
Belcastro et al.

RESEARCH

Programming Big Data Analysis: Principles and
Solutions
Loris Belcastro1,2, Riccardo Cantini1, Fabrizio Marozzo1,2*, Alessio Orsino1, Domenico Talia1,2 and Paolo

Trunfio1,2

*Correspondence:

fmarozzo@dimes.unical.it
1University of Calabria, Rende,

Italy

Full list of author information is

available at the end of the article

Abstract

In the age of the Internet of Things and social media platforms, huge amounts of
digital data are generated by and collected from many sources, including sensors,
mobile devices, wearable trackers and security cameras. This data, commonly
referred to as Big Data, is challenging current storage, processing, and analysis
capabilities. New models, languages, systems and algorithms continue to be
developed to effectively collect, store, analyze and learn from Big Data. Most of
the recent surveys provide a global analysis of the tools that are used in the main
phases of Big Data management (generation, acquisition, storage, querying and
visualization of data). Differently, this work analyzes and reviews parallel and
distributed paradigms, languages and systems used today to analyze and learn
from Big Data on scalable computers. In particular, we provide an in-depth
analysis of the properties of the main parallel programming paradigms
(MapReduce, workflow, BSP, message passing, and SQL-like) and, through
programming examples, we describe the most used systems for Big Data analysis
(e.g., Hadoop, Spark, and Storm). Furthermore, we discuss and compare the
different systems by highlighting the main features of each of them, their
diffusion (community of developers and users) and the main advantages and
disadvantages of using them to implement Big Data analysis applications. The
final goal of this work is to help designers and developers in identifying and
selecting the best/appropriate programming solution based on their skills,
hardware availability, application domains and purposes, and also considering the
support provided by the developer community.

Keywords: Parallel Programming models; Programming systems; Big Data
analysis; MapReduce; Workflow; Message Passing; Bulk Synchronous Parallel;
SQL-like

1 Introduction

Over the last years, with the development of the Internet of Things, the growth of

social networks and the widespread diffusion of mobile devices, enormous amounts

of digital data are being generated by and gathered from several sources. For in-

stance, data from sensors, webcams, in-vehicle infotainment, mobile devices, GPS

devices, wearable trackers, social networks and web services is drastically rising.

This huge amount of data, commonly referred to as Big Data, is characterized by

the complexity, by the variety in terms of format [1], and is produced at a speed that

is challenging the current storage, processing and analysis capabilities. In fact, if on

the one hand it opens up to several opportunities to extract useful information and

mailto:fmarozzo@dimes.unical.it
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produce valuable knowledge for science [2], economy [3], health [4], and society [5],

on the other hand, its volume and speed are overwhelming the ability to use it.

To extract valuable information from the analysis of such data, novel architec-

tures, programming models and systems have been developed in the last years that

address their complexity and/or high velocity [6, 7]. In this scenario, data mining

and machine learning have grown over the past decades as two research and tech-

nology fields that provided several different techniques and algorithms to automat-

ically extract hidden, unknown, but potential value from massive repositories [8].

However, sequential data analysis algorithms are not feasible for extracting useful

models and patterns from huge volumes of data in a reasonable time. For this rea-

son, high performance computers, such as many and multi-core systems, Clouds,

and multi-clusters, along with parallel and distributed algorithms and systems are

required by data scientists to tackle Big Data issues [9].

This work provides a structured overview of programming models and systems for

Big Data analysis, which is the final and most important phase of the Big Data life

cycle management (data generation, acquisition, storage, and analysis) [10]. Taking

into account the most popular parallel programming models for Big Data analysis

(MapReduce, workflow, Bulk Synchronous Parallel, message passing, and SQL-like),

here we analyze the features of the main frameworks implementing them. For each

framework, through code snippets and schemes, we show how data analysis applica-

tions can be implemented. The different frameworks have been compared according

to three main aspects: programming features, diffusion and advantages/disadvan-

tages. The programming feature comparison is based on three main criteria that

assess the suitability of each framework in supporting parallel and distributed pro-

gramming: i) type of parallelism that describes how a system allows for expressing

parallel operations; ii) level of abstraction that refers to their programming capa-

bilities for hiding low-level details; and iii) class of applications that describes the

most common application domain of a system. To analyze the use and popularity of

each framework, the diffusion analysis is based on four aspects: i) the main compa-

nies that use it, which describes its current status and its potential on an industrial

scale; ii) the API support that describes the available programming languages to

develop applications by using it; iii) the community size, in terms of the number of

questions posed on Stack Overflow[1], one of the most popular Q&A sites for pro-

gramming problems; and iv) number of commits and stars in its official GitHub[2]

repository. Finally, the last comparison analyzes the main technical advantages and

disadvantages of using each framework.

Through the analysis, comparison and programming examples featured in this

manuscript, developers can find a useful way to identify and select the best solution

based on their skills, hardware availability, application domains and purposes, and

the support provided by the developer community. This manuscript extends the

work presented in [6] in the following main aspects: i) we focused our attention on

systems that are widespread and used by a large number of users around the world,

by analyzing their characteristics and describing their peculiarities; ii) we showed

[1]https://stackoverflow.com/
[2]https://github.com/
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data analysis examples supported by diagrams and code snippets, for all the frame-

works we considered; and iii) we provided a broad comparison of frameworks based

on different principles, such as programming aspects, size of the developer commu-

nity and diffusion in the IT world, strengths and weaknesses of each framework.

The reminder of this paper is organized as follows. Section 2 presents related work

and the main contribution of our study. Section 3 describes the most widespread

programming models for Big Data analysis and introduces the main software frame-

works implementing them. Section 4 discusses the most used framework for each

programming model, also providing an application example for each of them. Sec-

tion 5 presents an in-depth comparison of the described systems and Section 6

concludes the paper.

2 Related work
Big Data analysis has been discussed in several surveys and review papers, as well as

books and research reports. Among those, some papers review the main challenges

and state-of-the-art of Big Data. For example, Chen et al. [10] provided an extensive

analysis of technologies related to Big Data, such as Cloud Computing, Internet

of Things, and Data centers. The authors addressed the challenges of Big Data

concerning data representation and reduction, life cycle, energy management, and

scalability. They focused on the whole value chain of Big Data, from data generation

to data acquisition (i.e., data collection, transportation, and preprocessing) and

data storage in either distributed systems or NoSQL databases, right up to data

analysis. Concerning data analysis systems, authors analyzed only MPI, Hadoop

MapReduce, and Dryad [11], with a focus on Big Data mining tools such as R[3],

Excel, RapidMiner[4], Weka[5], and Pentaho. Finally, they discussed different fields

where Big Data can be applied, such as text, web data and network data analysis,

but without discussing programming examples.

The paper by Oussous et al. [12] deals with Big Data challenges (management,

cleaning, aggregation, and analysis) and mostly focused on the Hadoop ecosystem

and distributions. In particular, the authors discussed the different layers and their

main software: data storage (HDFS, HBase), data processing (MapReduce, YARN)

and querying (Pig, Hive), data ingestion (Sqoop[6], Flume[7]) and streaming (Storm,

Spark), and the management and deployment layer (Zookeeper, Oozie, Ambari).

Hu et al. [13] provided a technology-oriented tutorial on Big Data analytics tools.

In particular, they presented a systematic framework to decompose Big Data sys-

tems in a value chain involving data generation, acquisition, storage, and analyt-

ics. They discussed approaches and mechanisms both from research and industry

communities, presenting a few programming models with associated frameworks:

MapReduce with Hadoop, Directed Acyclic Graph with Dryad, Storm and Apache

S4 (Simple Scalable Streaming System)[8], and Directed Graph with Pregel and

GraphLab for parallel machine learning [14].

[3]https://www.r-project.org/
[4]https://rapidminer.com/
[5]https://www.cs.waikato.ac.nz/ml/weka/
[6]https://sqoop.apache.org/
[7]https://flume.apache.org/
[8]http://incubator.apache.org/projects/s4.html



Belcastro et al. Page 4 of 47

Yaqoob et al. [15] analyzed the state-of-the-art for Big Data technologies based on

batch and stream data processing with related strengths and weaknesses. Big Data

analysis techniques (data mining, web mining, machine learning, social network

analysis) are discussed with case studies. Also emerging technologies are presented

(granular computing, bio-inspired computing, quantum computing, semantic web,

etc.) in the work.

Singh and Reddy [16] presented a survey on Big Data analytics by distinguishing

between horizontal scaling and vertical scaling platforms. For the former class P2P

networks, Hadoop, and Spark have been discussed, while for the latter one high

performance computing clusters, multi-core systems, GPU, and FPGA have been

reviewed. They provided a comparison of different platforms based on parameters

such as scalability, data I/O performance, fault tolerance, real-time processing, data

size supported and iterative tasks support. Finally, the development of a K-Means

clustering example is analyzed on the different platforms.

Wang et al. [17] analyzed the infrastructure of Big Data service architectures for

collection and storage of massive data. They analyzed different types of NoSQL

databases and discussed data processing frameworks such as MapReduce, Dryad,

Storm, Spark, Flink[9], and Pregel. The characteristics of these frameworks are

analyzed in terms of scalability, real-time processing, reliability, data persistence,

multi-language programming, memory programming, stream processing, batch com-

puting, interactive query, and more. Finally, they focused on Big Data-based Cloud

Computing service systems and presented some application scenarios such as recom-

mendation systems, smart grid, and emotional analysis, but without presentation

and discussion of code snippets.

Rao et al. [18] provided a generalized view of Big Data systems and models like

MapReduce, Bulk Synchronous Parallel (BSP) and in-memory models. Distributed

file systems and distributed machine learning tools are also discussed (Mahout,

Spark MLlib, and FlinkML). Authors investigated Hadoop, Spark and Flink, pro-

viding a comparison and highlighting their advantages and limitations. Finally, they

discussed interactive analytical processing tools (Hive, Impala[10], and Tez[11]), data

ingestion tools (Flume, Sqoop, Chukwa[12]), and large-scale graph processing tools

(GraphX for Spark and Gelly for Flink).

Also Saggi et al. [19] discussed Big Data analytics and decision-making frameworks

based on machine learning. In particular, tools such as Spark, Hadoop, Mahout, R,

and Giraph[13] were analyzed. Similarly, Tsai et al. [20] focused on Big Data ana-

lytics frameworks and platforms for data mining and machine learning algorithms

(i.e., Hadoop paired with HDFS for storage and Mahout[14] for analytics).

As mentioned, most of the existing surveys on Big Data provided a global analysis

of frameworks that are used in all phases of Big Data management (data generation,

acquisition, storage, and analytics). However, only a few of them addressed the data

[9]https://flink.apache.org/
[10]https://impala.apache.org/
[11]https://tez.apache.org/
[12]http://chukwa.apache.org/
[13]https://giraph.apache.org/
[14]https://mahout.apache.org/
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analysis and machine learning frameworks in detail. Those last ones did it with some

significant differences from our work:

• We classified the main framework models into five categories and for each of

them we provide an extensive analysis of the most widespread systems;

• For each system we discuss a real application scenario also using diagrams and

code snippets, which can help programmers/developers to better understand

how to structure a data analysis application;

• We provide a broad comparison of systems based on different principles and

features including programming aspects, size of the developer community and

diffusion in the IT world. Also strengths and weaknesses of each system are

identified.

3 Programming models and systems
This section presents and discusses the most popular programming models for Big

Data analysis and their major associated software frameworks. They are MapRe-

duce, workflow, Bulk Synchronous Parallel (BSP), message passing, and SQL-like.

The goal of the section is to highlight features, issues and benefits of each program-

ming model and the software systems based on it.

3.1 MapReduce

MapReduce [21] is a programming model inspired by functional programming. It is

based on the parallel execution of map and reduce functions for designing large-scale

data-intensive applications. Specifically, the distributed execution of a MapReduce

application is delegated to a set of mapper and reducer processes [22]. Each mapper

executes the map function by reading a chunk of the input data and generating

a list of intermediate key/value pairs. Those pairs are then shuffled and sorted on

the basis of their keys, so as all pairs with the same keys are assigned to the same

reducer. Hence, each reducer executes the reduce function which merges all the

values associated with the same key to generate a possibly smaller set of values.

The results of each reducer are then collected so as to generate the final output data.

Figure 1 shows how input data is partitioned into a set of n chunks c1, c2, . . . , cn

and processed on horizontally-scaled units.

Input data
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Map

Map
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Reduce
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Result

Result

Result
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Figure 1 MapReduce data partitioning and processing on horizontally scaled units.

The MapReduce model is specially designed for data-intensive applications, such

as social media analysis, image retrieval, scientific simulation, and website crawling.
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In such applications, whose complexity is mainly linked to the large volume of data

to be processed, MapReduce tries to move computation as close as possible to

the data, which can avoid bottlenecks in data access. In particular, it allows a

full exploitation of data-parallelism, enabling the efficient execution in distributed

environments.

In addition, it can be adapted to several computing environments including multi-

core, many-core and multi-cluster systems, dynamic cloud platforms, and high-

performance computing systems [22]. For these reasons, nowadays it is considered

one of the most important parallel programming models for distributed process-

ing, which is supported by the major IT companies, including Google, Amazon[15],

Microsoft[16] and IBM[17].

The most used open source framework based on the MapReduce programming

model is Apache Hadoop[18], a general-purpose framework designed to process very

large amounts of data in infrastructures with up to tens of thousands of distributed

machines. It enables the development of distributed and parallel applications us-

ing many programming languages, relieving developers from having to deal with

classical distributed computing issues, such as load balancing, fault tolerance, data

locality, and network bandwidth saving.

Over the years, several minor implementations of the MapReduce model have been

proposed and implemented, such as Phoenix++ [23] and Sailfish [24], but none of

these have ever achieved the same success as Hadoop. In particular, Phoenix++

is a C++ implementation that leverages multi-core chips and shared memory

multi-processors. Its runtime automatically manages thread creation, dynamic task

scheduling, data partitioning, and fault tolerance. Sailfish is a MapReduce frame-

work for large-scale data processing, which facilitates batch transmission from map-

pers to reducers to improve performance. An abstraction called I-files is used for

supporting data aggregation, adapting the original model to efficiently batch data

written and read by multiple nodes.

3.2 Workflow

Workflows provide another important paradigm adopted by several frameworks for

Big Data processing. A workflow is a well defined, and possibly repeatable, pattern

designed to achieve a certain transformation of data [25], usually programmed as

a graph. A workflow is developed as a graph composed of a finite set of directed

edges and vertices, which can be used to model complex data analysis scenarios,

such as distributed data mining, machine learning and stream analysis applications.

Workflow tasks can be composed together following different patterns (e.g., loops,

pipelines, parallel constructs), which enable the efficient modeling and execution of

a wide range of applications where input, output, and tasks may depend on other

tasks. A comprehensive collection of workflow patterns focusing on the description of

control flow dependencies among tasks has been described in [26]. When a workflow

does not include cycles, it can be referred to as Directed Acyclic Graph (DAG),

[15]https://aws.amazon.com/elasticmapreduce/
[16]https://azure.microsoft.com/services/hdinsight/
[17]https://www.ibm.com/analytics/us/en/technology/hadoop/
[18]https://hadoop.apache.org/
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which is the most common programming structure used in workflow management

systems [27] and adopted by the most famous systems.

Apache Spark [19] is one of the most popular frameworks based on the workflow

paradigm. It relies on the DAG structure and is commonly used to develop appli-

cations that exploit in-memory computation (e.g., iterative machine learning algo-

rithms), by caching data in RAM memory so as to speed up the execution compared

to Hadoop [28]. Furthermore, many powerful and robust libraries are built on top

of it for dealing with a wide range of applications involving machine learning, SQL

analytics and graph computation.

While Spark has been designed as a general-purpose distributed computing engine

for large-scale data processing, there exist many other frameworks that have been

specifically developed to be used in a specific application domain. For instance,

Apache Storm [20] is an open source and distributed system for real-time stream

processing, capable of coping with huge amounts of unbounded data in large-scale

infrastructures. Storm is designed to be highly scalable, fault-tolerant, and to ensure

high-speed data processing (million tuples processed per second per node) with low-

latency response time. A Storm application is outlined as a topology in the shape

of a DAG, where spouts and bolts act as the graph vertices. Apache Flink [21] is

another open source real-time stream processing system designed to deal with large

volumes of data. Flink provides a DAG-based streaming dataflow paradigm for

processing both finite and infinite datasets. Dataflow operations can simply look at

one individual event at a time, or remember information across different events (i.e.,

stateful processing). The core of Flink is a distributed streaming dataflow runtime,

which is an alternative to Hadoop MapReduce, and a rich set of APIs. Thanks to its

user-friendly features, Flink can be used by small companies for business purposes.

Since workflows are used in a wide range of application domains, including scien-

tific simulations, data analysis and machine learning, different parallel/distributed

frameworks have been proposed for easing application design and execution, as well

as exploiting distributed computational and/or storage resources efficiently. Among

the workflow-based frameworks, COMPSs [29] includes a programming system and

an execution runtime, designed to ease the development of scientific data analytics

workflows for distributed environments. Users can create sequential applications in

Java or Python and select which methods will be executed remotely. COMPSs run-

time manages the parallel execution of an application, relieving users from dealing

with the low-level infrastructure or classical distributed computing issues (e.g., syn-

chronization, data transfer). The Data Mining Cloud Framework (DMCF) [30] is

another software system for designing and executing distributed data analysis work-

flows. It integrates a visual workflow language, which allows users to model complex

workflows without worrying about low-level aspects, and a parallel runtime based

on a Software-as-a-Service (SaaS) model for executing them on Clouds. Its runtime

is able to parallelize the execution of workflow tasks by exploiting the maximal con-

currency according to data dependencies [31]. Other visual workflow management

[19]https://spark.apache.org
[20]https://storm.apache.org
[21]https://flink.apache.org
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systems are Kepler [32], YAWL (Yet Another Workflow Language) [33], and Pega-

sus [34]. Kepler provides a graphical user interface for designing scientific workflows,

where users to create a workflow can select and then connect analytical compo-

nents and data sources. Kepler helps scientists and analysts create, execute, and

share models and analyses. Its built-in components focus on statistical analysis and

support task parallelism by using multiple threads on a single machine. YAWL,

instead, provides a modeling language for workflows based on the Petri Nets for-

malism, enriched with constructs to deal with multiple instance patterns. It is based

on a concise modeling language, which handles complex data transformations and

integration with resources and external applications. The language is supported by

a framework that includes an execution engine, a graphical editor and a worklist

handler. Finally, Pegasus includes a set of technologies to execute workflow-based

applications in different environments. The system can manage the execution of

a complex application modeled as a visual workflow by mapping it onto available

distributed resources, enabling users to express workflows at an abstract level.

Other systems that exploit distributed computing for executing complex work-

flows are Swift [35] and Taverna [36]. Specifically, Swift is a parallel scripting lan-

guage designed to run scientific data analytics workflows across different distributed

systems. It provides a functional language based on a C-like syntax and uses an im-

plicit data-driven task parallelism [37]. A workflow is modeled as a set of program

invocations with associated input and output files. The runtime allows the parallel

execution of Swift scripts taking into account data dependencies and the availabil-

ity of external resources. Regarding Taverna, it is a workflow management system

mostly used in the scientific community, for example for evidence gathering methods

involving text or data mining. It is designed to combine distributed Web Services

and/or local tools into complex analysis applications, by exploiting a pipeline paral-

lelism. These pipelines can be executed on local desktop machines or through larger

infrastructure, such as supercomputers, multi-clusters and Cloud environments.

3.3 Bulk Synchronous Parallel

Bulk Synchronous Parallel (BSP) [38] is a parallel computation model designed as

a bridging model between parallel hardware and software. It is defined on the BSP

computer, an abstract computing model composed of: i) a group of p processors

for communication and local asynchronous computation; ii) a network for allowing

their communication; and iii) a synchronization mechanism. In a BSP application,

parallel computation is divided into a sequence of supersteps, in each of which

processors perform local computation, exchange data and synchronize to the same

barrier. Nowadays, the BSP model is one of the most adopted models for execut-

ing massive computational tasks on graphs and matrices, deep learning, machine

learning, and network algorithms.

In this context, Apache Hama [22] is a BSP-based open source framework, de-

signed to solve complex tasks involving matrix- and graph-based computation in

small infrastructures. It is used mainly for developing highly iterative graph process-

ing applications (e.g., graph analysis, deep learning, machine learning) exploiting

[22]https://hama.apache.org
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the BSP model. Other open source processing frameworks based on the BSP pro-

gramming model are BSPLib [39] and Apache Giraph [23]. BSPLib is an easy to

use C++ implementation of the BSP threading model. Giraph provides iterative

graph computation for developing high scalable applications, relying on Hadoop as

resource manager and Netty[24] for communication. Since Giraph runs map-only

jobs, supporting data parallelism, it improves performance by eliminating the re-

duce operations. Giraph is mainly used by academia and small industry to run

graph processing applications in small infrastructures.

3.4 Message Passing

There is a large number of applications whose computational structure does not

fit the discussed paradigms (i.e., MapReduce, workflow, or BSP), which makes it

difficult to express general-structure computations and efficiently exploit the under-

lying distributed resources [40]. To achieve high performance while ensuring flexi-

bility in expressing the computations required by several applications, the message

passing model provides the basic mechanisms for process-to-process communica-

tion in distributed computing systems. It is a well-known paradigm used in many

programming languages, operating systems, and libraries for supporting data com-

munication in distributed memory systems. In message passing data is moved from

the private memory address space of one process to that of another process through

basically two operations: Send(destination, message) and Receive(source, message).

Although the message passing paradigm has been and still is widely used as a gen-

eral parallel programming model, recently it has been exploited for implementing

scalable Big Data applications [40, 41, 42].

MPI (Message Passing Interface) [43] is the de-facto standard message passing

interface. It is a general-purpose distributed memory paradigm for parallel pro-

gramming, which is commonly used for developing iterative parallel applications

where nodes require data exchange and synchronization. There are several MPI im-

plementations that are used in many application fields related to high performance

computing, such as bioinformatics, biology, physics and weather modeling [44]. MPI

provides hundreds of primitives for point-to-point communication, broadcasting,

barrier, reduce, and it supports the ability to collect processes in groups and com-

municate according to a specific tag. Its basic implementation has been extended

by researchers to deal with emerging challenges in Big Data analysis. For example,

BDMPI [40] (Big Data MPI) is a runtime system that enables the efficient out-

of-core execution of distributed-memory parallel programs. It leverages the MPI

semantic to orchestrate the execution of a large number of processes on distributed

computing systems, enabling the development of efficient out-of-core applications

avoiding complexities associated with coding multiple levels of blocking. However,

traditional MPI all-to-all communication does not scale well in Exascale systems

(i.e., highly parallel computing systems capable of at least one exaFLOPS). Hence

to solve this issue new MPI releases (like MPI+X) have been proposed to support

neighbor collectives for providing sparse “all-to-some” communication patterns that

[23]https://giraph.apache.org
[24]https://netty.io
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reduce the data exchange on limited regions of processors [45, 46]. Many alterna-

tives to MPI have been proposed in the literature, aimed at including data locality,

raising the level of abstraction, as well as leveraging modern language design fea-

tures. These alternatives may consist in both parallel programming languages (e.g.,

UPC [47], Julia [48]), frameworks for large-scale data processing (e.g., Tensorflow[25],

Dask[26]), and extensions of existing languages (e.g., COMPSs [49], UPC++ [50]).

3.5 SQL-like

In the last few years, NoSQL (Not Only SQL) databases addressed several issues

about storing and managing Big Data compared to relational databases, ensur-

ing horizontal scaling of continuous read/write operations distributed over many

servers. In particular, instead of the ACID model (Atomicity, Consistency, Isolation,

Durability), NoSQL databases typically follow another alternative model namely

BASE (Basic Availability, Soft-state and Eventual consistency), which releases the

requirement of consistency after every transaction for supporting the processing of

several instances on different servers simultaneously.

Although NoSQL solutions enable to effectively process large volumes of fast-

moving data, there are many applications that still need to be ACID-compliant

for user security and privacy, such as managing financial transactions or personal

data (e.g., health information). Consequently, relational databases including Oracle,

MySQL, Microsoft SQL Server, and PostgreSQL are still more widespread than

the most popular NoSQL solutions, such as MongoDB, Redis and Cassandra[27].

Moreover, NoSQL databases are often not suitable for data analytics, which led

to the development of different MapReduce solutions to query and analyze data in

a more productive manner. SQL-like systems try to combine the effectiveness and

query capabilities of Hadoop with the ease of use of the SQL-like language, in order

to allow the development of simple and efficient data analysis applications. They

are widely used to overcome the complexity of writing MapReduce applications in

Hadoop, also for simple tasks (e.g., row aggregations, selections, or counts) while

maintaining its performance in terms of querying times and scalability. Their main

application domains are data manipulation (ETL operations), data querying and

reporting on large repositories.

In this context, one of the most popular system is Apache Hive [28], a data ware-

house software built on top of Hadoop for reading, writing, and managing data

in large-scale infrastructures. It allows the scalable and fault-tolerant management

of a huge amount of data through a declarative SQL-like language, namely Hive

Query Language (HiveQL). In Hive, each data manipulation query is automatically

translated into a MapReduce job, which allows to easily process Big Data without

the need of writing complex MapReduce programs.

Apache Pig [29] is another Hadoop-based framework that exploits a SQL-like lan-

guage for executing data flow applications in large-scale infrastructures. It was orig-

inally developed for easing the development of Big Data analysis applications, al-

lowing programmers to develop a data analysis application through a scripting and

[25]https://www.tensorflow.org/
[26]https://dask.org/
[27]https://db-engines.com/en/ranking (accessed December 2021)
[28]https://hive.apache.org
[29]https://pig.apache.org
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procedural data flow language, called Pig Latin. A script contains a sequence of op-

erations, each of one is defined in a SQL-like syntax, for describing how data must

be manipulated and processed. Although Hive and Pig can be used to develop the

same type of applications, they have different goals. Pig is meant for programmers

with a good SQL background to process large amounts of unstructured data, while

Hive is a data warehouse software used to read, write, and manage large amounts

of structured data in a distributed manner.

Slightly different is Apache Impala [51], a massively-parallel query engine, which

runs on small Hadoop data processing environments. Impala provides low latency

and high concurrency for analytic queries on Hadoop, but circumvents the MapRe-

duce model to directly access the data through the distributed query engine for offer-

ing an RDBMS-like experience. Indeed, it uses SQL as a query language, combining

it with the performance of traditional databases and the scalability of Hadoop.

4 System features and programming examples
After we reviewed the main models and systems for Big Data analysis in parallel

systems, in this section we discuss programming details and illustrate advanced

examples of data analysis and mining applications for some of the frameworks in-

troduced in the previous section. We made a selection of those systems keeping one

or two of them for each programming model. In particular, we have chosen Hadoop

for MapReduce, Spark and Storm for workflows, Hama for BSP, MPI for message

passing, and Hive and Pig for the SQL-like model. These seven systems are quite

representative and are widely used all over the world in data analysis both in the

research and business sectors.

4.1 Apache Hadoop

Apache Hadoop is widely used to develop batch applications and over the years

it has been adopted by most of the leading IT companies, such as Yahoo!, IBM

and Amazon. For example, Yahoo! used it for developing ad systems, web search,

and scaling tests. However, it is suitable for batch processing only, resulting in

inefficiency with highly iterative applications that repeatedly perform operations

on the same set of data. This is due to the disk-based processing on the distributed

file system when computing intermediate results with the MapReduce model [52].

Nevertheless, the project is supported by a large user community and its diffusion

is linked to high support for different programming languages and constant updates

and bug fixes by a massive open source community.

Hadoop provides a low-level of abstraction because programmers can define an

application using APIs that are powerful but not easy to use. In fact, they are

close to the computing infrastructure and require a low-level understanding of the

system and the execution environment for dealing with issues related to distributed

file systems, networked computers and distributed programming [53]. Developing

an application by Hadoop requires more lines of code and development effort if

compared to systems providing a higher level of abstraction (e.g., Spark, Pig, or

Hive), but the code is generally more efficient because it can be fully tuned.

Hadoop is designed for exploiting data parallelism during map/reduce steps. In

fact, input data is partitioned into chunks and processed by different machines in
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parallel. Data chunks are replicated on different nodes, ensuring high fault tolerance

along with checkpoint and recovery. However, the partitioning strategy does not

guarantee efficiency when it is needed to access a large amount of small files.

In addition to the MapReduce programming model, the Hadoop project includes

many other modules, such as:

• Hadoop Distributed File System (HDFS), a distributed file system providing

fault tolerance with automatic recovery, portability across heterogeneous and

low-cost commodity hardware and operating systems, high-throughput access

and data reliability.

• YARN, a framework for cluster resource management and job scheduling.

• Hadoop Common, common utilities that support the other Hadoop modules.

In particular, thanks to the introduction of YARN (Yet Another Resource Ne-

gotiator) in 2013, Hadoop turns from a batch processing solution into a reference

platform for several other programming systems, such as: Storm for streaming data

analysis; Hama for graph analysis; Hive for querying large datasets; HBase[30] for

random and real-time read/write access to data in a non-relational model; Oozie[31],

for managing Hadoop jobs; Ambari[32] for provisioning, managing, and monitoring

Hadoop clusters; ZooKeeper[33] for maintaining configuration information, naming,

and providing distributed synchronization and group services; and more.

4.1.1 Programming example

The application example we discuss here shows how Hadoop MapReduce can be

exploited for creating an inverted index for a large set of Web documents [54]. An

inverted index contains a set of words (index terms), and for each word it specifies

the IDs of all the documents that contain it and the number of occurrences in

each document. The inverted index data structure is a central component of a

search engine indexing system. Figure 2 shows the dataflow and main components

(Mapper, Combiner, Reducer) of the proposed application.

The Mapper (or MapTask) parses text lines coming from some input documents

and emits a pair 〈word:documentID, numberOfOccurrences〉 for each word they

contain, where documentID is the identifier of the document and numberOfOc-

curences is set to 1 (see Listing 1). Each word is processed with common steps of

Natural Language Processing (NLP), such as punctuation removal, lemmatization,

and stemming. In order to handle Objects’ serialization in a lighter way, program-

mers have to use specific types for keys and values. As an example, Hadoop uses

Text and IntWritable instead of String and Integer, respectively, which contain the

same information by using a much easier abstraction on top of byte arrays.

public class MapTask extends Mapper<Object, Text, Text, IntWritable> {
private final Text keyContent = new Text();
private final static IntWritable one = new IntWritable(1);

@Override
protected void map(Object key, Text value, Context context)

[30]https://hbase.apache.org/
[31]https://oozie.apache.org/
[32]https://ambari.apache.org/
[33]https://zookeeper.apache.org/
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Figure 2 Architecture of the proposed Hadoop application.

throws IOException, InterruptedException {
// Extract the filename from the current input split
FileSplit fileSplit = (FileSplit)context.getInputSplit();
String filename = fileSplit.getPath().getName();
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {

// Remove punctuation, apply lemmatization and stemming
String word = process(itr.nextToken())
keyContent.set(word + ":" + filename);
context.write(keyContent, one);

}
}

}

Listing 1 Inverted Index Mapper.

After word mapping, a combine function is exploited to aggregate intermediate

data produced by mappers, before passing them to reducers. As shown in Listing 2,

the combiner sums all the occurrences of each word that appear multiple times in

a document, and emits a pair (documentID, sumNumberOfOccurrences).

public class CombineTask extends Reducer<Text, IntWritable, Text, Text> {
private final Text sumContent = new Text();

@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context

context)
throws IOException, InterruptedException {

int sum = 0;
// Sum all the occurrences of a word in the document
for (Text value : values)

sum += value.get();
int split = key.toString().indexOf(":");
sumContent.set(key.toString().substring(split + 1) + ":" + sum);
key.set(key.toString().substring(0, split));
context.write(key, sumContent);

}
}

Listing 2 Inverted Index Combiner.
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For each word, the Reducer produces the list of all the documents containing that

word and the number of occurrences in each document. Specifically, as shown in

Listing 3, a 〈word, documentID:numberOfOccurrences〉 pair is emitted for each

word. The set of all output pairs generated by the reduce function forms the inverted

index for the input documents.

public class ReduceTask extends Reducer<Text, Text, Text, Text> {
private final Text result = new Text();

@Override
protected void reduce(Text key, Iterable<Text> values, Context context)
throws IOException, InterruptedException {

StringBuilder documentList = new StringBuilder();
for (Text value : values)

// Concatenate all the documents of a word
documentList.append(value.toString()).append(";");

result.set(documentList.toString());
context.write(key, result);

}
}

Listing 3 Inverted Index Reducer.

Finally, Listing 4 shows the main class used to set up and run the application. A

programmer must specify the classes to be used as mapper, combiner, and reducer,

the input/output format for such classes, and the data input/output paths.

public class InvertedIndexJob extends Configured implements Tool {

@Override
public int run(String[] args) throws Exception {

Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(this.getClass());
job.setMapperClass(Map.class);
job.setCombinerClass(Combine.class);
job.setReducerClass(Reduce.class);
// Set the output class of key and value for the mapper
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// Set the output class of key and value for the reducer
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
// Specify input and output paths
FileInputFormat.addInputPaths(job, "webPage1,webPage2,...");
FileOutputFormat.setOutputPath(job, new Path(args[0]));
System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

Listing 4 Inverted Index Job.

4.2 Apache Spark

Apache Spark is commonly used to develop in-memory applications, such as inter-

active query and batch processing. Many powerful and robust libraries are built on

top of Spark making it a flexible system for a wide range of applications, such as

Spark SQL[34] for dealing with SQL queries, MLlib[35] for scalable machine learning

[34]http://spark.apache.org/sql/
[35]https://spark.apache.org/mllib/
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applications, GraphX[36] for graph-parallel computation, and Spark Streaming[37]

for streaming analysis. The execution of a generic Spark application on a cluster is

driven by a central coordinator (i.e., the main process of the application), which can

connect with different cluster managers, such as Apache Mesos[38], YARN, or Spark

Standalone (i.e., a cluster manager embedded into the Spark distribution). Ambari

can be used for provisioning, managing, and monitoring Spark clusters. Spark does

not provide its own distributed storage system, but it has been designed to run on

top of several data sources, such as distributed file systems (e.g., HDFS), Cloud

object storages (e.g., Amazon S3, OpenStack Swift) and NoSQL databases (e.g.,

Cassandra). A comprehensive software stack is shown in Figure 3.

Spark Core
Processing Engine

Ambari
Provisioning, managing and monitoring Spark clusters

Mesos / YARN / Standalone
Cluster Resource Management

HDFS / Amazon S3 / OpenStack Swift / Cassandra
Distributed File System & Storage

Spark SQL
(SQL)

MLlib
(Machine 
Learning)

GraphX
(Graph processing)

Spark
Streaming
(Streaming)

Other
Spark

libraries

Figure 3 The Spark software stack.

Several big companies use Spark in production to quickly extract insights from

data for analysis purposes, such as eBay, Amazon, and Alibaba. For example, eBay

uses Big Data and machine learning solutions based on Spark for log aggregation

and to provide targeted offers enhancing customer experience. Its user community is

very large and its development is constantly expanding. In particular, many efforts

are oriented towards the MLlib library, which provides advanced data analytics with

parallel machine learning algorithms.

Spark provides a low-level of abstraction, in fact programmers must define ap-

plications using APIs that are powerful but require advanced programming skills.

Compared to Hadoop, developing an application using Spark results in a smaller

number of lines of code. In fact, Spark provides some built-in operators (e.g., filter,

map, reduceByKey, groupByKey) that make easier to code a parallel application

exploiting transformations and actions on distributed datasets. Moreover, Spark

results up to 100x faster than Hadoop [52], thanks to in-memory computing, and

easier to use specially when used with the Scala programming language, which pro-

vides an object-oriented and functional programming high-level interface. On the

other hand, it is more costly compared to Hadoop and presents the same limits when

[36]http://spark.apache.org/graphx/
[37]https://spark.apache.org/streaming/
[38]http://mesos.apache.org/
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dealing with large numbers of small files. Even though Spark can be considered a

better alternative to Hadoop, in some classes of applications it has limitations that

make it complementary to Hadoop. The main one is that to reduce execution time

datasets must fit in main memory. In fact, RAM is a critical resource and Spark

can suffer from the lack of automatic optimization processes aimed at maximizing

in-memory computing while minimizing the probability of data spilling, which is a

major cause of performance degradation [55]. A Spark application is defined as a

set of independent stages running on a pool of worker nodes and connected in a

DAG. A stage is a set of tasks executing the same code on different partitions of

input data, thus providing data parallelism, as input data is divided into chunks and

processed in parallel by different computing nodes. Spark supports task parallelism

as well when independent stages of the same application are executed in parallel.

Section 4.2.1 proposes an example in which Spark is used for designing a batch ap-

plication based on the MLlib library. Additionally, despite being a general-purpose

framework, Spark also provides a set of libraries specially designed for several tasks,

such as structured data analytics, stream processing, and graph computation. For

this reason, we provide a pointwise comparison between task-specific libraries of

Spark and the corresponding special purpose frameworks. In particular:

• Section 4.3.2 shows how the streaming application implemented in Storm can

be expressed with the Spark Streaming library;

• Section 4.4.2 discusses how the BSP-based application proposed in Hama can

be modeled with the Spark GraphX library;

• Section 4.7.2 shows how Pig queries can be written with the Spark SQL library.

4.2.1 Programming example

The proposed application shows how to exploit Spark for implementing a customer

churn prediction system (i.e., customer switch from a company to another) [56].

In order to identify potential churners and re-engage them, machine learning al-

gorithms can help to mine shared behavioral patterns of those already churned

customers and promptly detect current customers at risk of churn. Due to the vol-

ume of historical data of both churned customers and existing ones, and the need

to periodically analyze new customers and retrain the model, distributed and par-

allel frameworks such as Spark can be employed with benefits. Figure 4 shows the

architecture of the proposed application.

Pre-processing Classification model
training

Churned
customer

history

Customers at
risk of churn

Proactive re-engagment
Existing

customers

Apache Spark learning process

Prediction
model

Pre-
processing

Figure 4 Architecture of the proposed Spark application.
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Spark is used for preprocessing historical data and training a prediction model,

which will be used to forecast whether a customer will change to another company.

Specifically, the MLlib package is employed to handle data organized in RDDs (Re-

silient Distributed Datasets) and build the classification model. The dataset used

for training the prediction model consists of telecommunication customer activity

data (e.g., total day minutes, total day calls, customer service calls, etc.), along

with a churn label specifying whether a customer has cancelled the subscription.

Overall, a generic tuple in the dataset is composed of 20 features. Firstly, clients

need to connect to the master node of the Spark cluster via the spark session. Spark

currently supports authentication for RPC (Remote Procedure Call) channels using

a shared secret. In particular, master should be configured to require authentication

via the spark.authenticate property. However, according to the CVE (Common Vul-

nerabilities and Exposures) database[39], some versions of Spark (2.4.5 version and

earlier) present some security issues when a master in standalone deploy mode is

accessed remotely. In particular, even without the shared key, a RPC to the master

can be specially-crafted for starting an application’s resources on the Spark cluster,

thus allowing to execute shell commands on the host machine.

Once connected to the master node, data is retrieved from a batch file and up-

loaded into a RDD, as shown by the Scala code in Listing 5. The objects represent-

ing the different users are defined by parsing the RDD. Then, data is cached for

performance purposes.

// Build and configure the SparkSession
val spark: SparkSession = SparkSession.builder()

.config("spark.app.name", "...")

.config("spark.master", "spark://master_ip:port")

.config("spark.authenticate.secret", "SecretKey")

.getOrCreate()
// Read the training set
val textRDD = spark.sparkContext.textFile(filepath)
val header = textRDD.first()
// Filter out the header row and load data into RDD
val data: RDD[User] = textRDD.filter(line => line != header).map(

line => val col = line.split(",")
User(col(0),..., col(19)))

// Cache data for improving performance
data.cache()

Listing 5 Loading data into a RDD for model training. The config method allows refining the session
behaviour using key-value pairs. For instance, it sets up the application name, the master URL for the
cluster and the shared key for authentication.

Afterwards, data is processed to be properly used by the machine learning algo-

rithm. A tuple is converted to a LabeledPoint, which represents the features (as a

local dense vector) and the label of a data point. Categorical features are encoded

as numerical to be standardized by removing the mean and scaling to unit variance.

The preprocessing phase is shown in Listing 6. The numericalFeature function ex-

ploits a map to assign a numerical value (1.0 or 0.0) to categorical features.

// Define an encoding function from categorical features to numerical by
exploiting an internal map

[39]https://cve.mitre.org/index.html (accessed December 2021)
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def numericalFeature: String => Double = (categoricalFeature: String) => {
val encodeMap: Map[String, Double] = Map("Yes"->1.0, "No"->0.0,

"True"->1.0, "False"->0.0)
encodeMap(categoricalFeature)}

// Convert tuples to labeled points
val points: RDD[LabeledPoint] = data.map(x =>

LabeledPoint(numericalFeature(x.Churn),
Vectors.dense(
Array(x.AreaCode, x.CustomerServiceCalls,
x.TotalIntlCalls, x.TotalDayCharge,
x.TotalDayMinutes, x.NumberMessages,
x.TotalNightCharge, x.TotalDayCalls,
x.TotalNightCalls, x.TotalNightMinutes,
numericalFeature(x.IntPlan), ...))))

// Numerical features are scaled using a standard scaler
val scaler = new StandardScaler(withMean = true, withStd = true).fit(points

.map(x => x.features))

// Preprocessed data is given in output
val preprocessedData = points.map(x => LabeledPoint(x.label, scaler.

transform(Vectors.dense(x.features.toArray))))

Listing 6 Preprocessing data.

After preprocessing, data is partitioned into two sets used for training a decision

tree model and evaluating its performance. The decision tree is configured with

three main hyper-parameters: i) the impurity measure used for computing the split

information gain; ii) the maximum depth for terminating the algorithm; and iii) the

maximum number of bins used when discretizing continuous features. The training

phase is carried out by invoking the trainClassifier method that outputs the trained

model, saved to disk for the classification of unclassified customers. Subsequently,

the test set is used to evaluate the model against unseen examples by computing the

test error and binary metrics such as precision and recall. Empty categoricalFeatures

indicates that all features are continuous after the scaling. The complete code is

described in Listing 7.

// Setup the parameters of the decision tree for the training phase
val splits = preprocessedData.randomSplit(Array(0.7, 0.3))
val (trainingSet, testSet) = (splits(0), splits(1))
val numClasses = 2
val categoricalFeatures = Map[Int, Int]()
val impurity = "gini"
val maxDepth = 5
val maxBins = 32
val model = DecisionTree.trainClassifier(trainingSet, numClasses, impurity,

maxDepth, categoricalFeatures,
maxBins)

model.save(sparkContext, "DTModel")
// Evaluate the model on test set
val predictions = testSet.map{case LabeledPoint(trueLabel, features)

=> val prediction = model.predict(features)
(prediction, trueLabel)}

val testErr = predictions.filter(r => r._1 != r._2).count()/testSet.count()
val metrics = new BinaryClassificationMetrics(predictions)
val precision = metrics.precisionByThreshold
val recall = metrics.recallByThreshold

Listing 7 Training and evaluation of the classification model.
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It is worth noticing that in a real-world scenario, in which the set of customers

is continuously evolving, it may be required to retrain the classification model in

order to discover up-to-date churning patterns. For this purpose, streaming machine

learning algorithms provided by Spark MLlib can be used, aimed at incrementally

updating the model as new data arrives. However, not all the models currently

support incremental learning, and in this case the only solution is to add the newly

generated examples to the training set and retrain the model from scratch.

The classification model can be exploited to periodically monitor current cus-

tomers to find potential churners and react appropriately. The system integrates

structured data from a data warehouse, such as Apache Hive, a feature extraction

module and the trained model to infer new churning customers, as shown in List-

ing 8. Queries to Hive warehouse are expressed in HiveQL based on the Spark SQL

library (see Section 4.6).

// Load data of unclassified customers from a data warehouse
val warehouseLocation = new File("spark-warehouse").getAbsolutePath
val spark: SparkSession = SparkSession.builder()

.config("spark.app.name", "ChurnPrediction")

.config("spark.sql.warehouse.dir",
warehouseLocation)

.enableHiveSupport().getOrCreate()
val unclassCustomers: RDD[User] = sql("SELECT * FROM Users").rdd

.map(x => x(0).toString.split(","))

.map(col => User(col(0), col(1), ...,
col(19)))

// Load the trained model from disk
val model = DecisionTreeModel.load(spark.sparkContext, "DTModel")
// Process real data as for training
...
// Run model on real instances and find out if a customer will churn or not
val predictions = unclassCustomers.map(x => model.predict(x.features))

Listing 8 Classification of new customers from Hive data warehouse.

4.3 Apache Storm

Apache Storm is widely used for real-time analytics by big companies such as Twit-

ter, Groupon, and Spotify. For example, Twitter developers use Storm for process-

ing many terabytes of data flows a day, for filtering and aggregating contents or

for applying machine learning algorithms on data streams. Its user community is

relatively small but, thanks to its user-friendly features and flexibility, Storm can

be adopted by medium companies for business purposes (e.g., real-time customer

services, security analytics, and threat detection). Other typical use cases of Storm

are online machine learning, continuous computation, and distributed RPC.

The programming paradigm offered by Storm is based on four abstractions:

• Stream: it represents an unbounded sequence of tuples, which is created or

processed in parallel. Streams can be created using standard serializers (e.g.,

integer, doubles) or with custom ones;
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• Spout : it is the data source of a stream. Data is read from different external

sources, such as social network APIs, sensor network, queuing systems (e.g.,

JMS, Kafka[40], Redis[41]), and then it is feeded into the application;

• Bolt : it represents the processing entity. Specifically, it can execute any type

of tasks or algorithms (e.g., data cleaning, functions, joins, queries);

• Topology : it represents a job. A generic topology is configured as a DAG,

where spouts and bolts represent the graph vertices and streams act as their

edges. It may run forever until it is stopped.

Storm adopts by default a stateless processing semantic “at least once”, which

ensures all the messages will be processed, but some of them may be processed

more than once (e.g., in case of system failure). This does not guarantee a message

ordering and if programmers need to implement a stateful operation they could use

the Trident library, which provides a “only one” processing semantic.

Storm provides a medium-level of abstraction as programmers can easily define

an application by using spouts, streams, bolts, and topologies. The Storm APIs

allow developers to test an application in local-mode, without having to run it on a

cluster. Storm is written mainly in Clojure, but different programming languages are

supported through the Multi-Language Protocol that allows to implement bolts and

spouts with other languages such as Java and Python. It supports data parallelism

when many threads execute in parallel the same code on different chunks, task

parallelism when different spouts and bolts run in parallel, and pipeline parallelism

for data stream propagation in a topology.

4.3.1 Programming example

The proposed application shows how to leverage Storm for implementing a network

intrusion detection system. Network intrusion detection is a critical part of network

management for security and quality of service. These systems allow early detec-

tion of network intrusion and malicious activities through anomaly detection based

techniques (AIDS, Anomaly-based Intrusion Detection System) [57].

A Storm application requires defining three entities: spouts, bolts and the topol-

ogy. The proposed topology, composed of one spout and two bolts, is given below:

• ConnectionSpout is the only data source. This spout streams connections com-

ing from a firewall or stored in a log file, and each record is forwarded as a tuple

to the next bolt. In this example, a connection is described by 41 features,

some of which are duration, protocol type, service, etc.;

• DataPreprocessingBolt receives the tuples from the spout and performs pre-

processing. Specifically, it converts the categorical features to numerical and

performs standardization for the machine learning model;

• ModelBolt performs the classification through a Support Vector Machine

(SVM) model trained offline and stores the results to a file for further analysis.

The training phase is performed offline using the Python scikit-learn library, as

Storm does not provide any native machine learning library. As with the churn

prediction system discussed in the Spark programming example (see Section 4.2.1),

[40]https://kafka.apache.org/
[41]https://redis.io/
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it may be required to periodically retrain the classification model to discover up-to-

date patterns of malicious connections. However, the scikit-learn library leveraged in

this example does not support online SVM training. To overcome this limitation, the

linear SVM can be approximated to a Stochastic Gradient Descent (SGD) classifier,

which supports the partial fit option.

All the trained models (i.e., standard scaler for numerical features, label encoder

for categorical features and the SVM model) are dumped in files using the pickle

module. Hence, the Storm Multi-Language protocol can be adopted to use the

trained models in a topology implemented in a JVM language. Figure 5 shows the

whole architecture of the proposed application.

Training set Pre-processing SVM model training

Python offline learning

Attack Type

1. smurf
2. phf
3. normal
4. buffer overflow
5. guess passwd
6. load module...

Scaler Encoder SVM
model

Apache Storm topology

Connection
Spout

SVM
Prediction

Bolt

Pre-
processing

Bolt

Figure 5 Architecture of the proposed Storm application.

The Storm topology Java code is shown in Listing 9. A topology can be submitted

to a production cluster using the storm client, specifying the path of the jar file,

the class-name to run, and any other arguments. The shuffle grouping ensures that

tuples are randomly distributed so that each bolt receives an equal number of tuples.

public class IntrusionTopology {
public static void main(String[] args) {

// Build and submit the topology to a cluster
Config conf = new Config();
conf.setNumWorkers(20);
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new ConnectionSpout());
builder.setBolt("process", new DataPreprocessingBolt())

.shuffleGrouping("spout");
builder.setBolt("model", new PredictionModelBolt())

.shuffleGrouping("process");
StormSubmitter.submitTopology("IntrusionDetection", conf, builder.

createTopology());
}

}

Listing 9 Storm topology.

The data model used by Storm is the tuple. Each spout node must specify the col-

lector used to emit the tuples (method open), how to emit the next tuple (method

nextTuple) and must declare the output fields for the tuples it emits (method de-

clareOutputFields), as shown in Listing 10.
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public class ConnectionSpout implements IRichSpout {
private SpoutOutputCollector collector;
// Define the name of each column in the training data
private String[] field_names = new String[]{"duration", "protocol_type"

, "service", ...};

@Override
public void open(Map conf, TopologyContext context,

SpoutOutputCollector collector) {
// Define the collector to be used for emitting tuples
this.collector = collector;

}

@Override
public void nextTuple() {

// Read from a log file
while ((str = reader.readLine()) != null) {

String[] fields = str.split(",");
// Emit a tuple from input file
this.collector.emit(new Values(fields[0], ... , fields[40]));

}
}

@Override
public void declareOutputFields(OutputFieldsDeclarer dec) {

// Declare the name of each field of the tuples
dec.declare(new Fields(field_names[0], ..., field_names[40]));

}
}

Listing 10 Storm ConnectionSpout.

Each tuple is emitted by the spout and will be processed by the subsequent

bolts as declared in the topology. In this case, the class DataPreprocessingBolt (see

Listing 11) is a proxy for the Python bolt defined in Listing 12, which processes

the tuples by applying the transformations of a set of trained models loaded from

the disk (e.g., the encoders for categorical features and the scalers for numerical

features). The Multi-Language protocol only requires the bolt specifies the script to

execute (see Listing 11), while all the application logic is contained in the Python

script (see Listing 12).

public class DataPreprocessingBolt extends ShellBolt implements IRichBolt {
public DataPreprocessingBolt() {

// Use the Multi-Language protocol to run a Python script
super("python3", "preprocessingBolt.py");

}
}

Listing 11 Storm DataPreprocessingBolt.

class preprocessingBolt(storm.BasicBolt):
# Load encoders for protocol type, service and flag
label_enc_prot = pickle.load(open("label_enc_prot", ’rb’))
label_enc_serv = pickle.load(open("label_enc_serv", ’rb’))
label_enc_flag = pickle.load(open("label_enc_flag", ’rb’))

# Load the standard scaler for numerical features
standard_scaler = pickle.load(open("standard_scaler", ’rb’))
# Mark nominal, binary and numerical features
nominal_idx, binary_idx = [1, 2, 3], [6, 11, 13, 14, 20, 21]
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numerical_idx = list(set(range(41)).difference(nominal_idx).difference(
binary_idx))

def process(self, tuple):
# Encode categorical features
# protocol type = nominal_idx[0]
prot_type = label_enc_prot.transform([tuple.values[nominal_idx

[0]]])[0]
# service = nominal_idx[1]
serv = label_enc_serv.transform([tuple.values[nominal_idx[1]]])[0]
# flag = nominal_idx[2]
flag = label_enc_flag.transform([tuple.values[nominal_idx[2]]])[0]

# Scale numerical features
scaled_features = standard_scaler.transform(

np.reshape([float(tuple.values[i]) for i in numerical_idx], (1,
-1)))[0]

# Emit the tuple after processing
storm.emit([scaled_features[0], prot_type, serv, flag, ... ])

preprocessingBolt().run()

Listing 12 Python DataPreprocessingBolt.

Finally, the ModelBolt in Listing 13 acts similarly to the DataPreprocessingBolt,

with the application of the SVM model trained offline using the scikit-learn library.

The predicted connection type, from a set of 23 types (e.g., smurf, buffer over-

flow, guess password, etc.), allows the Network Security infrastructure to react and

mitigate possible threats.

class modelBolt(storm.BasicBolt):
# Load the SVM model from disk
model = pickle.load(open("svm_model", ’rb’))

def process(self, tuple):
# Predict the connection type from a set of 23 types
prediction = model.predict(np.reshape([tuple.values[0],

tuple.values[1],..., tuple.values[40]], (1, -1)))[0]

# Emit the predicted connection type
storm.emit([prediction])

modelBolt().run()

Listing 13 Python ModelBolt.

4.3.2 Comparison with Spark Streaming

Spark Streaming is a library provided in Apache Spark for scalable, high-

throughput, and fault-tolerant stream processing. Data can be ingested from many

stream services (e.g., Apache Kafka or Amazon Kinesis) or TCP sources, and pro-

cessed using advanced algorithms (e.g., machine learning and graph processing).

Spark Streaming comes up with a high-level abstraction for a continuous stream

of data, named DStream (Discretized Stream), which are internally represented as

a sequence of RDDs. Each RDD in a DStream collects data from a certain time

window and all operations performed on a DStream are forwarded to the underlying

RDDs.
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Listing 14 shows how the real-time intrusion detection application discussed for

Storm can be coded with Spark Streaming. The StreamingContext is the entry point

for all streaming operations. Through it, a data stream can be ingested and collected

into a DStream from text data received on a TCP socket, by specifying the source

host name and port. It is worth noting that developers need to explicitly start

data ingestion and processing, by invoking the start() operation on the streaming

context, and wait for processing to stop (either manually or due to an error) via

the awaitTermination() operation. Furthermore, it is assumed that the model has

been trained previously using MLlib (as seen in 4.2.1) and loaded from disk to be

used in inference mode during the processing of data streams.

val conf = new SparkConf().setMaster("...")
// StreamingContext with a batch interval of 1 second
val ssc = new StreamingContext(conf, Seconds(1))
// Create a DStream that will connect to hostname:port
val data: ReceiverInputDStream[String] = ssc.socketTextStream(hostname,

port)
// Process data in window of windowLength and slideInterval
val dataInWindow = data.window(Seconds(30), Seconds(10)).map {line =>

val col = line.split(",")
ConnectionTest(col(0).toDouble, col(1).toInt, ..., col(40).toInt) }

// Load trained model and scaler
val model = SVMModel.load(ssc.sparkContext, "SVMModel")
val scaler = StandardScalerModel.load("Scaler")
// Apply transformations on each underlying RDD and get predictions
val predictions = dataInWindow.foreachRDD { rdd =>

rdd.foreach { x =>
val processed = scaler.transform(Vectors.dense(Array(x.duration, x.

src_bytes, ..., convert_categorical(x.flag))))
model.predict(processed)

}
}

// Start the computation and wait for it to terminate
ssc.start()
ssc.awaitTermination()

Listing 14 Network intrusion detection using Spark Streaming.

As it emerges from the code, similarly to Storm, Spark Streaming provides win-

dowed operations that allow to apply transformations on a sliding window of data.

Each time the window slides over a source DStream, all associated RDDs that fit

into that window are combined and processed to produce a windowed DStream.

Any window operation must specify the duration of the window and the interval

in which the window operation is performed. On the other hand, some of the main

advantages offered by Spark Streaming over Storm are: i) the full integration with

MLlib, which allows the easy use of a wide range of algorithms for offline learn-

ing; ii) the native support for streaming machine learning algorithms which can

simultaneously learn and predict given a stream of data; iii) the support for the

Scala programming language, an object-oriented language with scalable functional

programming features, which leads to a more compact and readable code.

4.4 Apache Hama

Apache Hama is used mainly for developing iterative graph processing applications

(e.g., graph analysis) based on the BSP model, with support for graphics process-

ing units (GPGPU) acceleration. For example, Sogou, a well-known Chinese search
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engine, adopts Hama to compute PageRank and determine the relevance or impor-

tance of a page [58]. Its user community is very small, so that in April 2020 it moved

to Apache Attic, which collects Apache projects that have reached their end of life.

Hama is written in Java and built on the Hadoop Distributed File System (HDFS),

thereby being fully compatible with Hadoop clusters. However, it is not limited to

HDFS, but can be used with other distributed file systems. The architecture of

Hama is based on the master-worker model and consists of three main components:

• BSP Master : it is responsible for job scheduling and assignment of tasks to

Groom servers. It also has the role of monitoring the superstep sequence in

a cluster, checking errors and maintaining the state of Groom servers using

heartbeat messages.

• Groom servers: a Groom server acts as a worker component in the BSP archi-

tecture and is responsible for the execution of the tasks assigned by the BSP

Master. It uses heartbeat messages to periodically report important informa-

tion to the BSP Master, such as its current status and other metrics including

available memory on the server and maximum task capacity.

• ZooKeeper : it is responsible for the efficient management of BSP peers syn-

chronization, following a mechanism based on blocking barriers. It typically

runs together with the BSP Master on the same node.

In the last few years, the growing use of social media platforms has drawn atten-

tion of the scientific community to graphs that are abstract data structures very

suitable for representing social network contents and connections. In this context,

many solutions have been proposed for the efficient computation of massive graphs.

Following the BSP model, Google Pregel [59] was the first to provide a scalable

and general-purpose computing system, aimed at supporting the implementation

of algorithms on arbitrary graphs in distributed environments. Inspired by Google

Pregel, Hama supports vertex-centric graph computation, allowing the user to pro-

gram intensive iterative applications with Google Pregel style through a simple

programming interface. Specifically, Hama outperforms MapReduce frameworks by

avoiding the processing overhead of sorting, shuffling and reducing the vertices.

This is due to the message passing interface it provides, thanks to which each BSP

superstep is faster than a full MapReduce job execution, especially in the case of

highly iterative applications like those involving graph computations [60].

Hama provides a low-level of abstraction, because programmers must define an

application using low-level BSP primitives for computation and communication. It

can be used with any distributed file system in addition to HDFS and it provides

explicit support for the message passing interface (MPI). In particular, the BSP

model enables Hama to avoid conflicts and deadlines during communication at the

largest scale, due to the synchronization mechanism included in the BSP superstep.

In contrast, Hama does not provide proper APIs (e.g., for input/output data, for

data partitioning) or high-level operators that make it easier to build parallel ap-

plications, and the BSP Master represents a single point of failure. Hama supports

data parallelism by executing the same code in parallel on different portions of data.

4.4.1 Programming example

The proposed application shows how to exploit Hama for addressing the influence

maximization problem. Since social media platforms are increasingly used to con-
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vey advertising campaigns for products or services, the goal is to identify a set of k

users in a social network, namely seeds, that maximizes the spread (i.e., the num-

ber of influenced users). The application is based on a bio-inspired technique for

numerical optimization, called the Artificial Bee Colony (ABC) [61], which belongs

to the field of swarm intelligence. It focuses on the study of self-organized systems,

such as ant and bee colonies, flocks of birds and schools of fish, in which a complex

action derives from a collective intelligence [62]. The main techniques in this field

include Genetic Algorithms, Ant Colony Optimization, Particle Swarm Optimiza-

tion, Differential Evolution, Artificial Bee Colony, Glowworm Swarm Optimization,

and Cuckoo Search Algorithm [63].

Differently from Ant Colony Optimization, which exploits a local search process,

the ABC system relies on a global strategy and is composed of three main entities:

• Food source, characterized by its goodness in terms of quantity of nectar or

distance from the hive;

• Employer bees, which collect the nectar and carry details about the source of

food to the hive;

• Unemployer bees, which are not currently picking up nectar. They can be

divided into two categories: scout bees, which search for new sources of food

and on-looker bees, which choose a source of food according to the information

brought to the hive by the employer bees.

The main goal of the system is to maximize the nectar collection and it can be

adapted to the influence maximization problem as described in [64, 65]. Specifically,

each user of a social network is considered as a source of food, employer bees identify

the opinion leaders of the network (i.e., final seeds), scout bees are used for exploring

the neighborhood of employer bees, and on-looker bees indicate the influenced users.

Figure 6 shows the execution flow of the proposed application, implemented using

the Vertex-Centric model provided by Hama for graph computations.

Apache Hama

Master
election

Vertex

compute

Master
behaviour

Node
behaviour

Yes
No

is Master?
Final seed set

Expected spread

Social network

Figure 6 Architecture of the proposed Hama Vertex-Centric application.

The main step involved in writing a Hama graph application is to extend the

predefined Vertex class, specifying the value types for vertices, edges and messages

through its template arguments, as shown in the Java code in Listing 15. The user

must encode, by overriding the compute() method, the behavior of a vertex, i.e.

the set of operations that will be executed by each active node at each superstep.

Furthermore, built-in methods such as sendMessage(Edge 〈V, E〉 e, M msg) and

getValue() allow the current vertex to send messages to other vertices or to inspect

its associated value.



Belcastro et al. Page 27 of 47

public static class ABC extends Vertex<Text, TextPair, MapWritable> {
@Override
public void setup(HamaConfiguration conf) {

initializeDataStructures();
}

@Override
public void compute(Iterable<MapWritable> mess) throws IOException {

if(this.getVertexID() != MASTER_ID)
vertexbehavior(mess);

else
masterbehavior(mess);

}
...

}

Listing 15 ABC Vertex subclass.

During the setup phase the nodes initialize their data structures and one of them is

elected as master, taking on the role of coordinator. The compute method separates

the behavior of the master from that of the other vertices, by simply checking the id

associated with the current vertex. The behavior of the vertices, shown in Listing 16,

depends on the type of message they receive. During the first phase each seed sends

the rank of its neighbors to the master. Then, when notified by the master, the

vertex sends a new message to its neighbors specifying the activation probability.

Once the propagation phase is over, i.e. there are no more messages to be processed,

the node with maximum influence probability is chosen, sending this value to an

aggregator that evaluates the fitness of each seed. Finally, when a vertex receives

the stop signal from the master, it votes to halt the execution and suspend itself.

private void vertexbehavior(Iterable<MapWritable> messages) throws
IOException {
for (MapWritable mex : messages) {

int messageType = getMessageType(mex);
if (messageType == UPDATE_DATA) //send data to master

sendNeighToMaster();
if (messageType == ACTIVATE) { //the node is activating

this.getValue().put(new IntWritable(INFL_SOURCE), mex.get(
INFL_SOURCE));

this.getValue().put(new IntWritable(DIST), mex.get(DIST));
MapWritable doneProp = ((MapWritable) this.getValue().get(

PROP_DONE));
IntWritable source = ((IntWritable) this.getValue().get(

INFL_SOURCE));
if (!doneProp.containsKey(source)) {

this.getValue().put(new IntWritable(PROB_INDEX),
((DoubleWritable) mex.get(PROB_INDEX)));

tryToInfluenceNodes();
doneProp.put(this.getValue().get(INFL_SOURCE),

new BooleanWritable(true));
this.getValue().put(new IntWritable(PROP_DONE), doneProp);

}
}

}
// Vertices receive stop signal from the master and suspend themselves
MapWritable aggValue = this.getAggregatedValue(0);
if (this.getSuperstepCount() > 1)

if (((IntWritable) aggValue.get(new IntWritable(MEX_TYPE))).get()
== MASTER_STOP)
voteToHalt();

}

Listing 16 Vertex behavior.
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The behavior of the master, shown in Listing 17, is described as follows. Once

the first iterative phase is over, it elects the scout bees with the highest ranking,

notifying the beginning of the influence evaluation. Thus, each scout bee sends an

influence message along the outgoing edges, in order to evaluate its fitness. Once

the aggregator has completed the evaluation, the master determines whether to

proceed with the role switch (scout → employer), communicating it to the other

nodes. The process iterates until either the entire set of scout bees is evaluated

or convergence is reached (i.e., the minimum percentage increment of the spread

between two subsequent iterations is less than a threshold ω). At the end of the

process the final result is stored, which consists of the final seed set (i.e., the selected

influencers) and the expected spread of influence within the network.

private void masterbehavior(Iterable<MapWritable> messages) throws
IOException {
if (!((BooleanWritable) this.getValue().get(BOOT_DONE)).get()) {

// Bootstrap, wait for all seed nodes
masterBoot(messages);
Writable[] seedList = ((IntArrayWritable) this.getValue().get(SEEDS

)).get();
boolean completed = true;
for (Writable i : seedList) {

if (((IntWritable) i).get() == UNSET)
completed = false;

}
if (completed) {

// Master notifies the beginning of the influence evaluation
sendStartToSeed();
this.getValue().put(new IntWritable(BOOT_DONE), new

BooleanWritable(true));
}

} else {
for (MapWritable mex : messages) {

int mexType = ((IntWritable) mex.get(MEX_TYPE)).get();
// Each vertex sends influence data to the master for fitness

evaluation
if (mexType == UPDATE_INFLUENCE) {

this.getValue().put(new IntWritable(PROP_RUNNING), new
BooleanWritable(true));

updatePropagation(mex);
}

}
// Establish if the propagation is ended
if (((BooleanWritable) this.getValue().get(PROP_RUNNING)).get()) {

MapWritable agg = this.getAggregatedValue(0);
// Aggregator has completed the fitness evaluation
if (((IntWritable) agg.get(MEX_TYPE)).get() == EVAL_END) {

this.getValue().put(new IntWritable(PROP_RUNNING), new
BooleanWritable(false));

boolean doSwitch = ((BooleanWritable) this.getValue().get(
SWITCH)).get();

if (doSwitch)
// Role switch from scout bee to employer bee
updateSeedNode();

if (checkStopCondition()){
stopProcess();
storeResults();

}
}

}
}

}

Listing 17 Master behavior.
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4.4.2 Comparison with Spark GraphX

GraphX is a high-level extension of Spark RDD APIs for graph-parallel computa-

tions. It is based on the Graph abstraction, which represents a directed multigraph

with vertex and edge properties. In addition to basic graph-based queries and algo-

rithms (e.g., subgraph sampling, connected components identification, PageRank,

etc.) it provides an optimized version of the Google Pregel graph processing sys-

tem. In particular, it is specially included for expressing graph-parallel iterative

algorithms where the properties of vertices and edges are recomputed iteratively up

to a stop condition. Internally, the Pregel operator is a BSP messaging abstraction

that performs a series of supersteps in which a vertex receives an aggregation of its

in-neighborhood messages from the previous superstep, computes a new value for

its property, and finally sends messages to its neighborhood in the next superstep.

Differently from Pregel, messages are computed in parallel using a user defined

messaging function. Moreover, a vertex can only send messages to its neighborhood

and, if it does not receive a message, it is skipped within that superstep.

Listing 18 shows how the ABC algorithm for influence maximization can be mod-

eled using the Pregel API of GraphX. For the sake of brevity, we only reported the

message-based communication among vertices, showing the master operations only

for the fitness evaluation.

def rcvMsg(vertexId: VertexId, nodeStatus: Map[Int, Any], message: (Int,
Map[Int, Any])): Map[Int, Any] = {
if (vertexId != MASTER_ID) {

val messageType = message._1 //an integer constant
val messageContent = message._2 //a map of properties
if (messageType == UPDATE_DATA)

//a neighborhood information update is required to the master
nodeStatus + (SEND_NEIGH_TO_MASTER -> true)

if (messageType == ACTIVATE) { //the node is activating
val infl_source = messageContent.get(INFL_SOURCE)
val distance = messageContent.get(DIST)
val doneProp = messageContent.get(PROP_DONE)
if (!doneProp.contains(infl_source)) {

val prob = messageContent.get(PROB_INDEX)
tryToInfluenceNodes(prob, distance)
doneProp + (infl_source -> true)

}
// update internal status of the node to be returned
nodeStatus + (INFL_SOURCE -> infl_source)
nodeStatus + (PROP_DONE -> doneProp)
return nodeStatus

}
if (messageType == MASTER_STOP)

voteToHalt()
}
else { // master behavior

...
}

}

def sendMsg(triplet: EdgeTriplet[Map[Int, Any], Double]): Iterator[(
VertexId, (Int, Map[Int, Any]))] = {
val sourceNodeStatus = triplet.srcAttr
if (triplet.srcId != MASTER_ID) {

if (sourceNodeStatus.get(SEND_NEIGH_TO_MASTER)) {
// get neighborhood info to be sent to the master
sourceNodeStatus + (NEIGH_INFO -> getNeighs(triplet.srcId))
sourceNodeStatus + (SEND_NEIGH_TO_MASTER -> false)
//identify the role of the destination vertex
if (triplet.dstId == MASTER_ID)

sourceNodeStatus + (DEST_TYPE -> "master")
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else
sourceNodeStatus + (DEST_TYPE -> "slave")

return Iterator((triplet.dstId, (UPDATE_INFLUENCE,
sourceNodeStatus)))

}
Iterator.empty
}
else { //master behavior

...
}

}

def mergeMsg(message1: (Int, Map[Int, Any]), message2: (Int, Map[Int, Any])
): (Int, Map[Int, Any]) = {
//master receives the propagation results and computes fitness
if (message1._2.get(DEST_TYPE) == "master" && message2._2.get(DEST_TYPE

) == "master") {
if (message1._2.get(PROP_DONE) && message2._2.get(PROP_DONE))

compute_fitness(message1._2.get(NEIGH_INFO), message2._2.get(
NEIGH_INFO))

}
...

}

//create the graph from vertices and edges
val graph = Graph(vertices, edges)
graph.cache() //store to avoid recomputations
val finalGraph = graph.pregel(initialMessage,

Int.MaxValue,
EdgeDirection.Out)
(rcvMsg,
sendMsg,
mergeMsg)

Listing 18 ABC influence maximization using GraphX.

The Pregel operator takes six arguments partitioned in two lists: i) the initial mes-

sage, which triggers the start of the application, the maximum number of iterations,

and the edge direction in which to send messages; ii) three user defined functions

for receiving, computing and merging messages. The output is the final graph where

there are no remaining messages to be processed. In the proposed example, a vertex

is characterized by a vertexId, that is a unique identifier in the whole network, and

a nodeStatus, modeled as a map, which internally stores information about the ver-

tex, such as its role (i.e., master or slave) and its neighborhood. Next, messages are

modeled as the nodeStatus, since the internal properties of the vertices are updated

through message passing. Similarly to Hama, this framework provides an efficient

implementation of the Pregel model based on the BSP paradigm. However, un-

like Hama, GraphX requires developers to provide three user defined functions for

specifying how messages have to be exchanged and processed. On the other hand,

GraphX provides some advantages, such as in-memory computation, the ability to

express efficient queries on graph data using built-in operators, and the compactness

of the code deriving from the use of the Scala programming language.

4.5 Message Passing Interface

The Message Passing Interface (MPI), defined since 1992 by a forum composed

of many industrial and academic organizations, is widely used by academia and

industry in medium-scale infrastructures for developing parallel and distributed
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applications. Even if the MPI user community is medium in size, the project engages

many contributors.

The first version MPI-1 provided a rich set of messaging primitives, based on a

set of eight basic functions that enable it to fully express parallel programs, and

other 129 advanced functions. A MPI-1 parallel program is composed of a set of

similar processes running on different processors that use MPI functions for message

passing. According to the SPMD (Single Program Multiple Data) model, MPI is

designed for exploiting data parallelism, because all the MPI processes that compose

a parallel program execute the same code on different data elements. Examples of

MPI point-to-point communication primitives are:

• MPI Send(msg, leng, type, rank, tag, comm);

• MPI Recv(msg, leng, type, source, tag, comm, status).

Group communication is implemented by the primitives:

• MPI Bcast (inbuf, incnt, intype, root, comm);

• MPI Gather (outbuf, outcnt, outype, inbuf, incnt, intype, root, comm);

• MPI Reduce (inbuf, outbuf, count, type, op, root, comm).

Other primitives include MPI Init and MPI Finalize, which are used to initialize

and terminate a program respectively.

MPI provides a low-level of abstraction for developing efficient and portable itera-

tive parallel applications, even if performance may be limited by the communication

latency between processors. MPI programmers cannot exploit any high-level con-

struct and must manually cope with complex distributed programming issues, such

as data exchange, distribution of data across processors, synchronization, and dead-

lock. Those issues make it hard to debug an application and does not make the pro-

gramming task easy on end-user parallel applications where higher level languages

are required to simplify the developer task. However, thanks to its portability and

efficiency coming from a low-level programming model, MPI is largely used and has

been implemented on a very large set of parallel and sequential architectures, such

as MPP systems, workstation networks, clusters, and Grids. It is worth mentioning

that MPI-1 did not make any provision for process creation, which were introduced

later in the MPI-2 [66] version. The current version, MPI-4, provides extensions to

better support hybrid programming models and fault tolerance.

4.5.1 Programming example

In this section we present an application for parallel counting characters in a text

file by using the OpenMPI[42] implementation. In particular, given an input file

of M bytes and N processes, a worker process, with rank not equal to 0, reads a

chunk of M
N bytes and counts each character in a private data structure. The master

process, with rank equal to 0, receives the partial counts from other N−1 processes

within the group with the specified tag and aggregates them, as shown in Figure 7.

Listing 19 shows the application code and basic primitives of MPI: i) Init and Fi-

nalize for initializing and terminating the program; ii) bcast to broadcast messages

from the master to the workers; and iii) send and recv for point-to-point commu-

nication between master and workers. To run the application, the source code must

be compiled with mpijavac command and executed using the mpirun -N command,

where N is the number of processes per node on all allocated nodes.

[42]https://www.open-mpi.org/
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Figure 7 Architecture of the proposed MPI application.

static public void main(String[] args) throws MPIException, IOException {
int tag = 42;
// Initialize the message array for workers and result array for master
int[] partial_counter = new int[26];
int[] res = new int[26];
int[] split_size = new int[1];
String fileName = args[0];
MPI.Init(args);
Comm comm = MPI.COMM_WORLD;
int rank = comm.getRank();
int master_rank = 0;
int ntasks = comm.getSize();
if (rank == master_rank){ // The master computes the split size

Path path = Paths.get(fileName);
long bytes = Files.size(path);
split_size[0] = (int) (bytes / ntasks);

}
// The split size is broadcast to all worker nodes
comm.bcast(split_size, split_size.length, MPI.INT, 0);
int size = split_size[0];
byte[] readBytes = new byte[size];
try (InputStream inputStream = new FileInputStream(fileName)) {

// Each worker node determines the chunk in which to work
int start = rank * size;
inputStream.skip(start);
inputStream.read(readBytes, 0, size);
// Count and store all the characters of the chunk
for (byte b : readBytes) {

char c = (char) b;
if (Character.isLetter(c)){

int index = (int) Character.toLowerCase(c) - (int) ’a’;
partial_counter[index] += 1;

}
}
// Each worker node communicates the partial counter to the master
comm.send(partial_counter, partial_counter.length, MPI.INT,

master_rank, tag);
}
if (rank == master_rank) { // The master aggregates the partial results

for (int i = 0; i < ntasks; i++) {
Status status = comm.recv(partial_counter, partial_counter.

length, MPI.INT, MPI.ANY_SOURCE, tag);
for (int j = 0; j < partial_counter.length; j++)

res[j] += partial_counter[j];
}

}
MPI.Finalize();

}

Listing 19 Character count.
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When the program starts, only the master process is executed. After the MPI Init

primitive within the master process, N − 1 additional processes (i.e., workers) are

created to reach the number of parallel processes N indicated in the mpirun com-

mand. To identify a process, MPI uses an integer ID, called rank, for each process,

which is 0 for the master and is incremented each time a new process is created. In

this way, the master can check the condition rank == master rank to perform two

operations: i) establish the split size of a chunk for each worker; and ii) aggregate

the partial character counts received by the workers. Communication is handled

by the default communicator (i.e., MPI.COMM WORLD), which groups all the

processes to enable message exchange. Then, each process, including the master,

continues to run distinct versions of the program. In particular, after receiving the

split size broadcast by the master, the workers read the assigned data chunk, count

the occurrences of each character, and store the result in a private structure (par-

tial counter). Finally, each worker sends the partial counter results to the master,

in order to compute the final result.

4.6 Apache Hive

Apache Hive is commonly used by data analysts for data querying and reporting on

large datasets and is adopted by several big companies such as Facebook, Netflix,

Yahoo!, and Airbnb. For example, Netflix uses Hive for ad hoc queries and analytics.

The architecture of Hive is comprised of the following main components:

• User interface: allowing users to interact with HDFS via a web UI or a CLI;

• Metastore: it uses a relational database for storing the metadata of persistent

relational entities and how they are mapped to HDFS;

• HiveQL process engine: it handles the communication with the Hive Metas-

tore. HiveQL queries get converted into MapReduce jobs;

• Execution engine: it is the bridge component between the HiveQL process

engine and MapReduce. It executes the MapReduce jobs resulting from the

translation of HiveQL queries;

• HDFS : it is the underlying distributed file system used for data storage.

Hive provides a high-level of abstraction, because a programmer can develop a

data processing application by using HiveQL, which relies on traditional concepts

of relational databases (e.g., table, row, column). In addition, Hive provides many

User Defined Functions (UDF) for data manipulation (e.g., sum, average, explode)

and makes it really easy to write custom ones in different languages. For these

reasons, Hive is supported by a large user community. However, it is designed only

for Online Analytical Processing (OLAP) and not for Online Transaction Processing

(OLTP), and does not provide real-time access to data unlike SQL Server.

Hive supports data parallelism which allows the execution of the same query

on different portions of data. When many complex queries run in parallel, each

query can be composed of several jobs, which could starve computational resources.

To cope with this issue Hive is powered by Cost-Based Optimizer (CBO), which

performs further optimizations by making a series of decisions based on the cost of

queries (e.g., join order, type of join, number of parallel queries to run).
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4.6.1 Programming example

The proposed application shows how to implement a RoI Mining application with

Hive. The widespread use of social media and location-based services makes it pos-

sible to extract very useful information for understanding the behavior of large

groups of people. Every day millions of people log into social media and share in-

formation about the places they visit. The analysis of geo-referenced data produced

by users on social media is useful for determining whether users have visited in-

teresting places (e.g., tourist attractions, shopping centres, squares, parks), often

called Places-of-Interest (PoIs). Since a PoI is generally identified by the geographic

coordinates of a single point, it is useful to define a Region-of-Interest (RoI), an

area represented by the geographic boundaries of the PoI. RoI Mining techniques

are aimed precisely at the discovery of regions of interest [67].

In this application data is collected from Flickr, a social network used for shar-

ing photos. The initial goal is to assign a generic geo-localized Flickr post to the

corresponding PoI, through an analysis of the textual content and metadata of the

post (tags and description). After assigning each post to its PoI, the geographical

coordinates 〈longitude,latitude〉 are aggregated through DBSCAN (Density-Based

Spatial Clustering of Applications with Noise), a density-based clustering algorithm

that exploits information on the density of points to identify clusters that are repre-

sentative of a RoI. The cluster with the largest size represents the most significant

subregion of the PoI to which it belongs since it is characterized by a greater density

of the 2D points identified by the pair of geographical coordinates. Figure 8 shows

the overall structure of the application.

RoI clustersPoIs mappingFlickr geo-localized
posts PoIs (<long, lat>) DBSCAN

Figure 8 Structure of the proposed Hive application.

Flickr data is firstly filtered to select only a few fields for analysis: the latitude

and longitude contain information related to geographical coordinates; description

contains a description of the post; dateposted contains the date it was posted; user-

name contains the id of the user who shared the post and tags is a string that

contains the set of tags, separated by commas, which give additional information.

Listing 20 shows how data is loaded into a Hive table.

LOAD DATA INPATH ’filepath’ INTO TABLE data;

Listing 20 Hive table.

The first step is to map a Flickr tuple to the corresponding PoI. It can be done

by defining an UDF that allows to run custom Java code within a Hive script;

in particular, a Regular UDF works on a single row of a table and produces a

single output row. The assignRoI method of Listing 21 checks if the tags and the

description contain a keyword of the file loaded as input and returns the name of

the RoI (e.g., the Colosseum is also called the Flavian Amphitheater, Coliseo, etc.).
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public class GeoData extends UDF {
HashMap<String, HashSet<String>> keyWords = null;
// The file is stored on HDFS
String fileName = "hdfs://hostname:port/KeywordFiles//";

public GeoData() {
super();
keyWords = loadKeyWord(fileName);

}

public Text evaluate(String tags, String description) {
// Assign the name of a RoI by comparing tags and description with

keywords
String roiName = assignRoI(tags, description);
if (roiName != null)

return new Text(roiName);
return null;

}
}

Listing 21 UDF GeoData.

The function can be called in a Hive query as shown in Listing 22, for determining

a ranking of the most visited RoIs. In particular, the GeoData function in the select

clause returns the name of a RoI for each point and the number of users who have

visited that area. The rows selected from the data table are grouped by the RoI’s

name (group by clause) and sorted by the number of visitors (order by clause) in

descending order.

-- Call the Java GeoData method and return the most visited RoIs
SELECT GeoData(tags, description) AS PoI, COUNT(username) AS tot
FROM data
WHERE tags IS NOT NULL AND description IS NOT NULL
GROUP BY GeoData(tags, description)
ORDER BY tot DESC;

Listing 22 Hive Query GeoData.

At this point data is ready for clustering analysis. To launch the DBSCAN al-

gorithm it is required the implementation of an UDAF (User Defined Aggregate

Function), which applies a function to multiple rows of a table by implementing

five methods:

• init(): it initializes the evaluator, which actually implements the UDAF logic;

• iterate(): it is called whenever there is a new value to aggregate;

• terminatePartial(): it is called for the partial aggregation, and returns an

object that encapsulates the state of the aggregation;

• merge(): it is called to combine a partial aggregation with another;

• terminate(): it is called when the final result of the aggregation is required.

In particular, DBSCAN is launched on the points belonging to the same RoI,

where the name of a RoI is obtained using the previously defined GeoData function,

as shown in Listing 23. Since DBSCAN should find more than one cluster, the one

containing the highest number of points is chosen and returned as a KML (Keyhole

Markup Language) string.
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public class DbscanUDAF extends UDAF {
// Define an UDAF to run the DBSCAN clustering algorithm
public static class DBSCANUDAFEvaluator implements UDAFEvaluator {

LinkedList<ClusterPoint> RoIPts = null;

public DBSCANUDAFEvaluator() {
super();
init();

}

@Override
public void init() {

// The points of a RoI form a cluster
RoIPts = new LinkedList<ClusterPoint>();

}

public boolean iterate(double latitude, double longitude) throws
HiveException {
// Build a point of a cluster using latitude and longitude
ClusterPoint p = new ClusterPoint(longitude, latitude,

SpatialContext.GEO);
RoIPts.add(p);
return true;

}

public LinkedList<ClusterPoint> terminatePartial() {
return RoIPts;

}

public boolean merge(LinkedList<ClusterPoint> otherRoIPts) {
// Merge intermediate results
if (otherRoIPts == null) return true;
RoIPts.addAll(otherRoIPts);
return true;

}

public Text terminate() throws IOException {
List<Double> dists = MainDBSCAN.calculateKNN(RoIPts, minPts);
double eps = KDistanceCalculator.calculateEps(dists);
DBSCANRoI<ClusterPoint> dbscan = new DBSCANRoI<>(eps, 2);
List<Cluster<ClusterPoint>> clusters = dbscan.cluster(RoIPts);
// Return the cluster with the highest support as a KML string
String s = getMaxCluster(clusters);
return new Text(s);

}
}

}

Listing 23 Java UDAF DBSCAN.

Finally, the UDAF can be called in the Hive script to get the final results. The

HiveQL query is detailed in Listing 24.

-- Invoke the Java DbscanUDAF and group rows based on the name of RoIs
SELECT DbscanUDAF(latitude, longitude) AS RoI
FROM data
WHERE latitude IS NOT NULL AND longitude IS NOT NULL
GROUP BY GeoData(tags, description);

Listing 24 Hive query DBSCAN.

4.7 Apache Pig

Apache Pig is commonly used for developing data querying, simple data analysis and

ETL (Extract, Transform, Load) applications, gathering data from several sources
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such as streams, HDFS, or files. Companies and organizations using Pig in produc-

tion include LinkedIn, PayPal, and Mendeley. For example LinkedIn, the largest

professional online social network, uses the Hadoop ecosystem with Pig, though

native MapReduce is sometimes used for performance reasons. Thanks to the Pig

Latin scripting language, Pig provides a medium-level of abstraction. Compared to

other systems, such as Hadoop, Pig developers are not required to write complex

and lengthy codes. For this reason, Pig is adopted to ease the development process

for several goals, such as link prediction, ad targeting and job recommendations [68].

Pig Latin statements are based on relations, which are similar to tables in a

relational database and can be defined as follows: a relation is a bag; a bag is a

collection of tuples; a tuple is an ordered set of fields; a field is a piece of data.

Tuples in a bag correspond to the rows in a table, although unlike a relational ta-

ble Pig relations do not require that each tuple contains the same number of fields.

A Pig script can use a large set of operators to ease the development of common

tasks on data, such as load, filter, join, and sort. Pig scripts can be invoked by

applications written in many other programming languages (actually Java, Python,

and JavaScript) and it can exploit custom User Defined Functions (UDFs) for ad-

vanced analytics. Each Pig script is translated into a set of MapReduce jobs that

are automatically optimized by the Pig engine by using several built-in optimization

rules, such as reducing unused statements or applying filters during data loading.

In addition, it exploits a multi-query execution system to process an entire script

or a batch of statements at once.

Pig supports both data parallelism, which is exploited by partitioning data in

chunks and processing them in parallel, and task parallelism when multiple queries

run in parallel on the same data.

4.7.1 Programming example

The Pig application discussed here shows how to use Pig for implementing a

dictionary-based sentiment analyzer. Since Pig does not provide a built-in library

for sentiment analysis, the system exploits external dictionaries to associate words

to their sentiments and determine the semantic orientation of the opinion words [69].

Given a dictionary of words associated with positive or negative sentiment, the sen-

timent of a text (e.g., sentence, review, tweet, comment) is calculated by summing

the scores of positive and negative words in the text and then by calculating the

average rating, as shown in Figure 9.

Sentiment scoreTokenize, clean, 
stem

Opinion or review
sentences Bag of words Opinion dictionary

Figure 9 Structure of the proposed Pig application.

As in Hive, developers can include advanced analytics in a script by defining

UDFs. For example, the PROCESS UDF in Listing 25 is aimed at processing a

tuple by removing punctuation as a preprocessing step. Other functionalities, if

required, can be added to the exec method, which is implemented in Java.
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public class Processing extends EvalFunc<String> {
@Override
public String exec(Tuple tuple) throws IOException {

if (tuple == null || tuple.size() == 0 || tuple.get(0) == null)
return null;

String str = (String) tuple.get(0);
// Remove punctuation and, if required, apply lemmatization,

stemming and other
String clean = str.toLowerCase().replaceAll("\\p{Punct}", "");
...
return clean;

}
}

Listing 25 Java UDF processing.

Listing 26 shows the code in PigLatin of the sentiment analyzer. Once registering

the UDF defined in Java, the dataset containing the reviews is loaded from HDFS.

Each review is tokenized and processed according to the function defined in List-

ing 25. Then, a score from a sentiment dictionary is assigned to each token and the

final rating of a review is calculated as the average of the scores of its tokens.

REGISTER PigUDF.jar;
DEFINE PROCESS main.Processing;
-- Load data from HDFS
reviews = LOAD ’hdfs://hostname:port/pigdata/reviews.csv’ USING PigStorage

(’\t’) AS (id:int, text:chararray);
-- Load the dictionary of word sentiment
dictionary = LOAD ’hdfs://hostname:port/pigdata/dictionary.txt’ USING

PigStorage(’\t’) AS (word:chararray,rating:int);
-- Tokenize and process the text of each review
words = FOREACH reviews GENERATE id,text, FLATTEN(TOKENIZE(PROCESS(text)))

AS word;
-- Join each word with the dictionary and assign a score sentiment
matching = JOIN words BY word LEFT OUTER, dictionary BY word;
matches_rating = FOREACH matching GENERATE words::id AS id, words::text AS

text, dictionary::rating AS rate;
-- Group and compute the average rating for a review
group_rating = GROUP matches_rating BY(id,text);
avg_ratings = FOREACH group_rating GENERATE group,AVG($1.$2) AS rate;
-- Store the results
STORE avg_ratings INTO ’ratings’ USING PigStorage(’,’,’-schema’);

Listing 26 Pig sentiment analyzer.

4.7.2 Comparison with Spark SQL

Spark SQL is a module for structured data management and processing. It differs

from the RDD API as it extends Spark with optimizations based on information

about the structure of data and the computations performed. Developers can in-

teract with Spark SQL via SQL statements and the Dataset API, using the same

execution engine. In addition to SQL query execution, Spark SQL can also be

used to read data from an existing Hive environment, as discussed in the Spark

programming example (see Section 4.2.1). Spark SQL provides two high-level ab-

stractions, namely Dataset and DataFrame. A Dataset is a distributed collection of

data, which offers the benefits of RDDs, such as resilience and support for lambda
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functions, along with a set of optimizations performed by the Spark SQL execu-

tion engine. A DataFrame is a Dataset structured into named columns, such as

tables in a relational database, but with further optimizations. DataFrames can be

created from structured files, Hive tables, databases, or existing RDDs. The data

types are automatically inferred, but developers can provide an explicit schema via

a StructType, matching the structure of the DataFrame in named columns. Spark

SQL supports the vast majority of Hive features, such as UDFs and DataFrame

operations. Listing 27 shows how the sentiment analysis application discussed in

the previous section can be implemented with the Spark SQL Dataset API.

// Define the schema for input data
val reviewsSchema = StructType(Array(

StructField("id", IntegerType, true),
StructField("text", StringType, true)))

val dictSchema = StructType(Array(
StructField("word", StringType, true),
StructField("rating", IntegerType, true)))

val spark = SparkSession.builder().config("spark.app.name", "...")
.config("spark.master", "spark://

master_ip:port").getOrCreate()
// Load data into DataFrames
val reviewsDF: DataFrame = spark.read.schema(reviewsSchema).csv(inputFile)
val dictDF: DataFrame = spark.read.schema(dictSchema).csv(sentimentDict)

// Define user defined functions for text processing
val process = udf((text : String) => text.toLowerCase.replaceAll("[ˆ\\w\\s]

", ""))
val tokenize = udf((text : String) => text.split("\\s+"))

// Add a column with processed data
val words = reviewsDF.withColumn("word",explode(tokenize(process(col("text"

)))))

val matching = words.join(dictDF, words("word") === dictDF("word"),
"left_outer").select("id", "text", "rating")

val group_rating: RelationalGroupedDataset = matching.groupBy("id", "text")
val avg_ratings = group_rating.avg("rating")

Listing 27 Sentiment analyzer with Spark SQL.

It is worth noting that Spark SQL always uses the same engine when executing

a query, regardless of which API is adopted (i.e., SQL or Dataset API). This kind

of uniformity brings a major benefit to the developers, which can easily switch

between the two APIs, based on which is the most suitable to express a certain

transformation. As an example, the first query, dedicated to the tokenization of

the processed text, can be easily expressed using SQL statements, as shown in

Listing 28. This requires registering the UDFs in the sqlContext and creating a

temporary or global view of the DataFrames.

spark.sqlContext.udf.register("process", process)
spark.sqlContext.udf.register("tokenize", tokenize)
reviewsDF.createOrReplaceTempView("reviews")
spark.sql("SELECT id, text, explode(tokenize(process(reviews.text)))

as word FROM reviews")

Listing 28 Example of a query with SQL statement instead of the Dataset API.
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5 Comparative analysis
This section summarizes and classifies the main features of all discussed program-

ming frameworks, their diffusion and the advantages and disadvantages. Some of

these systems share features and, in some cases, for programmers choosing one

rather than another is an hard choice that can depend on several factors, such

as budget (e.g., often high-level services are easy-to-use but more expensive than

low-level solutions), type of parallelism, data format, data source, amount of data,

performance, and so on. Indeed, given a specific Big Data analysis task, it can be

implemented using different programming models and systems.

The comparative analysis carried out in this section may help scholars and devel-

opers to choose the best system based on their programming skills, parallel model,

budget, application domain, and support provided by the community of both users

and developers.

5.1 System features

Table 1 summarizes the features of the frameworks according to their programming

model, the type of parallelism, the level of abstraction, the verbosity in writing code

and the main classes of applications.

System
Programming
model

Type of
parallelism

Level of
abstraction

Verbosity Class of applications

Hadoop MapReduce Data Low High
General-purpose
(batch processing)

Spark Workflow Data/Task Low Low

General-purpose
(batch and stream processing,
machine learning, graph analysis,
structured data analysis)

Storm Workflow
Data/Task/
Pipeline

Medium Medium Stream processing (real-time)

Hama BSP Data Low Medium
Massive scientific computations
(matrix computation, graph analysis,
machine and deep learning)

MPI
Message
passing

Data Low Low
General-purpose
(iterative parallel applications)

Hive SQL-Like Data High Low Data querying and reporting

Pig SQL-Like Data/Task Medium Low Data querying and analysis

Table 1 Features of the systems.

As for the level of abstraction, systems have been classified in three categories:

• Low : this category includes Hadoop, Spark, MPI, and Hama. Those systems

provide powerful APIs and primitives that require distributed programming

skills and make the development effort high, but code efficiency is high because

it can be fully tuned;

• Medium: it includes Storm and Pig. Such systems allow developers to imple-

ment parallel and distributed applications using few constructs. They require

some programming skills, but the development effort is lower than systems

with a low-level of abstraction;

• High: this class includes Hive. Those systems require limited programming

skills, allowing developers to rapidly build data analytics applications through

simple visual interfaces or simple scripts.
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About the type of parallelism, systems have been classified as follows:

• Data parallelism: here we have Hadoop, Spark, Storm, MPI, Hama, Hive, and

Pig. Such systems are designed to automatically manage large input data,

which is split in chunks and processed in parallel on different computing nodes.

• Task parallelism: this form of parallelism is exploited in Spark, Storm and

Pig. Such systems allow to run in parallel independent tasks without any

data dependency.

• Pipeline parallelism: it includes Storm, which allows sending the partial output

of a task to the next tasks to be processed in parallel during the stages. Also

workflow-based frameworks may exploit some form of pipeline parallelism.

As regards verbosity, systems have been classified as follows in the view of the

discussed programming examples:

• High: Hadoop is included in this category. Those systems require a large num-

ber of lines of code and the use of many instructions/calls to build even a

simple application. For example, a MapReduce application in Hadoop requires

the definition of the mapper, reducer, and job. Writing applications with these

systems is complex and lengthy [52];

• Medium: it includes Storm and Hama. Such systems require implementing

specific interfaces and methods to codify an application. For example, Storm

requires to implement the interfaces for spouts and bolts, and to override

methods like nextTuple and declareOutputFields;

• Low : it includes frameworks like Spark, MPI, Hive, and Pig. Writing code in

those systems is always compact, because programmers are not forced to use

specific constructs or when needed it requires a few lines of code. They usually

provide an easy to use style of programming (e.g., HiveQL or Pig Latin).

With regard to the class of applications, programmers can decide to exploit some

general-purpose systems like Hadoop, Spark, and MPI or systems that have been

developed to be used in specific application domains. For example, Hama has been

used for developing graph processing applications, Hive and Pig for data querying,

Storm for real-time stream processing and so on.

5.2 System diffusion

Table 2 summarizes the diffusion and popularity of each system from the user and

developer perspectives. Data from Stack Overflow and GitHub has been accessed

in December 2021.

As for the diffusion, we classified the systems considering the following parameters:

• Main companies, which considers the major companies in the IT world that

use a given system.

• User community, which refers to the diffusion of a system among people who

use it. We compared the systems in terms of the number of questions asked

on Stack Overflow. In particular, we used the total number of questions as the

main indicator of user interest towards the system, and the average number

of questions per week for better capturing the latest trends in user adoption.

Spark showed to be the most diffused system with a very large user community,

followed by Hadoop and Hive, MPI, Pig and Storm. Lastly, Hama registered

the fewest number of questions per week.



Belcastro et al. Page 42 of 47

System
Main companies
using it

User community size
questions (weekly)

GitHub
stars

API support
GitHub
commits

Hadoop
Yahoo!, IBM,
Amazon

Large - 43.3k (36) 11.8k
Java, C, C++,
Ruby, Groovy,
Perl, Python

25.1k

Spark
eBay, Amazon,
Alibaba

Very Large - 69.5k (193) 30.4k
Scala, Python,
Java, R

30.8k

Storm
Twitter, Groupon,
Spotify

Small - 2.5k (2) 6.3k
Clojure, Java,
Python, Ruby,
JavaScript

10.4k

Hama
Samsung Electronics,
Korea Telecom, Sogou

Very Small - 22 (<1) 129
Java, Python,
C, C++

1.6k

MPI
Amazon WS, AMD,
Cisco, Facebook

Medium - 6.3k (13) 1.3k
Java, Fortran,
C, C++, Perl,
Python

31.8k

Hive
Facebook, Netflix,
Yahoo!, AirBnB

Large - 20.2k (44) 3.8k HiveQL 15.6k

Pig
LinkedIn, PayPal,
Mendeley

Small - 5.2k (<2) 631 PigLatin 3.7k

Table 2 Diffusion and popularity of the systems.

• GitHub commits, as an indicator of the size of the developer community who

contribute to the development and maintenance of code. We referred to the

number of commits on official GitHub repositories to grasp the interest of

developers in fixing errors/bugs and introducing new features. As seen for the

diffusion among users, Spark showed to be one of the frameworks involving

most contributors, followed by Hadoop but preceded by MPI that gets the in-

terest of programmers coming from a wide range of applications. Hive, Storm,

Pig and Hama follow in order.

• Github stars, as an indicator of popularity and reusability of the systems. In

fact, there exists a strong relationship between system popularity and user-

perceived quality of that system and therefore its reuse. In particular, Pa-

pamichail et al. [70] showed a strong positive correlation between the number

of stars and the number of forks, by analyzing the 100 most popular Java

repositories on GitHub. The most popular and reused system is Spark, fol-

lowed by Hadoop, Storm, Hive, MPI, Pig and Hama.

• API support, which indicates the set of programming languages available to

develop applications with that system. Systems such as Hadoop, Spark, Storm,

and MPI can embrace developers with different programming skills and back-

grounds thanks to the wide set of languages and the provision of APIs in pop-

ular languages (specifically, Python and Java according to the PYPL index

available at https://pypl.github.io/PYPL.html, accessed December

2021). Conversely, languages such as Pig or Hive may require learning new

languages, such as PigLatin or HiveQL.

5.3 Advantages and disadvantages

Table 3 summarizes the main advantages and disadvantages of the described systems

when they are used for programming Big Data analysis applications. The pros and

cons are outlined starting from features emerged during the description of each

https://pypl.github.io/PYPL.html
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system and are discussed in the light of the applications and code snippets proposed

in Section 4.

System Advantages Disadvantages

Hadoop
Fault tolerance,
low cost,
very large open source community

Verbosity,
batch processing only,
small files issues,
inefficiency with iterative applications

Spark

In-memory computing,
ease-of-use,
flexibility,
libraries for advanced analytics,
scalable machine learning support

No automatic optimization process,
small files issues,
high memory consumption

Storm
Multi-language support,
low-latency response time

Message ordering not guaranteed

Hama
Many Distributed FS supported,
general-purpose computing on GPUs,
conflicts and deadlines avoidance

Single point of failure (BSP Master),
low flexibility of partitioning policies,
small community

MPI
Efficiency,
portability,
shared or distributed memory

Hard to debug,
bottleneck in network communication

Hive
Large distributed datasets querying,
SQL-like language,
UDFs for advanced data analysis

Support only for OLAP,
real-time data access not supported

Pig
High-level procedural language,
UDFs for advanced data analysis,
easy learning and development

Small community,
hard to tune performance

Table 3 Advantages and disadvantages of the systems.

The advantages of each system are related to the specific features it offers com-

pared to related systems, in terms of functionality, support for different libraries and

integration with other frameworks. For example, Spark is the only system that lever-

ages an in-memory computing model, enabling the design of efficient data-intensive

applications. Furthermore, as emerged from the comparison with special-purpose

frameworks like Hama, Storm and Pig, Spark is highly flexible and can be lever-

aged in a wide range of application domains, as it provides libraries for stream and

graph processing, machine learning, and structured data analysis.

On the other hand, system disadvantages are mainly related to lacks, weaknesses,

costs and limitations in the use of a given system. For example, Hadoop suffers when

it is used for iterative applications, whereas it is suitable for batch processing. The

main disadvantage of using Storm in real-time data stream computations concerns

the lack of message ordering. The Hama framework offers a simple programming

model also for GPU-based systems, however the BSP Master failure is a critical issue

for that system. MPI is generally efficient but it can be hard to debug due to its low-

level programming model. Hive is well suited for large distributed data querying,

however it does not support OLTP operations. Finally, Pig offers an easy-to-use

programming interface for data analysis applications but debugging is complex.
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6 Final remarks
In the age of Internet of Things and social media platforms, novel programming

models and systems were proposed for collecting and analyzing huge amounts of

data in a reasonable time, by leveraging high performance computers and paral-

lel and distributed algorithms. However, the ability to generate and gather data is

increasing in a constant and drastic way, which poses a series of challenges to the

current solutions aimed at processing, storing and analyzing Big Data. Due to this,

current frameworks are expected to be constantly improved for coping with such

challenges, allowing the effective extraction of useful knowledge in several applica-

tion domains. Furthermore, the novel Exascale systems pose new requirements for

addressing architectures composed of a very large number of cores. In particular,

in the near future, existing frameworks will have to address a wide range of issues

related to energy consumption, scheduling, data distribution and access, communi-

cation and synchronization, in order to enable the scalable implementation of real

Big Data analysis applications [71].

This paper presented a structured analysis and comparison of the most widespread

programming models for Big Data analysis and the features of the main software

frameworks implementing them. In particular, such systems have been compared

according to several criteria concerning three main aspects: their features, diffusion

and the advantages/disadvantages of using them. Furthermore, the analysis of each

system is carried out with the discussion of a programming example and code

snippets to better show the potential and limitations of each one.

The final aim of this work is to support users, designers and developers in identify-

ing and selecting the best solution according to: i) their skills in terms of program-

ming capabilities and knowledge of languages; ii) hardware availability; iii) appli-

cation domain and purposes; and iv) support provided by the software community,

concerning both the availability of multi-language APIs, project maintenance on

GitHub repository and the availability of solutions for problems in Q&A platforms

such as, for example, Stack Overflow or Memory Exceptions.
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