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Abstract—The performance and scalability of cellular au-
tomata, when executed on parallel/distributed machines, are
limited by the necessity of synchronizing all the nodes at each
time step, i.e., a node can execute its code only after all the
other nodes have executed the previous step. However, if the code
is parallelized by partitioning the space of the automata, these
synchronization requirements can be relaxed: indeed, a node that
manages a given portion of the cellular automata can execute a
new step after synchronizing only with the nodes that manage
the adjacent portions, while the remaining nodes can execute
different time steps. This can be a notable advantage in many
novel and increasingly popular applications of cellular automata,
such as smart city applications, simulation of natural phenomena,
etc., in which the execution times can be different and variable,
due to the heterogeneity of machines and/or of the data and/or
of the different functions. Indeed, a longer execution time at a
node does not slow down the execution at all the other nodes but
only at the neighboring nodes. This is particularly advantageous
when the nodes that act as a bottleneck can vary during the
execution. The goal of the paper is to analyze the benefits that
can be achieved with the described approach when different space
partitioning strategies are taken into account: i.e., the mono- and
the two-dimensional partitioning. Experiments referred to a well-
known cellular automata, namely the SciddicaS3-hex model for
landslide simulation, exhibit good scalability and prove that the
partitioning scheme adopted can result crucial for improving the
overall computational performances.

Index Terms—Cellular Automata, Parallelization, Sciddica,
Partitioning.

I. INTRODUCTION

Cellular Automata (CA) are parallel computing models

[20],[21] that can be fruitfully applied for simulating natural

phenomena, which can be modeled in terms of local interac-

tions among their elementary parts. A distinctive characteristic

of CA is the possibility of obtaining complex global behaviors

by means of simple purely local rules. They are based on a

regular tessellation of the space into a matrix of cells (called

the cellular space). Each cell of the cellular space has a fixed

shape and size, and embeds an identical finite automaton,

whose input is given by the states of the neighbour cells. At

time t=0, cells are in arbitrary states and the CA evolves step

by step by changing the states of the cells at discrete time

steps, by applying the same local rule of evolution, i.e. the

cell’s transition function, simultaneously (i.e. in parallel) to

each cell of the CA. Input for the cell is given by the states

of a predefined (usually small) set of neighboring cells, which

is assumed invariant in space and time. Despite their simple

definition, CA can exhibit very interesting complex global

behavior. Moreover, from a computational point of view, they

are equivalent to Turing Machines meaning that, in principle,

they are capable to compute everything that can be computed

(the Church-Turing thesis). Thanks also to this property –

computational universality – CA gained a great consideration

among the scientific community, have been employed to solve

a great variety of different complex problems and have proven

to be a valid alternative to differential equations in simulating

complex natural phenomena [18].

Extended Cellular Automata [12] (XCA) represents an

extension of the original CA computational paradigm. Many

applications have proven that the approach behind XCA can

make the modeling of some complex systems more straightfor-

ward. In the XCA framework, the cell’s state is decomposed

in substates, each of them representing the set of admissible

values of a given characteristic assumed to be relevant for the

modeled system and its evolution (e.g., lava temperature, lava

thickness, etc, in the case of a lava flow model). Nevertheless,

CA (and XCA) models can be straightforwardly implemented

on parallel computers due to their underlying parallel nature

[11],[8].

This paper presents the application of a parallelization

strategy for CA, applied to a landslide computational model.

In particular, two cellular space partitioning have been taken

into account, namely a monodimensional and two-dimensional

block scheme partitioning. Starting from previous theoretical

studies presented in [14], where the parallel execution of CA

was modeled by a Petri net, we here present results of a

parallel execution of a real CA model for landslide simulation.

Actually, considering that communication times were consid-

ered negligible in [14], in the present work communication

times are estimated by a simple analytical study and evaluated

for the specific case-study. The paper is organized as follows.

In the next section we present the adopted parallelization

schemes, together with estimation of the communication and
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synchronization burden. Section III reports the adopted CA

model which was used as case-study, while section IV shows

the results referred to the execution on a 16-node cluster.

Eventually, section V reports discussion and future outcomes

of the proposed research.

II. PARALLELIZING CA EXECUTION THROUGH SPACE

PARTITIONING

In many parallel and distributed computing frameworks, the

approach of partitioning the space or territory and assigning

each region to a specific computing node is a valuable and

efficient strategy to improve the performances in terms of

efficiency and scalability [1][17][5][6][4].

In a parallel execution context, a cellular automata can

be partitioned by considering a mono-dimensional or a two-

dimensional partitioning schema as depicted in Figure 1. The

assignment of computation to the nodes follows the space

partitioning: each partition of the territory, or “region”, can

be assigned to a different computing node, which is in charge

of executing the transition rules of all the cells belonging to

this specific region. The transition rule of a cell is evaluated

on the basis of the states of its neighbour cells. Hence, to

execute the transition rules of the cells located in the borders

of a region, information must be received from the adjacent

computing nodes. For this reason, each node must synchronize

with the neighbour nodes.

The visibility radius – referred to as r in the following

– delimits the boundary of the neighbourhood, i.e., the cells

involved in computing a transition function of a cell. Figure

2 shows a scenario where the neighbourood of a cell falls

into two different adjacent regions (if mono-dimensional space

partitioning is adopted) or into four different adjacent regions

(in the case of two-dimensional space partitioning).

Access to remote data must be correct and efficient. Cor-

rectness, in this context, means working always with updated

information. For example, two computing nodes could work

with different status of the same cell because they run different

steps at the same time. To avoid such an incorrect access to

data, a step-by-step duplication mechanism can be adopted,

which consists in replicating the edge areas of adjacent re-

gions. Such areas, referred to as borders, are kept aligned

by exchanging at each step update messages between the

adjacent computing nodes, i.e., the nodes that manage the

corresponding adjacent regions. This data exchange ensures

that data is always updated at the last step. Replication of

borders data is a valuable solution also from the efficiency

point of view, as it ensures that all transition function are

computed using only the local data and the replicas of the

neighbour border data without any need to engage network

operations. This increases the efficiency of operations on

data and helps to reduce inter-node communications, thus

improving performances.

The border area of a region is composed of two distinct

parts: the local border and the mirror border. Figure 3 and

Figure 4 show the borders in the cases of mono-dimensional

and two-dimensional space partitioning. The local border is

managed by the local node and its content is replicated in

the mirror border of the adjacent nodes. At each step, all

the modifications occurred in a local border are gathered and

transmitted to the adjacent nodes. For example, information

about the updates occurred in the local border of Node 1 of

Figure 3 are sent to Node 2, which applies the updates in its

mirror border. Analogously, information in the mirror border

of Node 1 is aligned with the updates occurred in the local

border of Node 2. In the case of two-dimensional partitioning,

see Figure 4, an update message may be sent to more than one

adjacent nodes.

A. Communication burden

In this section, we analyze the amount of data that is

involved in communications during the parallel execution of a

CA using the approach described so far. We first analyze the

case of mono-dimensional partitioning, then the case of two-

dimensional partitioning, and then we provide a comparison

of the two approaches when both options are available. Data

must be exchanged to keep regions informed about the updates

occurred in the adjacent regions, more specifically in the

region borders, as illustrated in Section II. Therefore, the area

of the borders are a good proxy variable1 for the estimation of

the communication burden. The scenario under consideration

consists of a toroidal rectangular territory with horizontal size

equal to L space units and vertical size equal to H cells.

The CA is partitioned into N regions through a number

of horizontal cuts, Cl, and a number of vertical cuts, Ch.

Each region has horizontal size l = L/Ch and vertical size

h = H/Cl, and is assigned to an associated computational

node for execution.

To analyze the case of mono-dimensional space partitioning

we assume, without loss of generality, that the space is

partitioned through vertical cuts. Let us consider the sum of

the areas of the left and right borders of a single region,

shown in dark grey in Figure 5. This quantity, denoted as Bl

and measured in squared cells, is taken as a proxy variable

for the communication burden in charge of a single node.

For the sake of simplicity, we refer to this quantity simply

as “communication burden”, but it is implicitly taken into

account that, to compute the actual amount of exchanged

communication, the amount of data transmitted per cell must

be considered. For the case of mono-dimensional space parti-

tioning, the communication burden of a single node, denoted

as Bl, is equal to:

Bl = 2hr = 2Hr (1)

It is noticed that Bl depend on the vertical size H , while

they do not depend on the horizontal size L. Therefore,

to minimize the value of the communication burden, it is

convenient to consider the shorter side of the territory as the

vertical side, so that H <= L. Moreover, the communication

1For the sake of clearness, here we consider the meaning of the term
“proxy” as it is used in statistics, i.e., as a variable that helps to estimate
another variable which is more complex to compute.
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Fig. 1. The cellular space partitioned into regions which are associated with parallel computing nodes. Two alternative types of partitioning are shown,
mono-dimensional and two-dimensional.
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Fig. 2. A cell’s neighbourhood overlapping more regions
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Node 1
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Fig. 3. Border areas of two adjacent nodes in the case of mono-dimensional
partitioning

burden of a single node, Bl, does not depend on the number

of involved computational nodes.

In the case of two-dimensional space partitioning, not all

the borders are replicated on a single adjacent region, as in

the mono-dimensional case: some borders must be replicated

on two or more regions, depending on how the space is

partitioned.

For example, Figure 6 pictures a two-dimensional space

partitioning. The borders of the central region are distinguished

and labeled with numbers “1” and “3”, depending if the

corresponding area is replicated on one or three adjacent re-

gions, respectively. In this scenario, the communication burden

should be computed by properly weighing the contributions

of the two kinds of border area. Specifically, the sum of

the four areas labeled with “3”, denoted as A3, is equal to

A3=4r2. The sum of the areas labeled with “1”, denoted as

A1, is equal to A1=2r(l + h) − 8r2. When computing the

Node 1 Node 2

Node 3 Node 4

Local Borders

Mirror BorderMirror Border

Node 1 Node 2

Node 3 Node 4

Local Borders

Fig. 4. Border areas of four adjacent nodes in the case of two-dimensional
partitioning

L

H

r
l

h=

Fig. 5. Mono-dimensional space partitioning.

communication burden, the quantity A3 is multiplied by three,

since the corresponding areas must be replicated on three

regions. The communication burden of a single region is then

given by:

Bb = A1 + 3A3 = 2(l + h)r + 4r2

In the following, we focus on the impact that the shape

of the regions (i.e., how stretched the rectangles are) has

on the communication burden. In fact, for a given territory,
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Fig. 6. Grid-like two-dimensional space partitioning.

while the area of a region only depends on the number of

regions N , the communication burden Bb explicitly depends

on the semiperimeter (l+h), see expression (II-A), then on the

regions shape. In the following it is shown that the minimum

overhead is obtained when regions are square-shaped.

We express Bb in terms of l, by using the substitution h =
S
l , where S = l · h is the area of the region. We obtain:

Bb(l) = 2(l +
S

l
)r + 4r2

We derive the expression and obtain:

dBb(l)

dl
=

l2 − S

l2
· 2r

The minimum of Bb(l) is obtained by setting the derivative

equal to zero, which gives:

l =
√
S.

Since the second derivative at l =
√
S is positive, the

minimum communication burden is achieved when the region

has a squared shape. This can be obtained when the number of

vertical and horizontal partitions2 of the CA are proportional to

the respective sizes of the overall territory, i.e., Cl/Ch=H/L.

Of course, the admissible options for the space partitioning

also depend on the number of nodes N , since there is the

constraint N = Cl · Ch.

In several cases, the type of space partitioning, mono-

dimensional or two-dimensional, is driven by constraints re-

lated to the application domain, e.g., the type of data that needs

to be processed, the territorial distribution of sensors, etc. In

other cases, however, there is more freedom to choose the more

convenient territory partitioning. Therefore, it is interesting to

compare the communication burdens corresponding to mono-

dimensional and two-dimensional space partitioning, to see

if one of the two options is more efficient than the other,

and in which cases. Specifically, we do the comparison in a

scenario where the sizes L and H are given. Moreover, in the

case of two-dimensional partitioning we consider the case of

2It may be useful to notice that, in a toroidal space, the number of horizontal
partitions is equal to the number of vertical cuts, and vice versa.

square-shaped regions, since this proved to be the choice that

minimizes the communication burden, as discussed before.

The two-dimensional partitioning has an equal or lower

overhead when the ratio of expression (II-A) to expression

(1) is equal or lower than one:

Bb

Bl
=

2r(l + h) + 4r2

2rH
<= 1 (2)

Using the equalities l=h and Cl/Ch = H/L, which corre-

spond to square-shaped regions, and considering that the value

of the operational radius r is typically much lower than the

height of the entire territory H , the inequality (2) is solved

for Cl >= 2 and Ch >= 2 · L/H . It also corresponds to

the inequality N >= 4 · L/H . This means, for the case of

square-shaped territory (i.e., L=H), that the two-dimensional

partitioning is a better choice when the number of nodes is

equal or larger than 4, and the convenience increases with

larger numbers of nodes. If the territory is rectangular, the

minimum number of nodes that makes the two-dimensional

case more convenient increases as the territory is more and

more stretched. For example, this minimum number is equal

to N=16 if L=4H . Indeed, it is intuitive that the mono-

dimensional partitioning becomes more efficient when the

territory extends mostly on one dimension.

B. Synchronization burden

So far, the analysis has taken into account only the com-

munication burden and how this aspect depends on the kind

of space partitioning. Another important issue concerns the

degree of synchronization of the whole system. Often, CA are

parallelized using a typical master-slave approach [3] where a

master node is in charge of coordinating the execution of a

set of parallel slave nodes. For each step, the master node is

notified by all the slaves nodes when they have completed the

current step, afterwards the master node triggers the execution

of the next step for all the slave nodes. With this approach,

the execution is carried out using an all–to–all synchronization

strategy, i.e., a node can start a new step only when all the

nodes have finished the previous step. Our proposal concerns

a fully distributed approach in which the nodes interact with

each other in a peer-to-peer fashion without any master node.

The distributed approach enables us to implement a “partial”

synchronization in which each node needs to receive only the

border replicas from its neighbour nodes to undertake the next

step. Relaxing the all–to–all synchronization requirement has

a positive effect on the overall performance, as shown in [14].

The synchronization burden is also related to the type of

space partitioning. Indeed, with mono-dimensional partition-

ing, each node has up to 2 neighbour nodes, on the left and on

the right, while with two-dimensional partitioning, each node

has up to 8 neighbour nodes, see Figure 6 3. Therefore, the

synchronization burden is larger with two-dimensional parti-

tioning. This tends to counterbalance the advantage that the

3In a non-toroidal scenario, the regions located at the borders of the territory
can have a lower number of neighbors.
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two-dimensional partitioning has, with respect to the mono-

dimensional partitioning, in terms of communication burden.

The experimental evaluation, discussed in the next section, has

shown that the impact of communication burden on the overall

performance is higher than the impact of synchronization

burden. This practical evidence allows us to conclude that

two-dimensional space partitioning can be considered as the

best strategy, at least in the case of CA requiring large

computational resources.

III. THE CASE STUDY: THE SCIDDICA CA MODEL

Among different phenomena, flow-type landslides (e.g.

debris flows) are profitably modeled by defining local in-

teractions among their constituent parts. For this type of

phenomenon, CA have been adopted by many authors with

satisfactory results [16][7][13][15][19]. Among these efforts,

the CA SCIDDICA family models were developed for simu-

lating slow-moving earth flows (SCIDDICA release “T”, [2]).

Nevertheless, depending on its kinetic energy, a landslide

can also show significant inertial properties (e.g., can move

upward, along a slope, and override obstacles). Accordingly,

the original model was modified: the “run-up” was added,

and the case of study of the Mt. Ontake (Japan) debris

avalanche was analysed (SCIDDICA release “O”, [10]). After

the May 1998 disaster in Campania (Italy), the model has

further been extended (SCIDDICA family “S”), in order to

consider some peculiar features of rapid debris flows. In these

models, as the amount of material eroded along the path of

a debris flow can usually be significant – greatly increasing

the initial volume of the soil slip – the process of erosion of

the regolith overlying the bedrock has been included into the

model. Secondly, the original mechanism of distribution of the

landslide debris among the central cell and the neighbouring

ones has been improved. The need for simulating the process

of “progressive” erosion of the regolith has led to further

modifications and the release “S3” has thus been obtained.

For the SCIDDICA S3-hex version adopted in this work

for the experiments, the CA neighbourhood considered is the

hexagonal one, were each cell is adjacent to 6 (identical)

neighbour ones. Three elementary processes constitute the

transition function of the model, which are locally evaluated

at each step of computation: (1) debris distribution among the

cells, according to pressure gradients across the cells and to

flow rheology; (2) run-up determination, used for evaluating

the landslide ability of moving upslope; (3) mobilisation of

the soil cover, i.e., erosion and transformation into landslide

material, according to the energy of the flowing mass. At

the beginning of each simulation, the substates of the cells

are initialised by means of input matrices. In this way, the

location and extent of each landslide source to be simulated

are specified, together with the thickness of regolith. This latter

overlies the bedrock and can be eroded by the flowing debris: it

must then be considered for computing changes to the original

volume of the landslide. Please refer to [9] for more details

on the SCIDDICA S3-hex model.

IV. EXPERIMENTAL RESULTS

The strategies presented in Section II have been applied

for the parallelization of the SCIDDICA model, in the sce-

nario of the Sarno landslide occurred in 1998, by using a

767 × 925 CA space executed for 2500 computational steps.

The experiments were carried out by varying the number of

computing nodes of a cluster in which each node has an

Intel Xeon E5-2670 CPU with 2.60GHz and 128GB RAM.

The nodes are interconnected with an Intel Corporation I350

Gigabit Network. Each node hosts a portion of the CA space

and execution is performed using the Java platform. Moreover,

communication among nodes is achieved through standard

TCP/IP connections using the Java socket technology. Figures

7 and 8 show the execution time and the speedup obtained by

considering the different types of space partitioning – mono-

dimensional and two-dimensional – and number of computing

nodes. As predicted in Section II-A, the two-dimensional

partitioning outperforms the mono-dimensional one starting

from approximately 4 computing nodes4, as can be noticed

in both figures. As expected, the speedup improves with the

increase of the number of computing nodes in both considered

partitioning schemes, witnessing the good system scalability.

In addition, also the advantage of two-dimensional partitioning

with respect to mono-dimensional partitioning increases with

the number of nodes.

 200
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Fig. 7. Computational times vs. the number of computing nodes.

As a conclusive remark, it is worth noting that the two-

dimensional space partitioning could be infeasible for some

numbers of nodes, e.g., for a prime number of nodes. In other

cases, although it is possible to achieve a two-dimensional

partitioning, this can only be obtained with an “imbalanced”

partitioning, i.e., with a number of partitions along one dimen-

sion which is much greater than in the other dimension. For

example, with 22 nodes, the only possible two-dimensional

partitioning is with 2x11 partitions. Such constraints on the

partitioning, related to mere numerical issues, can limit or

4In Section II-A, we found that the two-dimensional partitioning is advan-
tageous starting from 4 nodes, but this result was derived for the case of
square-shaped territory, and without considering the synchronization burden.
This is the reason why in the experiments the advantage of two-dimensional
partitioning appears starting from a number of nodes slightly larger than 4.
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Fig. 8. Speedup vs. the number of computing nodes.

nullify the advantage of two-dimensional partitioning, even

when a large number of nodes is employed. To cope with

this issue, when a large number of nodes is available, one

can consider to use only a subset of the available nodes that

permits a more “squared” partitioning (e.g., if 74 nodes are

available, an 8×8 partitioning can be the most efficient choice

even if 10 nodes are not utilized).

V. CONCLUSIONS

In this paper we study different space partitioning schemes

for parallelizing CA models. As known for distributed memory

architectures, partitioning the CA space is a good solution

for minimizing inter-node communication, achieving good

performance and scalability. In our study, two main parti-

tioning strategies are envisioned: the mono-dimensional and

the two-dimensional ones. The two strategies are compared

analytically by evaluating the burdens of communication, and

are tested on the well-known SCIDDICA landslide model.

In order to improve the overall performances, the parallel

execution of the CA is carried out using a “partial” synchro-

nization among the computing nodes instead of the all–to–

all synchronization of the typical master-slave approach. The

experiments show a good scalability for the system and suggest

two-dimensional partitioning as the best choice when a large

number of computer nodes are available.

Ongoing and future work are geared at the following:

• extending the experimental part by comparing our ap-

proach to the typical all–to–all synchronization;

• evaluating different approaches for parallelizing the CA

execution also inside each region;

• integrating the approach with gpu- multi-gpu systems;

• studying the automatic parallelization of CA models

when heterogeneous platforms for execution are available

(e.g. by means of OpenCL).
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