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Abstract

The Data Mining Cloud Framework (DMCF) is an environment for designing and executing data analysis workflows in cloud platforms.
Currently, DMCF relies on the default storage of the public cloud provider for any I/O related operation. This implies that the I/O performance
of DMCF is limited by the performance of the default storage. In this work we propose the usage of the Hercules system within DMCF as an
ad-hoc storage system for temporary data produced inside workflow-based applications. Hercules is a distributed in-memory storage system highly
scalable and easy to deploy. The proposed solution takes advantage of the scalability capabilities of Hercules to avoid the bandwidth limits of
the default storage. Early experimental results are presented in this paper, they show promising performance, particularly for write operations,
compared to the performance obtained using the default storage services.
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I. Introduction

In the last decade, most of the scientific computing problems are
increasing their needs to process large quantities of data. Large
simulations, data visualization, and big data problems are some of
the application areas leading the trends in scientific computing. This
evolution is moving needs from a computing-centric power point of
view to a data-centric approach. Current trends in High Performance
Computing (HPC) also include the use of cloud infrastructures as a
flexible approach to virtually limitless computing resources. Given
this current scenario, a solution that combines HPC, data analysis,
and cloud computing is becoming more and more necessary.

According to their elastic feature, cloud computing infrastructures
can serve as effective platforms for addressing the computational
and data storage needs of most big data applications that are being
developed nowadays. However, coping with and gaining value from
cloud-based big data requires novel software tools and advanced
analysis techniques. Indeed, advanced data mining techniques and
innovative tools can help users to understand and extract what is
useful in large and complex datasets for making informed decisions
in many business and scientific applications.

The Data Mining Cloud Framework (DMCF), developed at Uni-
versity of Calabria, is an environment for designing and executing
data analysis workflows in cloud platforms. Currently, DMCF uses
the storage provided by the cloud provider for any I/O related job.
This implies that the I/O performance of DMCF is limited by the
performance of the default storage. Moreover, it is influenced by
the contention that occurs when other I/O tasks are concurrently

executed in the same region. Finally, the cost of using persistent
storage service to store temporary data should be also taken into
account.

The solution proposed here consists in using Hercules as the
default storage system for temporary data produced in workflows.
Hercules is a distributed in-memory storage system, easy to deploy
and highly scalable. This system has been developed in the ARCOS
research group, at University Carlos III Madrid, and it has also been
proved in traditional HPC cluster with promising results.

This novel approach has three main objectives. The first one is tak-
ing advantage of the scalability of Hercules to avoid the bandwidth
limits of the default storage. When the number of Hercules I/O
nodes increases, the total available aggregated bandwidth usable by
worker nodes is enhanced. The second objective is to allow the de-
ployment, thanks to the easy deployment of Hercules, of an ad-hoc
and independent in-memory storage system to avoid the contention
produced during peak-loads in the cloud storage service. The last
objective is the independence from the cloud platform used. While
each cloud infrastructure have different APIs to access their stor-
age services, Hercules has interfaces for commonly used APIs (like
POSIX-like, put/get, MPI-IO) in order to imply minor modifications
to existing code.

The main focus of this work is to deploy Hercules on a cloud in-
frastructure together with DMCF and to evaluate their performance
with respect to the cloud storage service in different scenarios. This
preliminary evaluation is aimed at demonstrating the capabilities of
Hercules to be used as temporary storage of data analysis applica-
tions developed using DMCF.
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Figure 1: Architecture of Data Mining Cloud Framework.

The remainder of the paper is structured as follows. Section II
describes the main features of DMCF. Section III introduces Hercules
architecture and capabilities. Section IV emphasizes the advantages
of integrating DMCF and Hercules and outlines how this integration
will work. Section V presents preliminary results of the performance
achieved by Hercules in the Azure cloud infrastructure and compares
the results with Azure Storage. Section VI briefly presents other
research work in the same field. Finally, section VII concludes the
work and give some future research related to the presented work.

II. Data Mining Cloud Framework

The Data Mining Cloud Framework (DMCF) [6] is a software system
designed for designing and executing data analysis workflows on
Clouds. A Web-based user interface allows users to compose their
applications and to submit them for execution to the Cloud platform,
following a Software-as-a-Service (SaaS) approach.

The architecture of DMCF includes different components that can
be grouped into storage and compute components (see Figure 1).
The storage components include:

• A Data Folder that contains data sources and the results of
knowledge discovery processes. Similarly, a Tool Folder contains
libraries and executable files for data selection, pre-processing,
transformation, data mining, and evaluation of results.

• Data Table, Tool Table and Task Table contain metadata information
associated with data, tools, and tasks.

• The Task Queue contains the tasks that are ready for execution.

The compute components are:

• A pool of Virtual Compute Servers, which are in charge of exe-
cuting the data analysis tasks.

• A pool of Virtual Web Servers that host the Web-based user
interface.

The DMCF architecture has been designed to be implemented on
top of different Cloud systems. The implementation used in this
work is based on Microsoft Azure1.

1http://azure.microsoft.com

A user interacts with the system to perform the following steps
for designing and executing a knowledge discovery application:

1. The user accesses the Website and designs the workflow through
a Web-based interface.

2. After submission, the system creates a set of tasks and inserts
them into the Task Queue on the basis of the workflow.

3. Each idle Virtual Compute Server picks a task from the Task
Queue, and concurrently executes it.

4. Each Virtual Compute Server gets the input dataset from the
location specified by the workflow. To this end, a file transfer is
performed from the Data Folder where the dataset is located to
the local storage of the Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the
results on the Data Folder.

6. The Website notifies the user as soon as her/his task(s) have
completed, and allows her/him to access the results.

The set of tasks created on the second step depends on how many
data analysis tools are invoked within the workflow. Initially, only
the workflow tasks without dependencies are inserted into the Task
Queue. All the potential parallelism of the workflow is exploited by
using all the needed Virtual Compute Servers.

DMCF allows to program data analysis workflows using two
languages:

• VL4Cloud (Visual Language for Cloud), a visual programming
language that lets users develop applications by programming
the workflow components graphically.

• JS4Cloud (JavaScript for Cloud), a scripting language for pro-
gramming data analysis workflows based on JavaScript [6].

Both languages use two key programming abstractions:

• Data elements, denoting input files or storage elements (e.g., a
dataset to be analyzed) or output files or stored elements (e.g.,
a data mining model).

• Tool elements, denoting algorithms, software tools or complex
applications performing any kind of operation that can be
applied to a data element (data mining, filtering, partitioning,
etc.).

Another common element is the Task concept, which represents
the unit of parallelism in our model. A task is a Tool invoked in
the workflow, which is intended to run in parallel with other tasks
on a set of Cloud resources. According to this approach, VL4Cloud
and JS4Cloud implement a data-driven task parallelism. This means
that, as soon as a task does not depend on any other task in the
same workflow, the runtime asynchronously spawns it to the first
available virtual machine (VM). A task Tj does not depend on a
task Ti belonging to the same workflow (with i 6= j), if Tj during its
execution does not read any data element created by Ti.
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Figure 2: Hercules architecture. On the top the worker side, a user-level
library. On the bottom the server side with the Hercules I/O nodes divided
in modules.

III. Hercules

Hercules [3] is a distributed in-memory storage system based on
the key/value Memcached database [4]. The distributed memory
space can be used by the applications as a virtual storage device
for I/O operations and has been specially adapted in this work for
being used as in-memory shared storage for cloud infrastructures.
Our solution relies on an improved version of Memcached servers,
which provides an alternative storage solution to the default storage
service.

As can be seen in the Figure 2, Hercules architecture has two levels:
worker library and servers. On top is the worker user-level library
with a layered design. Back-ends are based on the Memcached
server, extending its functionality with persistence and tweaks. Main
advantages offered by Hercules are: scalability, easy deployment,
flexibility, and performance.

Scalability is achieved by fully distributing data and metadata
information among all the nodes, avoiding the bottlenecks produced
by centralized metadata servers. Data and metadata placement is
completely calculated in the worker-side by a hash algorithm. The
servers, on the other hand, are completely stateless.

Easy deployment and flexibility at worker-side are tackled using
a POSIX-like user-level interface (open, read, write, close, etc.) in
addition to classic put/get approach existing in current NoSQL
databases. The existing software requires minimum changes to run
with Hercules. The layered design allows for performing any future
change with the minimum required effort. Servers can be deployed
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Figure 3: Deployment scenarios for the combination of Hercules and DMCF
infrastructures.

in any kind of Linux systems at user level. Persistence can be easily
configured using the existing plugins or developing new ones. An
MPI-IO interface is also available for legacy software relying on MPI
as communication system.

Finally, performance and flexibility at server-side are targeted
by exploiting the parallel I/O capabilities of Memcached servers.
Flexibility is achieved by Hercules due to its easiness to be deployed
dynamically on as many nodes as necessary. Each node can be
accessed independently, multiplying the total throughput peak per-
formance. Furthermore, each node can serve requests in a concurrent
way thanks to a multi-threading approach. The combination of these
two factors results in full scalability: both when the number of nodes
increases and when the number of workers running on each node
increases.

IV. Integration between DMCF and Hercules

The final objective of this joint research work is the integration of
DMCF and Hercules. As can be seen in Figure 3, Hercules and
DMCF can be configured in more than one deployment scenarios to
achieve different levels of integration.

The first scenario shows the current approach of DMCF, where
every I/O operation is done against the cloud storage service of-
fered by the cloud provider, which is Azure Storage in this work.
While this storage service is suitable for persistent data, it could be
inefficient for temporary data. The main benefits of a cloud stor-
age service are the convenience of using every tool offered by the
same provider and the persistence options offered, even in different
geographical regions. Nevertheless, there are, at least, four disadvan-
tages about this approach. First, proprietary interfaces and tools to
access the storage service offered by different providers. Second, the
performance offered by this services could have limitations that can
not be avoided and performance could not be stable when there are
peaks of use by other users. Third, the storage services are offered in
a closed configuration, and can not be customized to the necessities
of users at any time. Fourth, the cloud philosophy is tightly related
with the pay-per-use concept. However, it does not make sense to
pay for temporary data as if it was persistent data.

The second scenario, and the first contribution of this paper, is to
use Hercules as the default storage for temporary generated data.
Temporary data is becoming more and more popular in data analysis
and many-task based applications. Most of these applications are de-
veloped as a sequence of tasks that communicate by using temporary
files. Hercules I/O nodes can be deployed on as many VM instances
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as needed by the user depending on the required performance and
the characteristics of data. Even the instance type can be configured
according to the necessities of each different application. As stated
in Section III, Hercules offers different user-level interfaces such as
POSIX-like, put/get, and MPI-IO, allowing a more flexible deploy-
ment of legacy applications than the default cloud storage service.
Cost-wise it is needed to better study the competition between using
a persistence-focused service against launching Hercules I/O node
instances as temporary storage.

The third scenario shows an even tighter integration of DMCF
and Hercules infrastructures. In this scenario Hercules I/O nodes
share virtual instances with the DMCF workers. If the data needed
by the DMCF worker is stored inside the Hercules I/O node running
in the same instance, it will not be necessary to use the network
for accessing data, and every I/O operation will be completely
local. This functionality, paired with the improved data placement
algorithm that stores all the data related with one file in the same
Hercules I/O node, and with a DMCF scheduler that co-locates the
tasks in the nodes where the data is stored, can lead to even better
performance, exposing and exploiting data locality.

Before implementing the system integration, we need to analyze
the potential performance improvement that Hercules can offer on a
public cloud infrastructure, specially against Azure Storage, which
is the storage service chosen in the current DMCF implementation.
This preliminary evaluation is presented in Section V.

V. Evaluation

As mentioned before, to demonstrate the capabilities of Hercules
in accelerating the I/O operations of DMCF workers, we evaluated
the performance of the Azure Storage service against our proposed
solution. For this purpose, we have designed and implemented
a simple benchmark, referred from now on as Filecopy Benchmark.
In this benchmark, a configurable number of workers perform two
simple tasks per worker: the first one is writing files to the configured
storage (Azure Storage or Hercules) and, after the write task is
complete, a read task starts over the data written previously. The
benchmark is fully configurable in terms of:

• Number of worker nodes: each worker node is a VM deployed in
Azure.

• Number of workers per node: worker processes running in the
same node in parallel. This parameter is important to evaluate
how the storage solutions will behave in multi-core architectures
and how they perform when different worker processes share
the same network interface.

• File size: the total size in MegaBytes (MB) of the file can be
configured to simulate different problem sizes.

• Chunk size: in Azure storage, a BLOB object is divided into
blocks (maximum block size of Azure Storage is 4 MB, not
enough for large files). The Java library used for accessing
to Azure Storage, automatically divides a block object in the
required number of block objects. In addition to this behavior,
our implementation divides a file into different BLOB objects.
Chunk size parameter is the size of each of the block objects that
are part of a complete file. In Hercules, it corresponds to the

Table 1: Azure instance type characteristics.

Type Cores RAM (GB) Bandwidth (Mbps)1 Price (e/h)

A0 1 0.75 <100 0.017
A1 1 1.75 ∼240 0.050
A2 2 3.50 ∼480 0.101
A3 4 7.00 ∼960 0.202
A4 8 14.00 ∼1700 0.408
D1 1 3.50 ∼480 0.097
D2 2 7.00 ∼900 0.194
D3 4 14.00 ∼1600 0.388
D4 8 28.00 ∼2000 0.776

buffer size of the POSIX write operation. Internally, Hercules
divides the files in blocks adapted to the key-value hashmap of
Memcached.

The computing resources used during the evaluation are com-
pletely based on Microsoft Azure. Table 1 shows the characteristics
of the different instance types used during our evaluation. All the
resources used were located on the "Western Europe" region and the
OS installed on the VMs was Ubuntu 14.04 LTS. It is also worth to be
noted that, as the objective of the research work is to use Hercules
as temporary storage, persistence features are disabled.

V.1 Chunk size evaluation
For the first evaluation case, we have fixed the file size to 128 MB,
to have a file size that is big enough to show the performance with
different chunk sizes. The chunk size will vary during the evaluation
and we have used the five standard (A0-A4) instance types. Figure
4(a) shows the performance achieved during the write operations
and Figure 4(b) the read operations performance. As it can be
seen in these figures, Azure Storage performs much better for read
(up to 72 MB/s) than for write operations (up to 38 MB/s). Also,
the performance increases with the chunk size, achieving the best
performance around the 32 MB mark. Finally, it is interesting to
note how the performance varies with the instance type used: as
expected, the most expensive instances have the better performance.

V.2 Hercules I/O nodes scalability
The next phase in the evaluation process is the measurement of the
performance difference between Azure Storage and Hercules using
different configurations. Also, we evaluate how Hercules scales
its performance as the number of deployed I/O nodes increases.
Based on the preliminary nature of this evaluation, our budget
was limited to VMs running with a maximum number of 25 cores
in total. After some quick bandwidth evaluation cases (results
showed in Table 1), we selected D1 and D2 instances as the best
performers in network bandwidth per core ratio. D1 instances
achieve a peak performance of 60 MB/s using one core while D2 tops
at around 115 MB/s with two cores, managing to reach almost the
best possible performance of the available Gigabit virtual network
interface. This is 2x the bandwidth available per core compared with

1Bandwidth measured experimentally using iperf tool between two VMs of the same
instance type in the same region.

4



Second NESUS Workshop • September 2015 • Vol. 1, No. 1

0

10

20

30

40

50

60

70

80

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Chunk Size

Azure Storage Filecopy Benchmark (128 MBytes)

Chunk size scalability - WRITE operations

A0 A1 A2 A3 A4

(a) Throughput of Azure Storage by using the Filecopy Benchmark (128 MBytes) for
evaluating the block size for writes.

0

10

20

30

40

50

60

70

80

64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB 32 MB 64 MB 128 MB

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Chunk Size

Azure Storage Filecopy Test (128 MBytes)

Chunk size scalability - READ operations

A0 A1 A2 A3 A4

(b) Throughput of Azure Storage by using the Filecopy Benchmark (128 MBytes) for
evaluating the block size for reads.

Figure 4: File copy benchmark configured for evaluating the Azure Storage
performance depending on the block object size.

Standard ’AX’ instance types. In the future, it would be interesting
to evaluate the performance achieved by Hercules running in the A8
and A9 network optimized instances with Infiniband network, and
56 and 112 Gigabytes of RAM respectively. This network optimized
instances should be the optimal option for running Hercules I/O
nodes.

The final selection for this test is 8 VMs (D1 instances) as worker
nodes and up to 8 VMs (D2 instances) as Hercules I/O nodes. Figure
5 plots the filecopy benchmark results, configuring the experiment
with a file size of 512 MB, with 32 MB of chunk size and executing
one read/write operation per worker node (one worker process
per node) which implies a 4096 MB problem size (512 MB x 8
worker nodes). We have compared four different cases. The first
one is the performance obtained by Hercules using between 1 and
8 I/O nodes. The second case is Azure Storage baseline approach,
using the default access pattern offered by the Java API, without
any optimizations. Third case is Azure Storage applying some
optimizations to the code, specially important is setting up the
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Figure 5: File copy benchmark configured for evaluating the Hercules I/O
nodes scalability. 8 worker processes running on 8 worker nodes access
4 Gigabyte of data. Hercules performance is up to 2x better than Azure
Storage in write operations while performing nearly as good as Azure
Storage in the best read cases.

BlobRequestOptions object property setConcurrentRequestCount with 8
threads per process, using 8 concurrent threads to parallel access to
Azure Storage. The last case can not be directly compared with the
performance achieved by Hercules, because it uses the reserved D2
instances as worker nodes, instead of using them as I/O nodes, to
show the peak performance achievable by Azure Storage with fully
working Gigabit interface, hence the dotted line. In the Hercules
case, the peak performance is limited by the aggregated bandwidth
available worker-side (8x60 MB/s ∼480 MB/s) not by the server-side
8x115 MB/s (∼920 MB/s).

Figure 5(a) shows the performance evolution as the number of
Hercules I/O nodes increase compared to the different Azure Stor-
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age approaches. The figure clearly demonstrates how Hercules
performance tops near the 400 MB/s mark, which is near the maxi-
mum theoretical peak performance of 8x60 MB/s (∼480 MB/s). This
peak performance achieved using 8 I/O nodes for parallel access is
nearly 2x the performance achieved by Azure Storage in any of the
configurations. Some interesting sights in the Azure Storage side
are how both the baseline and the parallel approach performance
is nearly identical caused by only being one core available in D1
instances. Also, it is interesting how the D2 instances performance
using parallel accesses is even lower, exposing the deficiencies of
Azure Storage performance in write operations.

In Figure 5(b), which depicts the read operations performance, can
be clearly seen how the Hercules performance evolves as the number
of I/O nodes available increases. With only one I/O node available,
the performance is ∼100 MB/s, the maximum offered by the network
interface of the I/O node (D2 instance). As the number of I/O nodes
increases, the performance evolves, reaching a peak performance of
∼400 MB/s, again near the theoretical up mark of 480 MB/s and near
the performance of Azure Storage that slightly outperforms Hercules
in this case. Azure Storage performs at the peak performance of
the available network, with same performance in naive and parallel
approaches using D1 instances while performing marginally better
when D2 instances are used as worker nodes.

Third evaluation case is an evolution of the previous test for a
scenario with higher congestion using the same infrastructure (8 D1
instances as worker nodes and 8 D2 instances as Hercules I/O nodes).
In this case, instead of having 1 worker running on each node, we
launched 4 workers running in parallel on each of the worker nodes,
keeping the problem size in 4096 MB. For this purpose, each worker
process writes, and then reads, a 128 MB file, with the same chunk
size of 32 MB.

Figure 6(a), showing the performance in write operations, reports
a very similar behavior of Hercules compared to the previous test
case, but achieving a lower peak performance. At the same time,
Azure Storage performance with D1 instances increases and the
difference between Hercules and Azure Storage is narrowed to a
50% difference in favor of Hercules. Furthermore, using more than
one process per node in the dual-core D2 instances, doubles the
performance obtained by Azure Storage than Hercules in this special
case.

On the other hand, on Figure 6(b), related with read operations,
the peak performance of Hercules is even higher than the previ-
ous case, fully utilizing the ∼480 MB/s of the available aggregated
bandwidth at client-side and surpassing the peak throughput perfor-
mance of Azure Storage accessed from D1 instances. When Azure
Storage is accessed by D2 instances with more than one process
reading in parallel from different files, the performance is almost
doubled, in a similar way seen in the write operations.

As conclusions of the last two cases, we can emphasize how the
aggregated throughput of the workers accessing to the Hercules
storage system approaches the theoretical maximum bandwidth
available in every studied case, showing the scalability capabilities
of our proposed solution. The performance in write operations is
between 1.5x and 2x the performance achieved by Azure Storage
with a similar architecture, while the performance in read operations
in first case is marginally in favor of Azure and in the second case is
comparable.
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Figure 6: File copy benchmark configured for evaluating the Hercules I/O
nodes scalability. 32 worker processes running on eight worker nodes (4
processes per node) access 4 Gigabyte of data. Hercules performance is
up to 2x better than Azure Storage in write operations while performing
nearly as good as Azure Storage in the best read cases.

V.3 Worker nodes strong scalability

The last test cases focus on evaluating the behavior of our solution
with an increasing number of worker nodes accessing the Hercules
storage system. The objective is to evaluate the impact of the con-
gestion against Azure Storage. The test cases are equivalent to the
previous test cases, with Hercules using always 8 I/O nodes, while
Azure Storage is evaluated using the native approach and the op-
timized parallel implementation. The aim of this test is to study a
strong scalability scenario, where an increasing number of worker
nodes perform the same total work: writing 8x512 MB files, a total
problem size of 4096 MB, and then reading them. As expected,
as the number of worker nodes increases, the total available band-
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We set up the experiment with 8 I/O nodes in case of Hercules.
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(b) Throughput varing the worker nodes from 1 to 8, reading 8 files (512 MBytes) per node.
We set up the experiment with 8 I/O nodes in case of Hercules.

Figure 7: File copy benchmark configured for comparing Azure Storage and
Hercules performance with an increasing number of worker nodes accessing
to the storage concurrently. Hercules is configured with 8 I/O nodes
and from 1 to 8 worker nodes access to the storage systems concurrently.
Hercules performance is up to 2x better than Azure Storage in write
operations while performing nearly as good as Azure Storage in most cases.

width increases at the same pace, leading to better peak throughput
performance, but the bottleneck continues at client-side.

Figure 7 shows the same trends already explained in the previous
test cases. In Figure 7(a), which represent the aggregated throughput
in write operations, can be seen how Hercules is always reaching
the theoretical peak performance of each configuration, and how
its performance is better than Azure Storage in every case, even
doubling the performance in the most favorable one.

In the read operations performance case, Figure 7(b), again Her-
cules takes advantage of the available bandwidth in every case and
competes really well with Azure Storage but the case of 8 clients
where the Azure Parallel performance is better.

From the results of the evaluation, we can conclude that Hercules

is capable of fully utilize the available bandwidth of every infrastruc-
ture where it has deployed. Furthermore, the scalability is assured
in any case, on one hand when the number of I/O nodes deployed
increases and, on the other hand, when the number of concurrent
worker nodes scales and the congestion is higher. Compared to
Azure Storage, our proposed solution is up to 2x better in perfor-
mance during write operations and competes on equal conditions
on read operations. Furthermore, should be noted that every test
case evaluated in this work uses the best possible configuration for
Azure Storage, as explained at the beginning of this section, and
it could be predicted the same performance for Hercules in other
scenarios while Azure Storage is expected to be penalized.

The potential of our proposed solution is clearly exposed in this
preliminary benchmark evaluation. However, we are still working
on test cases with a greater number of workers and I/O nodes to
better show the scalability capabilities of the Hercules storage system
deployed on a cloud infrastructure. Our final objective is to find
the limitations in performance of Azure Storage and to evaluate
how many number of Hercules I/O nodes are needed to achieve a
comparable performance.

VI. Related work

The continued growth in popularity of many-task computing has
caused many researchers to focus on research to improve the perfor-
mance of storage systems, one of the major bottlenecks in this type
of paradigms.

Previous solutions for providing in-memory storage are Parrot,
Chirp, and AHPIOS. Parrot [7] is a tool to adapt existing systems
using a remote I/O through the POSIX interface and Chirp [8].
Chirp is a user-level filesystem for collaboration across distributed
platforms such as clusters, clouds, and grid computing systems.

AHPIOS (Ad-Hoc Parallel I/O system for MPI applications) [5]
is a fully scalable system for I/O parallel MPI applications. AH-
PIOS relies on dynamic partitions and elastic demand partitions for
distributed deployment applications. AHPIOS provides different
memory caches levels. Hercules shares many of its features: (1)
the user-level deployment without special privileges, transparency
using a widely and easy deployment by using simple commands,
(2) Hercules is designed to achieve high scalability and performance
by leveraging many compute nodes as possible for I/O nodes, (3)
Hercules uses main memory for temporal storage in order to im-
prove performance in access. Costa et al. [1, 2] propose using the
file attributes of MosaStore to provide communication between the
workflow engine and file system by using hints. The workflow en-
gine can provide these hints directly to the file system or file system
can infer patterns by analyzing the data. The MosaStore approach
is radically different from Hercules, because it uses a centralized
metadata server rather than a focus on easy deployment and fully
distributed as is our proposal. This server could became a bottleneck
in large-scale systems.

The AMFS framework [9] offers programmers a simple scripting
language for scripting execution of parallel applications in memory.
Hercules shares with AMFS and treatment approach distributed
metadata. A difference in AMFS must explicitly specify which data
is to memory and what will be persistent while the goal is to be able
to offer Hercules persistence transparently to the programmer.

HyCache+ [10] is a distributed storage middleware that allows
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effectively use the network bandwidth of the high-end massively par-
allel systems. HyCache + acts as main storage of recently accessed
data (metadata, intermediate results for the analysis of large-scale
data, etc.), and only exchange data asynchronously with the remote
file system. One of the similarities between HyCache+ and Her-
cules is fully distributed metadata approach, the usega of computer
network rather than the network shared storage, and high scala-
bility. HyCache+ is totally based on POSIX while Hercules offers
the possibility of using a POSIX interface and get/set operators. Hy-
Cache+ focuses on improving parallel file systems, while Hercules
is designed to accelerate workflow execution engines, facilitating the
exploitation of data locality in current cloud-based applications.

There are also studies that focus on the study of performance
storage platforms in the cloud. Zhao et al. [11] compares the I/O
performance of S3FS, HDFS, and FusionFS [12]. As demonstrated
in the experimental evaluation conducted in this paper, the perfor-
mance obtained by Hercules equals or exceeds S3FS.

VII. Conclusions and future work

In this work we have presented the integration of the Hercules
system and the Data Mining Cloud Framework in order to design
and evaluate an ad-hoc storage system for temporary data produced
inside data analysis workflow applications.

The evaluation results discussed in this paper clearly demonstrate
the potential performance of Hercules, which is able to use more
than 80% of the available bandwidth in every case and showing its
scalability capabilities in every evaluated scenario. The performance
achieved by Hercules is up to 2x the performance of Azure Storage
in write operations while our proposed solution has been proved
competitive in any scenario with read operations against the cloud
storage service evaluated here.

Given the good results of this preliminary evaluation, our objective
in the near future is to evaluate Hercules in more complex scenarios,
with an increasing number of workers and I/O nodes, to better know
the potential capabilities to work together with DMCF, and in addi-
tion to investigate the limitations of Azure Storage. Furthermore, it
will be interesting to evaluate Hercules against Azure Storage in sce-
narios where Azure Storage is expected to have worse performance:
changing the chunk size, changing the file size, changing the access
patterns, etc.

After this first analysis of the capabilities of Hercules in complex
cases, we will continue working in the integration of Hercules and
DMCF, and in the evaluation of the price/performance ratio reached
by Hercules in contrast with different cloud storage services. The
final objective of our joint research is a fully working DMCF so-
lution using Hercules as temporary storage for real data analysis
applications.
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