-the-art in distributed machine learning at the Edge-Cloud Continuum.

(also known as parameter server) or in a decentralized one. The
parameter server architecture consists of one or more servers
and several workers, and the learning process is performed
in an iterative manner by updating and synchronizing model
parameters with central servers. In the decentralized setting,
instead, each worker node communicates with its neighbors
and the model is aggregated without a central node. In all
approaches and architectures, the main benefit of distributed
learning is to avoid the need to collect large volumes of data
on a single machine to be processed, saving time and energy
and increasing reliability [38].

In the following we will analyze some implementations
of distributed machine learning algorithms in supervised and
unsupervised settings and some distributed machine learning
frameworks. It is worth noticing that all the papers analyzed
proposed how to speed up traditional machine learning algo-
rithms (k-means, DBSCAN, SVM, and so on) in traditional
distributed high performance infrastructures (cluster, multi-
processor and multi-node environments, and HPC platforms).
Many of them are based on Big Data analysis paradigms and
frameworks, such as Apache Hadoop and Spark. Therefore,
they cannot be directly adapted to be deployed on edge
devices, where in addition to the scalability we must take into
account other concerns such as limited computing and storage
capacities, energy savings, data privacy and limited bandwidth
for communication. Particularly, communication overhead is
one of the major challenges in edge computing environments.

A. Distributed supervised learning
In supervised learning, most efforts have been devoted

to developing distributed classification algorithms, especially
the SVM and tree-based algorithms like Random Forest. For
example, [8] and [9] present a MapReduce-based distributed
SVM algorithm that partitions the training data and optimizes
the partitioned subsets over cloud and clusters of computers,
thus reducing the training time while maintaining a good level
of accuracy. In reference [10] a distributed SVM algorithm in
a master–worker setting is presented. The distributed SVM is
treated as a regularized optimization problem and modeled as
a series of convex optimization sub-problems that are solved
using optimization techniques. Dass et al. [11] proposed a
distributed, scalable and communication-efficient algorithm for
SVM training that uses a compact representation of the kernel
matrix to reduce both computation and storage during the

training process. As for the Random Forest algorithm, in [12]
a parallel version for Big Data classification based on Apache
Spark is presented. The algorithm is optimized using a hybrid
approach that combines data and task parallelism.

B. Distributed unsupervised learning
In unsupervised learning, clustering is one of the most

used tasks and k-means and DBSCAN (Density-based spatial
clustering of applications with noise) are two of the most pop-
ular clustering algorithms. A lot of research and development
efforts have been oriented to improve their performance by
parallelizing and/or distributing them. For example, in [13]
Zhang et al. proposed a parallel strategy for the k-means
algorithm based on a data parallel distribution approach and
a parameter-server architecture with dynamic load balance.
Similarly, in [14] Zhao et al. proposed a parallel k-means
clustering algorithm based on the MapReduce programming
paradigm. More recently, in [15] the problem of distributed
clustering is analyzed by Balcan et al., where the data is
partitioned across nodes whose communication is restricted
to the edges of a graph structure. A distributed k-means
algorithm with low communication cost is described, based on
the construction of a small set of points which act as a proxy
for the entire data set. In [16] Qin et al. developed a distributed
k-means algorithm for wireless sensor networks where each
node is equipped with sensors. The proposed distributed
implementation is capable of partitioning the data into groups
having small in-group and large out-group distances.

In [17] Patwary et al. presented a parallel DBSCAN al-
gorithm using graph algorithmic concepts, for shared and
for distributed memory systems. Specifically, they exploit the
disjoint-set data structure to break the intrinsic sequentiality of
DBSCAN and use a tree-based approach to build the clusters,
ensuring workload balancing. Similarly, Götz et al. [18] pre-
sented a parallel approach for DBSCAN that employs three
techniques in order to break the intrinsic sequentiality of
the algorithm and enhance workload balancing in distributed
processing environments. These techniques are: i) a compu-
tation split heuristic for domain decomposition; ii) a data
index preprocessing step, and iii) a rule-based cluster merging
scheme. In [19] Chen et al. presented a parallel version
of the DBSCAN algorithm in distributed environments that
works by partitioning the data, then each node builds clusters
independently and the sub-results will be aggregated into one



final result. A very similar solution (i.e., data partitioning,
parallel cluster building, and final merge) is presented in [20],
where Luo et al. leverage the distributed Spark framework.

For most machine learning algorithms (even the less used
ones) there is at least one implementation dedicated to dis-
tributed environments. For example, in [21] Pizzuti and Talia
proposed a parallel implementation for distributed memory
multicomputers of AutoClass, a clustering algorithm based on
Bayesian classification.

C. Distributed machine learning frameworks

Other than specific algorithms, different parallel/distributed
software frameworks include distributed machine learning
libraries. For example, Apache Mahout [22] is an open source
library to develop scalable machine learning algorithms. It
is built on top of Hadoop and includes recommendation
mining, clustering, classification, and frequent itemset mining
algorithms. MLlib [23], on the other hand, is Apache Spark’s
machine learning library, which provides advanced data an-
alytics with parallel machine learning algorithms such as
classification, regression, clustering, and collaborative filtering
built on top of Spark [41].

IV. MACHINE LEARNING ON RESOURCE-CONSTRAINED
EDGE DEVICES

Deploying machine learning applications at the edge is a
key opportunity for different real-world application scenar-
ios, which can benefit from the low latency deriving from
performing training and inference near to the data sources
(see Section VII). However, the nature of IoT edge devices
(i.e., limited computational and energy power, heterogeneity
in hardware and technologies, security and communication
issues) poses a great challenge in performing heavy learning
tasks on such devices. This is a relatively new research field
where a few systems have been proposed. Here we consider
learning at the edge (i.e., edge learning) as including both
the training (i.e., edge training) and the inference (i.e., edge
inference) process.

A. Edge training

While inference is commonly performed on edge devices,
edge training is much less common [24]. The main efforts
in techniques for training machine learning models in edge
devices are mostly concerned with deep learning. The goal
is to get lightweight deep learning models, which can be
learned collaboratively on edge devices. Mainly the literature
focuses on algorithms that are based on the gradient-descent
technique for training. Generally, the distributed gradient-
descent learning process includes local update steps where
each edge device performs gradient-descent to improve the
local model parameter for minimizing a loss function on its
own local dataset. Then, a global aggregation step is required
where model parameters obtained by different edge devices are
sent to an aggregator, which is a component that usually runs
on the remote cloud. After aggregation, the updated parameters
are sent back to the edge devices for the next round of iteration.

Following this approach, Wang and co-authors [25] pro-
posed a technique to train machine learning models at the
edge without cooperation with cloud servers. The technique
minimizes the loss function of a learning model by using only
edge devices. Local gradient-descent is performed on multiple
edge devices on local data. Local models are sent to another
edge device (i.e., the aggregator) that computes a weighted
average and sends it back to all the edge devices for the
next iteration steps. The authors show the effectiveness of this
technique using only three Raspberry Pi devices and a laptop
computer as experimental settings, achieving performance
close to the optimum on different datasets. The gradient-
descent-based distributed learning has been extensively studied
from a theoretical point of view in [26] too.

B. Edge inference

The inference process usually takes place at the Edge, in
order to ensure low latency and privacy of local data. In this
section we discuss recent work that has proposed frameworks
and algorithms for enabling inference on resource-constrained
edge devices and reducing prediction costs. For example,
in [27] is presented a tree-based algorithm, named Bonsai,
for efficient prediction on IoT devices. Bonsai is able to
maintain accuracy while minimizing model size and prediction
costs. This is done by developing a tree model which learns
a shallow and sparse tree. The data is then projected into
a low-dimensional space in which the tree is learnt. Bonsai
was deployed and evaluated on the Arduino Uno board. A
similar experimental approach has been carried out in [28]
by Gupta and co-authors. The authors proposed ProtoNN, an
algorithm based on k-Nearest Neighbor (kNN) for accurate
prediction on resource-constrained devices. ProtoNN is based
on three key aspects: i) learning a small number of prototypes
to represent the entire training set, ii) sparse low dimensional
projection of data, and iii) joint discriminative learning of
the projection and prototypes. In [29] Yazici et al. tested
three different algorithms (Random Forest, SVM and Multi-
Layer Perceptron) on the Raspberry Pi using ten different
datasets. In particular, they evaluated performance in terms
of inference process time, accuracy, and power consumption.
Results show that the Random Forest algorithm had the highest
accuracy, while the SVM algorithm is faster in inference and
more efficient in power consumption. To reduce the size of
ensemble models, in [30] a pruning method for Random Forest
on resource-constrained devices is proposed, to optimize costs
and accuracy. In particular, the pruning problem is posed as
an integer program and solved with a large-scale primal-dual
algorithm.

For what concerns deep learning, the usual approach for
deploying models in edge devices is to train large and accurate
models on powerful machines (i.e., cloud or cluster) and then
use compression techniques (i.e., low-rank approximation,
knowledge distillation, pruning, parameter quantisation) to
reduce the size. In this direction, the Tiny machine learning
paradigm is a fast-growing area where machine learning
algorithms are capable of performing data analysis on devices



with extremely low power consumption. However, compressed
models often result in lower accuracy [7], thus the trade-off
between accuracy and costs must be further investigated.

The research work discussed demonstrates the effectiveness
of techniques to reduce data transfer and size of machine
learning models, thus improving the inference performance
in resource-constrained edge devices. However, none of them
is intended to be deployed in a real-world edge computing
environment with a number of edge devices that can also
collaboratively perform the inference process.

V. FEDERATED MACHINE LEARNING

Most techniques for distributed machine learning manage
data in a centralized way, without considering privacy and
security concerns during training or inference. In particular,
updating the global model in the training process depends
on the information sent by edge devices, which generally
have limited defense capabilities and can be compromised
by potential attacks. To meet this demand, federated learning
is a machine learning paradigm whose aim is to train a
centralized model while data remains distributed over a large
number of clients [42]. While federated learning is widely
used for gradient-descent based algorithms, privacy concerns
in traditional machine learning algorithms are not sufficiently
investigated.

When the federated paradigm is applied to clustering, the
main goal is to group local data stored on each node that
are globally similar to each other. Kumar and co-authors [31]
proposed to apply the Federated Averaging technique to the
k-means algorithm based on the distributed version proposed
by [43]. The data produced at the edge devices is never sent
to a centralized node, thus ensuring privacy preservation and
latency reduction. The final model is obtained by iterative
model averaging. Dennis, Li and Smith [32] developed a
one-shot federated clustering scheme, named k-FED, which
requires only one round of communication with a central
server. Each device solves a local k-means problem and then
communicates its local cluster means via message passing.
Using federated learning SVM, instead, in [33] is presented
a privacy-preserving federated learning system for detecting
Android malware. It allows mobile devices to collaboratively
train a classifier without exposing sensitive information.

Some effort was devoted to applying the federated learning
paradigm in ensemble techniques, especially the Random
Forest algorithm, which is one of the most used machine
learning algorithms in a wide range of industrial scenarios.
For example, in [34] Wu et al. proposed Pivot, a solution
for privacy-preserving vertical decision tree training and pre-
diction, which ensures that no intermediate information is
exposed. The proposed solution can also be extended to tree
ensemble models like Random Forest and gradient boosting
decision trees. Still in the field of vertical federated learning,
in [35] Yao et al. proposed a federated Random Forest
algorithm designed for both efficient training and inference
and a distributed system to exploit parallelism in Random
Forest, achieving high partition tolerance. The system involves

an efficient homomorphic cryptosystem to provide protection
on data privacy as well. Also in [36] a model for vertical
federated learning is proposed by Han et al., named Federated
Gradient Boosting Forest, which simultaneously integrates the
boosting and bagging by building the decision trees in parallel
as a base learner. In [37] Liu and co-authors focused on a
privacy-preserving learning system for Random Forest that
achieves the same accuracy as the non-privacy preserving
approach. In more detail, a learning system was developed to
collaboratively train a model over different clients using the
same user samples but different attributes without the need of
exchanging raw data. A prediction process was also proposed
for reducing the communication overhead among clients.

Although these proposals demonstrate that federated learn-
ing offers several advantages, especially scalability and data
privacy, they do not consider the hardware features of edge
devices, which are usually limited in computational and stor-
age resources. They focus only on privacy and security aspects
of distributed learning at the edge, assuming each edge device
has available computational resources.

VI. DISTRIBUTED MACHINE LEARNING AT THE
EDGE-CLOUD CONTINUUM

Executing machine learning algorithms in distributed envi-
ronments requires (a) to separate the tasks that compose an
algorithm, (b) to coordinate their execution on the different
computing nodes in accordance with any dependencies that
exist between them, and (c) to manage failures that can
occur on computing nodes and communication links that can
be unreliable. For this reason, the choice of an appropriate
distributed algorithm to solve a given problem depends both
on the characteristics of the problem and on the features and
configuration of the system on which the algorithm will run,
the type of communication and synchronization among pro-
cesses that can be performed. All these problems of traditional
distributed systems are amplified when we consider IoT sys-
tems characterized by limited computing capacities, problems
of energy consumption and latency, different technologies and
software stacks.

The approach we discuss here aims to adapt distributed
versions of machine learning algorithms to IoT environments.
As shown in Figure 1, in the Edge-Cloud Continuum we can
identify four different layers [44]:

• Device layer. This is the layer at which IoT devices
generate or collect data (data collection). This data can
be generally stored in the device’s storage system, both
in a persistent or temporary way (data storage). Before
storing or using it to perform analytics on the device,
data can be filtered according to application requirements
(data filtering). Then, this local data can be used to train
a learning model (local learning), which at higher levels
may be used in federated learning tasks.

• Edge layer. This layer is where gateways such as routers,
base stations or micro data centers serve to bring com-
puting closer to IoT devices. The goal of this proximity



is to gather the sensed data of IoT devices (data aggre-
gation), preprocess and possibly cache it (data filtering
and caching) and send it to the cloud (or fog) for storage
purposes or to perform complex learning tasks that cannot
be performed at this level or in that device. Here it is
possible to aggregate local models learned from many
devices (model aggregation).

• Fog layer. This is an intermediary layer that can benefit
from the computation that is closer to the cloud and more
powerful than that provided by the edge layer. Data can be
stored and exploited for collective learning. In particular,
after the local learning on private data at the device level,
a collective training phase can take place at this level in
which labels are assigned to shared and unlabelled data
by means of a consensus-based algorithm.

• Cloud layer. This layer acts as the backbone of the net-
work and provides persistence data storage, and powerful
and very large processing resources [45] that are not
available in the other layers. If needed, it can be leveraged
for aggregating global models (global learning).

Not all of the levels described above are necessary (for
example the fog is optional), but if reduced to two extreme
levels device-cloud the architecture turns into a traditional
cloud-based solution. The implementation of decentralized
algorithms on this four-layers architecture must take into
account the following aspects:

1) Data location - Computation is moved as close to the
data as possible to minimize data movement among
nodes. Since the various levels are made up of heteroge-
neous software components having different computing
capabilities, if a task cannot be performed (or is inef-
ficient) on a certain node of a given level, support is
requested to the higher level (and so on). For example,
tasks that cannot be performed on devices are offloaded
to edge nodes, and so on to fog nodes up to the cloud.

2) Geographical distribution - It is necessary to take
into account the physical distribution of the hardware
components that will execute the distributed algorithm.
The hardware components may be in different places
far from each other. Therefore, localization of devices
may influence communication overhead and algorithm
performance.

3) Algorithm features and configurations - Each algorithm
can be adapted differently than the others and there may
not be a unique way of migrating algorithms (code) in
these environments. There may be patterns that allow a
user to define and execute classes of machine learning
algorithms in IoT environments, but there are many
variables to consider. Moreover, deploying distributed
algorithms in hybrid cloud/edge architectures is an ex-
tremely complex problem, as there are different and
abundant effective configuration parameters (NP-hard
problem [46]).

4) Task scheduling and persistence of data - A data-aware
scheduler is needed to efficiently perform the tasks that

compose distributed learning algorithms. The scheduler
must ensure a load balance between all the computing
nodes (some nodes can have different computing power),
pay more attention to highly critical tasks, and, if
necessary, perform replication of the tasks to improve
both execution time and fault tolerance [47]. Often a
centralized or distributed master node must be identified
to coordinate all these scheduling activities. Moreover,
consider that temporary data may be stored on non-
persistent components and therefore may be lost.

5) Application constraints - Functional and not functional
constraints (quality of service or QoS) of the application
that will use a machine learning algorithm must be
respected. Often it is essential to meet crucial application
and system requirements such as low latency, energy
saving, network traffic reduction, privacy preservation,
and high scalability. For those reasons machine learning
algorithms must also be configurable in order to meet
the requirements. In fact, the same algorithm can be
performed differently on the architecture with different
degrees of freedom (e.g., a less precise model on the
edge nodes, a more accurate model on the cloud).

6) Coding and testing - Let consider that each layer could
be implemented by different hardware and could be
programmed by different software tools/libraries. This
aspect makes it difficult to write and thoroughly test an
algorithm. Furthermore, real tests using a large number
of hardware nodes could be very expensive and inflex-
ible, and benchmarking and setting up real experiments
could be very challenging. Simulation tools result to be
powerful and flexible for reproducing and testing IoT
systems and networks [48]–[50].

VII. APPLICATION SCENARIOS

Many different real-world application scenarios where dis-
tributed learning must be used, may benefit from the cooper-
ation between edge and cloud in the Edge-Cloud Continuum
can be identified. Many of them needing real-time compu-
tations, low energy consumption, high scalability and good
levels of privacy can benefit from the use of edge solutions
possibly integrated with cloud solutions. Here we discuss three
significant scenarios where to exploit the proposed approach.

A. Smart cities

The edge computing paradigm enables vehicles and humans
to connect and integrate a wide variety of services to enhance
personalized experiences in smart cities [51]. This can be done
using machine learning techniques able to extract knowledge
from data sources at the network edge. The Edge-Cloud
Continuum can offer wide and efficient support to all those
advanced mobility services, such as: i) moving taxis to areas
of the city where it is likely to find new customers; ii)
providing advertisements to car drivers based on location and
preferences; ii) suggesting places to visit to pedestrians, based
on previous places visited. The intelligence can be embedded
into edge servers and devices that can collaboratively train



Device layer - Data collection, 
filtering and storage, local 
learning 

Edge layer - Data aggregation, 
caching and filtering, model 
aggregation

Fog layer - Data storage, meta 
learning/collective learning

Cloud layer - Persistent storage, 
global learning

Fig. 1: The Edge-Cloud Continuum architecture.

machine learning models on the data they produce, ensuring
scalability of the learning process and privacy protection of
local data. A global model can be then obtained at the cloud
or fog layers by aggregating models learned at the edge.

B. Industrial IoT

Industrial IoT allows machines to improve the perfor-
mance and productivity of industrial processes while reduc-
ing waste [52]. Combining data from a network of sites
can result in a more efficient control of material flow, and
early detection, identification and elimination of production
or supply bottlenecks, thus optimizing industrial operations.
The layered architecture we propose can enable advanced IIoT
applications, for example: i) executing machine learning tasks
at the edge in order to reduce response time and bandwidth;
ii) predictive maintenance analysis of industrial equipment to
identify potential failures before they impact production; iii)
advanced logistics management.

C. Smart healthcare

Many healthcare organizations have adopted cloud com-
puting solutions due to the need to access services through
standard mechanisms and to scale resources to perform heavy
and intelligent tasks. Medical devices are seen as part of
IoT applications directly connected to the network through
clinical workflows. Nevertheless, the emerging availability and
complexity of various types of medical devices, along with the
large data volumes that such devices generate, can limit the
current cloud-based IoT applications. In this scenario, smart
healthcare solutions [53] can exploit Edge-Cloud Continuum
solutions to continuously monitor and assist patients at home,
obtain insights from hospital equipment for improving patient
outcomes and optimize medical supplies.

VIII. CONCLUSION

Traditional distributed approaches to machine learning rely
on the storage and processing of Big Data in large-grain
distributed systems or clouds. They require transferring all data

from sources to a centralized server. Collecting, processing and
analyzing it involves high communication costs, which may
be critical for low latency applications. The edge computing
paradigm has emerged to meet this demand by processing data
as close as possible to where it is generated. Nonetheless, IoT
devices at the network edge have limited computational and
energetic power, which makes it infeasible to fully perform
heavy learning tasks on such devices. For these reasons,
efforts, like the one we discuss, must be devoted to adapting
machine learning algorithms to perform cooperative training
and inference on local data available on edge devices.
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