
Energy Efficient Task Allocation over
Mobile Networks

Carmela Comito
DEIS, University of Calabria

Rende (CS), Italy
ccomito@deis.unical.it

Deborah Falcone
DEIS, University of Calabria

Rende (CS), Italy
falcone@si.deis.unical.it

Domenico Talia
ICAR-CNR

DEIS, University of Calabria
Rende (CS), Italy

talia@deis.unical.it

Paolo Trunfio
DEIS, University of Calabria

Rende (CS), Italy
trunfio@deis.unical.it

Abstract—In this paper we present an Energy-Aware Schedul-
ing strategy that assigns computational tasks over a network of
mobile devices optimizing the energy usage. The main design
principle of our scheduler is to find a task allocation that
prolongs network lifetime by balancing the energy load among
the devices. We have evaluated the scheduler using a prototype of
the system that includes smart phones and Android emulators.
Experimental results show that significant energy savings can
be achieved by using our energy-aware scheduler compared
to classical time-based scheduler, while meeting the specified
performance constraints.

Index Terms—Mobile computing; Energy efficiency; Task
Scheduling.

I. INTRODUCTION

A mobile ad hoc network (MANET) is a self-configuring
network of mobile devices connected by ad hoc wireless links
and equipped with networking capabilities. Recent develop-
ments in the technologies of laptops and PDAs together with
the reduction of their costs have incredibly raised the interest
in MANETs.

For mobile devices running on batteries, energy efficiency is
a key concern to enable effective and reliable computing over
them. Efficient resource allocation and energy management
can be achieved through clustering of mobile nodes into
local groups. Clustering the network promotes and eases
collaborations among mobile users. We refer to a cooperative
MANET architecture where mobile devices are organized into
local groups (also termed clusters or mobile groups).

Such a cooperative MANET can be seen as a system
including a set of consumers, e.g. mobile applications or tasks,
and a set of resources as energy and processing power. To
make the most of all available resources, a proper distribution
of tasks among the devices such as to optimize the energy
consumption, represents a key issue to be addressed. The
design and implementation of such task allocation (or task
scheduling) strategy is the objective of this paper. The main
design principle of our scheduler is to find a task allocation
in order to prolong network lifetime. We, thus, propose an
energy-aware task allocation scheme that distributes energy
consumption among clusters by balancing the energy load
among them. To this aim, we designed and implemented a two-
phase heuristic-based algorithm. This algorithm first tries to
assign a task locally to the cluster that generated the execution

request by maximizing the cluster residual life. If the task
cannot be assigned locally, the second phase of the algorithm
is performed by assigning the task to the most suitable node all
over the network of clusters, maximizing this way the overall
network lifetime. We characterize the energy consumption of
mobile devices defining an energy efficiency model in which
the energy costs of both computation and communication
activities are taken into account.

There are several works in literature whose goal is minimiz-
ing the overall energy dissipation of the system. However, this
goal does not capture the nature of cooperative ad-hoc systems.
The reason is that minimizing the overall energy dissipation
can lead to heavy use of energy-effective devices, regardless of
their remaining energy. The consequent short lifetime of such
devices will very likely compromise the system performance.
This weakness is a major motivation of the proposed energy-
balanced task allocation scheme.

We have evaluated our scheduler using a prototype of the
system that includes smart phones and Android emulators. The
experimental results show that a significant improvement can
be achieved using our energy-aware scheduler compared to the
time-based round robin scheduler. In details, our algorithm:
(i) is effective in prolonging network lifetime by reducing the
energy consumption; (ii) is able to complete a greater number
of tasks in the same experimental settings; (iii) in all the
experiments performed, is able to keep alive all the devices
thanks to its energy load balancing scheme. Our approach,
thus, enhances the energy-efficiency of the system compared
to classical time-based scheduling algorithms like round robin.

The remainder of the paper is organized as follows. Sec-
tion II presents the reference mobile ad-hoc network archi-
tecture. Section III describes the energy model. Section IV
presents the energy-aware task allocation scheme and related
algorithms. Section V presents the experimental results. Sec-
tion VI discusses related work. Finally, Section VII concludes
the paper.

II. SYSTEM ARCHITECTURE

We consider a multi-hop wireless ad-hoc mobile network
architecture. In a wireless mobile ad-hoc network, which
changes its topology dynamically, efficient resource allocation,
energy management and routing can be achieved through

adaptive clustering of the mobile nodes. In a clustering scheme
the mobile nodes are divided into virtual groups. Generally,
geographically adjacent devices are assigned to the same clus-
ter. Under a cluster structure, mobile nodes may be assigned
a different function, such as cluster-head or cluster member.
A cluster-head normally serves as the local coordinator for
its cluster, performing intra-cluster transmission arrangement,
data forwarding, and so on. A cluster member is usually called
an ordinary node, which is a non cluster-head node without
any inter-cluster links.

We refer to the cooperative system, referred to as Mobile-
to-Mobile (M2M) architecture, depicted in Figure 1, designed
to allow on-demand collaborations among mobile nodes. Ex-
amples of mobile-to-mobile collaborations occur in several
domains such as disaster relief, construction management and
healthcare. In order to promote and ease collaborations when
two or more mobile users, who are members of the same
organization or simply collaborate, meet each other, we let
them grouping into clusters referred to as mobile groups.
Consequently, the proposed architecture includes a number
of mobile groups or clusters. Figure 1 shows the interactions

Mobile

device

Mobile

device
Mobile

device
Mobile

device

Mobile

device

Mobile group
Mobile group

Mobile

device

Mobile

device

Mobile

device

Mobile

device

M2M

interaction

Mobile group

Cluster-to-Cluster

interaction

Mobile

device

Mobile

device

Mobile group

Mobile

device

Mobile

device

Mobile

device

Mobile

device

Fig. 1. The M2M system architecture. The arrows denote remote service
calls.

among the different components of the architecture. Mobile
nodes within a group interact trough ad-hoc connections (e.g.,
wi-fi, bluetooth) that we refer to as M2M connections, repre-
sented as dotted arrows in Figure 1. Interactions among mobile
groups (cluster-to-cluster connections) take place through ad-
hoc connections among the cluster-heads of the groups and are
represented as dot-dash arrows. All types of interactions take
place either to ask for a computation request or to cooperate
in order to collaboratively execute a computational task.

This paper focuses on an energy-aware scheduling strategy
allowing to efficiently allocate tasks over the clustered M2M
architecture. More details about the clustering scheme can be
found in our previous work [1].

III. ENERGY MODEL

Energy consumption of mobile devices depends on the
computation and the communication loads. We define Ei

as the rate of energy consumption of node i in the time
interval δt, which is the sum of all energy consumption for

communication, ETi, and computation, ECi, of all the tasks
assigned to node i within the time interval δt:

Ei = ECi + ETi (1)

Our approach is to estimate the energy consumption for
computation and to analytically evaluate the energy consumed
for communication. This last issue is the main aim of the
section.

In MANET networks, nodes must always be ready to
receive traffic from neighbors due to the absence of base
station nodes. Thus, a network interface operating in ad-
hoc mode has to continuously listen to the wireless channel,
consuming this way a constant idle energy power. Therefore,
each node overhears every packet transmission occurring in
its transmission range consuming this way energy uselessly.
This idle energy consumption is referred to as overhearing.
Due to overhearing, a new cost in the computation of per-
packet energy consumption is introduced and it is the cost for
discarding overheard packets. Therefore, to model the energy
consumed for communication, the costs to send, receive and
discard a packet must be included. Consequently, the energy
consumed by a node i for communication can be defined by
the following equation:

ETi = Esendi
+ Ereceivei + Ediscardi

(2)

A packet may be sent through a broadcast or a point-to-point
channel. With the former mode the packet is received by all
hosts within the sender’s transmission range; whereas with the
latter mode it is discarded by non-destination hosts.

According to [3] we evaluate the energy consumption be-
havior of the mobile ad hoc network based on a model where
the cost for a node to send or receive a message is modeled as a
linear function. In this function there is a fixed cost associated
with channel acquisition and an incremental cost proportional
to the size of the message. The fixed channel access costs,
denoted as bsend and brecv, and the incremental costs, msend

and mrecv, are the same for broadcast and point-to-point. For
point-to-point traffic, the fixed cost includes also the MAC
negotiation. In the IEEE 802.11 MAC protocol, the source
sends an RTS (request-to-send) control message, identifying
the destination. The destination responds with a CTS (clear-
to-send) message. Upon receiving the CTS, the source sends
the data and awaits an ack from the destination. For simplicity,
these small control messages are assumed to have the same
fixed send (bsendctl) and receive (brecvctl) costs.

The cost, Esendij , for a node i to send a point-to-point packet
to a node j is described by the following equation:

Esendij
= bsendctl + brecvctl +msend ∗ |MSG|+ bsend + brecvctl (3)

where |MSG| is the size (number of bits) of the message
exchanged among nodes i and j.

The cost to receive a point-to-point packet is modeled
through the following equation:

Erecij = brecvctl + bsendctl +mrecv ∗ |MSG|+ brecv + bsendctl (4)

In case of broadcast transmission, the cost to send a packet
is represented through equation 5 while the cost to receive a

packet is given by equation 6:

Esendbroadi
= msend ∗ |MSG|+ bsend (5)

Erecbroadi
= mrecv ∗ |MSG|+ brecv (6)

Thus, the energy cost of node i for sending (equation 7) and
receiving (equation 8) packets depends on the used transmis-
sion mode:

Esendi
=

{
Esendij

if point-to-point
Esendbroadi

otherwise
(7)

Ereceivei =

{
Erecij if point-to-point
Erecbroadi

otherwise
(8)

Non-destination nodes within the transmission range of
either the transmitting or receiving nodes overhear the traffic.
The cost of discarding is comparable to the one of a broadcast
receiving:

Ediscardi
= mdiscard ∗ |MSG|+ bdiscard (9)

IV. THE ENERGY-AWARE SCHEDULER

In this section we present an energy-efficient dynamic task
allocation strategy over the cooperative M2M architecture. In
such an approach whenever a task has to be executed, an
efficient task assignment is found such that the total consumed
energy in the network is minimized and, thus, the network
lifetime is prolonged.

A. Scheduling Model

The scheduling problem is the process of mapping a given
application onto a target architecture by: (1) selecting which
task of the application shall be considered; (2) allocating this
task to a resource; (3) computing start and execution times for
the task; (4) repeating these steps until all tasks are scheduled.
It is common in the literature to use the terms task allocation
and task scheduling interchangeably. However, scheduling is
commonly used to describe all of the above mentioned steps
as well as to describe the computation of start and execution
times only. Task allocation is, therefore, a step of the more
general scheduling problem; it can also be seen as a global
scheduling or meta-scheduling that distributes the tasks among
the devices. Once tasks have been allocated, the problem
becomes one of defining a feasible local schedule that manages
task execution for each node. In this paper we focus on the
task allocation problem and we refer to task allocation or task
scheduling interchangeably.

We introduce the following model to support the description
of the scheduling strategy.
D= {d1,d2, ..., dm} is the set of devices in the system. A

device is described in terms of:
• battery level;
• processing capability;
• time, memory and energy consumed for computation;
• time and energy consumed for communication.

We refer to a task model with independent tasks, either atomic
applications or tasks without dependencies. We denote with

T = {t1, t2, ..., tn} the set of tasks to be executed. A generic
task ti is characterized by the following features:
• the amount of data to be processed;
• execution time of task ti on a device dj over a data set

of size s;
• energy consumption of task ti on a device dj over a data

set of size s;
• memory consumption of task ti on a device dj over a

data set of size s;
Before going into the details of the scheduling policy, some
definitions and notations are introduced to support the pro-
posed scheduler.
• PCi(t): processing capacity of device di at time t.
• Mi(t): memory availability of device di at time t.
• EECi(tj, s): estimated energy consumed for computation

by device di to process a task tj over a data set of size
s.

• EETi(tj, s): estimated energy consumed for communica-
tion by device di to process a task tj over a data set of
size s.

• EMCi(tj, s): estimated memory consumption of device
di to run a task tj over a data set of size s.

• EPCi(tj, s): estimated processing capacity required by
device di to execute a task tj over a data set of size s.

Definition 1: Let be REi(t) the residual energy available
at node i at time t, and Pi(t) the instantaneous power; the
residual life of node i at time t, RLi(t), is defined as follows:

RLi(t) = REi(t)/Pi(t). (10)

The classical task allocation problem can be reformulated here
as the problem of finding the proper task assignment that
minimizes the energy dissipated in the system and can be
defined as follows:

Definition 2: Given a task model T and a device model D,
determine a task allocation TA that maps each task to a device
such as to maximize the network lifetime,
where the network lifetime can be defined as the period from
the beginning of the application execution to the time when no
enough devices are alive to deliver the required performance.

B. Scheduling Strategy

This section presents an energy-aware (EA) dynamic task
allocation scheme over a cooperative MANET able to deal
with a system where independent tasks arrive at each node
dynamically over time.

The task allocation problem has been proven to be NP-
Complete in its general form [2]. However, some optimal
algorithms have been proposed for some restricted versions
of the problem and some heuristic-based algorithms have
been proposed for the more general versions of the problem
allowing to find good allocations in polynomial time [4]. Thus,
the problem is finding the minimum cost task allocation.

We propose a two-phase heuristic-based, decentralized al-
gorithm. When an assignment decision has to be made for a
task, the first phase, referred to as local assignment phase, is
responsible for local task arbitration: it considers the energy

consumption of task execution on the different devices within
the local cluster. The algorithm tries to minimize the total
consumed energy in the cluster by assigning the task to the
device that allows to extend the cluster residual life. If the first
phase is not feasible, the second phase, referred to as global
assignment phase, is responsible for task arbitration among
clusters: the task will be assigned to the most suitable device,
all over the network of clusters, that maximizes the overall
network lifetime.

We formalize the problem of task allocation as an optimiza-
tion problem. As said before, the aim of the optimization is to
maximally extend the life of all the nodes in the network by
balancing the load proportionally to the energy of each node
such as to maximize the network lifetime. We optimize the
problem by iteratively trying to improve a candidate solution.
A feasible allocation is optimal if the corresponding group
residual life (in case of local assignment) or system lifetime
(in case of global assignment) is maximized among all the
feasible allocations.

The candidate nodes to which a task ta could be assigned
have to satisfy the following constraints:

1) a node di must have enough processing power
to perform the task over a data set of size s:
EPCi(ta, s) < PCi(t)

2) a node di must have enough energy to perform the task
over a data set of size s: EECi(ta, s) < REi(t)

3) a node di must have enough memory to perform the task
over a data set of size s: EMCi(ta, s) < Mi(t)

During the local assignment phase, a cluster-head, or the set
of neighboring cluster-heads in case of the global assignment,
will choose the local node, among the ones satisfying the
above constraints, that will prolong the life of the correspond-
ing local group by using the following objective function:

RLLGj
(t) = Max

NLGj∑
i=1

αiRLi(t) (11)

where RLLGj
denotes the residual life of local group LGj,

NLGj is the number of nodes within the local group LGj, RLi

is the residual life of node i in the group, and parameter αi

takes into account the importance of node i in the local group.
The node associated with the maximum value in the objective
function will be selected by the cluster-head as candidate
node. Note that throughout the experimental evaluation the
parameter αi is set to 1 thus, all the nodes have the same role
within the local group.

If the global assignment phase is activated, the final decision
is taken by considering all the candidate nodes proposed by
the neighboring clusters. The task will be assigned to the local
group that maximizes the life of the whole network:

RLnet(t) = Max
N∑

j=1

αjRLLGj
(t) (12)

where N is the number of groups in the network.
The choice of pursuing first a local optimum is motivated

by the intent of reducing the transmission costs. As indicated

by several researches, the wireless communication is a major
source of energy dissipation in MANETs. We have had this
confirmed by the experimental evaluation of the proposed task
allocation strategy. In the original design of the algorithm,
the global assignment phase is activated when the residual
life of the local group is lower than the 50% of its ini-
tial value. We evaluated the algorithm over a prototype (a
complete description of the experimental evaluation can be
found in Section V-A). We found that the communication
energy highly degrades the algorithm performance. On the
basis of this result we set the threshold to 20% and limited the
frequency with which the nodes update their resources state
to the corresponding cluster-head. Figure 2 shows the average
dissipated energy, separately identifying the communication
(ET) and computation terms (EC), for both the old and new
version of the algorithm. In particular, the curve ET OLD
represents the communication energy of the original version of
the algorithm, while ET NEW stands for the communication
energy of the new version. Obviously, the computation energy
component is the same for both versions. From the evaluation
is evident the considerable improvement to the algorithm:
Figure 2 shows that in the new version of the algorithm the
energy for communication is almost negligible compared to
the one for computation; conversely, in the original version
the energy for communication represents the dominant cost.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6

A
v

er
a

g
e

D
is

si
p

a
te

d
 E

n
er

g
y

 (
J

)

Simulation Time (hours)

 ET_NEW EC ET_OLD

Fig. 2. Average dissipated energy for two versions of the algorithm.

C. The Energy-Aware Task Allocation Algorithm

This section describes the algorithm performed by node
when a task has to be executed.

When a node, referred to as requesting node, wants to
execute a task it will ask its cluster-head to handle the task
assignment process (see Figure 3).

Upon receiving a task allocation request, the cluster-head
triggers, through the task allocation method (see Figure 4),
the activation of the task allocation strategy allowing to find
the optimal allocation for that task. To this aim, the cluster-
head verifies whether the residual life of its group is greater
than the 20% of its peak value. If the check is successful, it
starts up the local assignment phase. If the check is negative or
the local assignment failed because none of the nodes within
the cluster can execute the task, the cluster-head activates the
global assignment phase.

Method allocateTaskReq
Input: task t, dataset size s

begin
if (this.isClusterHead()) then

allocateTask(t,s);
else

myClusterHead.allocateTaskReq(t,s);
end

end

Fig. 3. Task allocation request.

Method allocateTask
Input: task t, dataset size s

begin
localAssignmentFailed ← false;
if (RLLGi

> 20%) then
< dcandidate,ERLLGi

>← localAssignment(t,s);
if (< dcandidate,ERLLGi

≯= ∅) then
if (dcandidate = this) then

startTask(t,s);
else

dcandidate.executeTask(t,s);
end

else
localAssignmentFailed ← true;

end
end
if (RLLGi

≤ 20% or localAssigmentFailed) then
C ← determineNeighboringClusters();
globalAssignment(t, s, C);

end
end

Fig. 4. Task allocation by the cluster-head of local group LGi.

The scheduling starts with the local assignment phase where
the cluster-head tries to assign the task to a node within the
group that maximizes the cluster residual life (see Figure 5).
In this way, the cluster-head determines a candidate node
in the group meeting the requirements to execute the task
in terms of energy, processing and memory constraints. The
local assignment phase can be executed either by the cluster-
head of the requesting node as well as by the cluster-heads of
neighboring clusters involved in a global assignment.

The global assignment phase (Figure 6) also considers the
neighboring clusters distant at most three hops from the re-
questing cluster-head. This restriction is due to the assumption
that collaborations are established only among neighboring
groups and also to limit the communication costs in the
network. Among the neighboring groups will be selected only
the ones having a residual life greater than a given threshold
(set to 30%), in order to avoid overloading of the local group.
After that, in each of such local groups, included the contacting
local group, is established a candidate node that best performs
the task. Finally, among all the candidate nodes, the task will
be assigned to the one that allows to extend the residual life
of the whole network.

V. PERFORMANCE EVALUATION

In this section we present an experimental evaluation of
the proposed energy-aware scheduler. We have implemented
a prototype of the system by realizing a network of mobile

Method localAssignment
Input: task t, dataset size s
Output: candidate node dcandidate, estimated residual life ERLLGi

of the
local group LGi if the task would be assigned to dcandidate

begin
if (this = CHi or (this ̸= CHi and RLLGi

> 30%)) then
RLLGcurr ← 0;
ERLLGi

← 0;
dcandidate ← ∅;
foreach node di ∈ LGi do

if (di.hasSkill(t,s)) then
RLi ← di.estimateNodeResidualLife(t,s);
RLLGcurr ←estimateGroupResidualLife(di,RLi);
if (RLLGcurr > ERLLGi

) then
ERLLGi

← RLLGcurr ;
dcandidate ← di;

end
end

end
end
return < dcandidate,ERLLGi

>;
end

Fig. 5. Local assignment of task t within local group LGi.

Method globalAssignment
Input: task t, dataset size s, set of neighboring clusters C

begin
D ←∅;
foreach local group LGi ∈ C do

< dcandidate,RLLGi
>← CHi.localAssignment(t,s);

D.add(< dcandidate,RLLGi
>);

end
ERLnet ← 0;
dbest ← ∅;
foreach node di ∈ D do

RLnet ←estimateNetworkResidualLife(di,RLLGi
);

if (RLnet > ERLnet) then
ERLnet ← RLnet;
dbest ← di;

end
end
CHbest ← getClusterHead(dbest);
if (dbest = this) then

startTask(t,s);
else

if (CHbest = this) then
dbest.executeTask(t,s);

else
CHbest.requireTaskExecution(dbest, t, s);

end
end

end

Fig. 6. Global assignment of task t.

devices composed of a set of smart phones and Android
emulators.

Unless otherwise specified, the parameters used in the
simulation are as follows. Tasks are generated on each node.
The task arrival event is a Poisson process with variable
frequency. The simulation area was set to 250000 m2. The
initial value of the transmission range was set to 100 meters
and the initial energy level on each device is 24300 J. Each
device was equipped with a network interface 802.11 b/g, with
a bandwidth of 11 Mbps. The transmission energy is based on
the model presented in Section III.

The scheduler model proposed is general and the consid-
ered computational tasks may concern different application

scenarios. To the aim of the performance evaluation, we
focused on data mining algorithms. In all the experiments, we
refer to the computational load as the energy consumption, a
priori estimated, to execute a set of data mining tasks. These
costs have been estimated through experimental evaluation.
We characterize the performance of a data mining algorithm
running over a specific device and with respect to a given data
set, in terms of the following metrics: memory consumption,
battery depletion and execution time assuming that the data
mining tasks are CPU-bound.

A. Evaluation Results

Since the goal of our scheduling policy is to maximize
the energy levels of the nodes and, thus, extend the network
lifetime, the simulation aims to study the behavior of the
scheduler with respect to the energy depletion and network
lifetime. Accordingly, we use as performance metrics the
residual life of the network, the number of devices powered
and the number of completed tasks. To assess the effectiveness
of the proposed scheduler energy-aware (EA) we compared
its performance with that achieved by the well known round
robin (RR) scheduling algorithm. This comparison aimed at
evaluating the throughput, in terms of number of completed
tasks, and the energy consumption of the two algorithms. Note
that the comparison through the residual life parameter is
significant only if the two algorithms execute the same number
of tasks. Otherwise, the comparison can be made with respect
to the number of alive devices and the number of completed
tasks.

In a first experiment, the initial energy level of the devices
in the network is on average the 75% of the peak value.
The computational task used is the J48 data mining algorithm
running over a data set of 800 Kbytes that takes 2 hours and 16
minutes to be executed, with an average energy consumption
of about 2592 J. The total number of submitted tasks is
70; these tasks arrive to the system following a Poisson
distribution with a frequency λ equal to 20 tasks per hour. The
simulation time is not fixed a priori, since the experiment ends
when all the scheduled tasks have been executed. The aim of
this first experiment is to show that the proposed EA scheduler
is effective in prolonging network lifetime compared to the
RR algorithm. In particular, by executing the same number of
tasks, the EA scheduler saves about 3 hours compared to RR
(see Figure 7). The EA scheduler allocates only 55 tasks of
the 70 submitted because recognizes that it is the maximum
number of tasks that the devices in the network can execute.
The EA scheduler completes 54 of such tasks because for the
last allocated task the scheduled node, at execution time, has
no longer the energy required to run it. Such node asks for
the re-allocation of the task but no other nodes in the network
have the energy needed to execute it. Thus, the task execution
fails. The RR algorithm executes also 54 tasks, however, it is
not aware of the energy availability of the nodes and, thus,
allocates a number of tasks greater than the actual availability
of the network. Consequently, it causes the turning off of 5
devices (see Figure 8). We can conclude that the proposed

0

200

400

600

800

1000

1200

1400

1600

1800

5 10 15 20 25 30 35 40 45 50

A
v

er
a

g
e

N
et

w
o

rk
 R

es
id

u
a

l
L

if
e

(m
in

)

Simulation Time (Hours)

EA RR

Fig. 7. Average network residual life for both EA and RR algorithms.

EA algorithm allocates and completes the execution of all the
tasks that can be executed over the network, prolonging the
network lifetime by balancing the energy load and avoiding
in such way devices turning off.

0

2

4

6

8

10

12

14

5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r
 o

f
A

li
v

e
 D

e
v

ic
e
s

Simulation Time (Hours)

EA RR

Fig. 8. Number of alive devices after the execution of 54 tasks for both EA
and RR algorithms.

In a second experiment the devices are less charged, with
an average initial energy available of 30% of the peak value.
The simulation time is not fixed, the experiment ends when all
the scheduled tasks are executed; by fixing the number of sub-
mitted tasks to 15, this time is of 12 hours. Figure 9 shows the
number of alive devices and the number of completed tasks for
both the EA and RR algorithms with respect to the simulation
time. From the graph one can see that EA balances the energy
load and remains with all the devices alive whereas RR assigns
tasks also to device that do not have the necessary energy and,
thus, causes the switching off of 6 devices. Moreover, at the
end of the simulation time the EA algorithm completes 15
tasks versus 9 of RR. This means that when the tasks are
compute demanding, compared to the overall network energy,
the EA algorithm makes the best from the available energy
outperforming RR also in terms of number of completed tasks.
We repeated the experiment by considering an increasing
number of submitted tasks, ranging from 15 to 30. With
the considered network energy configuration, the maximum
number of J48 tasks, over a dataset of 800 KBytes, that can be
executed are 17. Confirming the previous result, EA does not
allocate a number of tasks greater than the maximum number
supported by the network. It, thus, successfully executes all
the allocated tasks. Conversely, RR allocates all the submitted

0

2

4

6

8

10

12

14

16

2 4 6 8 10 12

Simulation time (Hours)

EA - Nr Alive Devices RR - Nr Alive Devices

EA - Nr Completed Tasks RR - Nr Completed Tasks

Fig. 9. Number of powered devices and number of completed tasks for
bothth EA and RR algorithms.

tasks and, as shown in Figure 10, the number of devices turned
on decreases by increasing the number of submitted tasks,
reaching zero when 30 tasks are submitted. In a scenario
like the one considered, where the energy configuration of
the different devices is rather heterogeneous, the energy load
balancing effect of the EA is particularly significant. Figure
11 shows how the remaining energy is distributed among all
the devices in the network. In particular, it is shown how this
distribution changes by increasing the number of submitted
tasks, for both the EA and RR algorithms. More precisely,
it is specified the percentage of devices with (i) no energy
(RE = 0), (ii) low remaining energy (0 < RE ≤ 1000) (iii)
medium remaining energy (1000 < RE < 5000) and (iv) high
remaining energy (RE ≥ 5000). One can note the effectiveness
of the EA algorithm in balancing the energy level among
the devices. In the case of the EA algorithm the percentage
of devices with medium remaining energy is always rather
high, regardless of the number of submitted tasks. Conversely,
in the case of the RR algorithm, by increasing the number
of submitted tasks the percentage of devices without energy
grows always more, reaching the 100% when 30 tasks have
been submitted and all the devices are turned off.

0

2

4

6

8

10

12

14

16

18

15 20 25 30

Nr of Submitted Tasks

EA - Nr Completed Tasks RR - Nr Completed Tasks

EA - Nr of Alive Devices RR - Nr Alive Devices

Fig. 10. Number of alive device and number of completed tasks for both
EA and RR algorithms w.r.t. the number of submitted tasks.

The efficiency of the EA scheduler is further confirmed
when dealing with tasks of increasing computational load. The
graph in Figure 12 shows that EA outperforms RR in terms
of throughput and device lifetime. By increasing the compu-

Fig. 11. Distribution of devices remaining energy for both EA and RR
algorithms w.r.t the number of submitted tasks.

tational load the EA scheduler completes a lower number of
tasks because it allocates only the tasks that can be executed
avoiding this way the switching off of the devices. Conversely,
RR turns off a number of devices that increases with the
growing of the computational load. With a computational load
of 2500 J, the two algorithms execute the same number of
tasks but EA remains with all the devices switched on while
RR turns off more than the 90% of the devices.

0

10

20

30

40

50

60

70

80

90

100

110

120

500 1500 2500

Computational Load (Joules)

EA - Nr Completed Tasks RR - Nr Completed Tasks

EA - Nr Alive Devices RR - Nr Alive Devices

Fig. 12. Number of alive devices and number of completed tasks for both
the EA and RR algorithms w.r.t. the computational load.

In the last experiment four different network configurations
are considered. For all the configurations the average initial
energy level of the devices is the 30% of the peak value.
The configurations differentiate only for the distribution of
the energy among the devices. The EA scheduler with its
dynamic strategy adapts its behavior to the different configu-
rations always assigning the tasks to the most energy powerful
devices. Differently, RR allocates the tasks without taking
into account the energy availability of the devices. Thus, the
performance of RR depends on the specific combination of
devices and tasks: each time a task has to be allocated, RR
efficacy depends on the charge of the device at the beginning
of the scheduling queue and on the load of the task to be
allocated. For example, if the most charged device is at the
beginning of the scheduling queue when a high computational
task has to be allocated, there is a chance of executing the
task without turning off the device. Figure 13 shows that
EA successfully executes all the submitted tasks in all the
considered configurations (as EA performs in the same way

in all the configurations, in Figure 13 we use the notation
EA [1,2,3,4] to refer to EA in the 4 different configurations).
The graph also shows the bad behavior of the RR: in all the
considered configurations the throughput of EA is higher than
the RR one. This is particularly evident in configuration RR 4
where the less charged devices are at the beginning of the
scheduling queue. Consequently, a greater number of tasks
have been allocated to such less energy powerful devices that
are not able to execute them; for example when 5 tasks have
been submitted, RR is unable to complete even a single task
in correspondence of configuration RR 4.

5

10

15

5

6

9

4

6

9

3

6 6

0

4 4

0

2

4

6

8

10

12

14

16

5 10 15

N
r

o
f

co
m

p
le

te
d

 T
a

sk
s

Nr of submitted Tasks

EA_ [1,2,3,4] RR_1 RR_2 RR_3 RR_4

Fig. 13. Number of completed tasks in different energy configurations for
both EA and RR algorithms w.r.t. the number of submitted tasks.

In general, the behavior of the RR scheduler which assigns
tasks to each processors in equal portions and in circular
order, lets its effectiveness depending on the combination task
to be allocated and device at the beginning of the circular
queue. For example, in the case of Figures 10 and 12 the
curves representing the RR performance, are relative to the
most convenient configuration for RR, the one where the most
energy powerful devices are at the beginning of the circular
queue. It is, thus, the configuration which allows to achieve
the best performance with RR. Despite this, EA is much more
efficient. If in those experiments we had considered one of the
other possible configurations for RR, the improvement of our
algorithm would have been even higher.

VI. RELATED WORK

Most of the existing research work in the area of energy-
aware systems are hardware-based techniques focusing on
reducing the energy consumption of the processor. One of
the most adopted techniques is turning off idle components
[5]. Dynamic Voltage Scaling (DVS) is another technique of
energy conservation. DVS refers to the technique of simulta-
neously varying the processor voltage and frequency as per
the energy performance level required by the tasks [6], [7],
[8]. Remote execution is a software-based technique in which
a device with limited energy transfers a computational task to
a nearby device which is more energy powerful.

Energy-aware task scheduling is another software method
where the scheduling policy aims at optimizing the energy.
To the best of our knowledge, little work has been done on
energy-aware scheduling over a MANET network. In [9] is

proposed an energy-aware dynamic task allocation algorithm
over MANETs. However, this work is different from ours
in terms of the underlying architecture and cost function
to be optimized. We clustered the devices to promote local
cooperation among nearby devices and minimize the trans-
mission energy. This issue is particularly relevant because we
have experimentally found that the transmission energy highly
impacts on the overall energy consumption. In contrast to ours,
the solution proposed in [9] is effective for compute intensive
applications and does not address the communication aspects
of the system. Furthermore, we adopt a different objective
function: we maximize the network residual life rather than
minimizing the energy consumption. Using the residual life
parameter we are able to actually consider the real energy
consumption rate of single devices, single clusters and the
overall network. Conversely, [9] does consider only the local
computation issues and works at a node level ignoring the
workload in the rest of the network. Thus, differently from
us, they do not take into account the actual load of the
devices with the possibility of assigning a task to a device that
consumes less energy, but which is less charged compared to
another one that consumes more energy but it is more energy
powerful and thus could efficiently execute that task.

VII. CONCLUSION

In this paper we presented a task allocation scheme for
mobile networks focusing on energy efficiency. To conser-
vatively consume energy and maximize network lifetime we
have introduced a heuristic algorithm that balances the energy
load among all the devices in the network. We have imple-
mented a prototype of the system and evaluated the scheduling
strategy through simulation experiments. Results show that the
proposed scheduler greatly enhances the performance of the
system compared to time-based traditional schedulers like the
round-robin. We achieved improvements in terms of network
lifetime, number of alive devices and number of completed
tasks.

REFERENCES

[1] C. Comito, D. Talia, and P. Trunfio. “An Energy-Aware Clustering
Scheme for Mobile Applications’. IEEE Scalcom’11, pp. 15–22, (2011).

[2] R. Garey, D. Johnson. “Complexity bounds for multiprocessor schedul-
ing with resource constraints”. SIAM J. Computing, 4:187–200, (1975).

[3] L. M. Feeney. “An energy-consumption model for performance analysis
of routing protocols for mobile ad hoc networks”. Mobile Networks and
Applications Journal, 6(3):239-250, (2001).

[4] H. W. D. Chang, W. J. B. Oldham. “Dynamic task allocation models
for large distributed computing systems”. TPDS. 6:1301–1315, (1995).

[5] K. Li, R. Kumpf, P. Horton and T. Anderson. “A Quantitative Analysis
of Disk Driver Power Management in Portable Computers”. USENIX
conference, pp. 279-292, (1994).

[6] J. Zhuo, C. Chakrabarti. “An efficient dynamic task scheduling algorithm
for battery powered DVS systems”. ASP-DAC’05, pp. 846–849, (2005).

[7] Y. Zhang, X. Hu and D. Chen. “Task scheduling and voltage selection
for energy minimization”. DAC’02, pp. 183–188, (2002).

[8] H. Aydin, R. Melhem, D. Moss, P. Mejia-Alvarez. “Power-Aware
Scheduling for Periodic Real-Time Tasks”. IEEE Transaction on Com-
puters, 53(5):584–600, (2004).

[9] W. Alsalih, S. G. Akl, H. S. Hassanein. “Energy-Aware Task Scheduling:
Towards Enabling Mobile Computing over MANETs”. IPDPS’05, pp.
242a, (2005).

