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Definitions

A workflow is a well-defined, and pos-
sibly repeatable, pattern or systematic
organization of activities designed to
achieve a certain transformation of
data (Talia et al (2015).

A Workflow Management System
(WMS) is a software environment
providing tools to define, compose,
map, and execute workflows.

Overview

The wide availability of high-
performance computing systems
has allowed data scientists to implement
more and more complex applications for
accessing and analyzing large volumes
of data, commonly referred as Big Data,
on distributed and high-performance
computing platforms.

Given the variety of Big Data appli-
cations and types of users (from end
users to skilled programmers), there is a
need for scalable programming models
with different levels of abstractions and
design formalisms. The programming
models should adapt to user needs by
allowing: i) ease in developing data
analysis applications; ii) effectiveness
in the analysis of large datasets; iii)
high efficiency of executing applications
taking advantage from the infrastructure
size. Workflows represent a widely used
programming models that meets such
requirements. Through its convenient
design approach, they have emerged
as an effective paradigm to address the
complexity and the variety of Big Data
analysis applications. The Workflow
Management Coalition (WFMC (1999))
provided the following definition of
a workflow: “the automation of a
business process, in whole or part,
during which documents, information or
tasks are passed from one participant
to another for action, according to
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a set of procedural rules”. The term
“process” here indicates a set of tasks,
or activities, linked together with the
goal of creating a product, calculating
a result, providing a service and so on.
Hence, each task represents a piece of
work that forms one logical step of the
overall process (Georgakopoulos et al
(1995)). The same definition can be
used for scientific workflows composed
of several tasks (or activities) that are
connected together to express data
and/or control dependencies (Liu et al
(2004)). Thus, a workflow can be also
defined as a “well defined, and possibly
repeatable, pattern or systematic orga-
nization of activities designed to achieve
a certain transformation of data” (Talia
et al (2015)). From a practical point
of view, a workflow is programmed as
a graph, which consists of a finite set
of edges and vertices, with each edge
directed from one vertex to another.
For example, a data analysis workflow
can be designed as a sequence of pre-
processing, analysis, post-processing,
and interpretation tasks. Differently
from DAGs (Directed Acyclic Graphs),
workflows permit to define applications
with cycles, which are circular depen-
dencies among vertices. Workflow tasks
can be composed together following a
number of different patterns (e.g., loops,
parallel constructs), whose variety helps
designers addressing the needs of a
wide range of application scenarios. A
comprehensive collection of workflow
patterns, focusing on the description of
control flow dependencies among tasks,
has been described in Kiepuszewski
et al (2003). The most important ben-
efits of the workflow formalism are:
i) it provides a declarative way for
specifying the high-level logic of an
application, hiding the low-level details

that are not fundamental for application
design; ii) it is able to integrate existing
software modules, datasets, and services
in complex compositions that imple-
ment scientific discovery processes; iii)
once defined, workflows can be stored
and retrieved for modifications and/or
re-execution, by allowing users to define
typical patterns and reuse them in dif-
ferent scenarios (Bowers et al (2006)).
A Big Data analysis workflow can be
designed through a script or a visual-
based formalism. The script-based
formalism offers a flexible programming
approach for skilled users who prefer
to program their workflows using a
more technical approach. Moreover,
this formalism allows users to program
complex applications more rapidly, in
a more concise way, and with higher
flexibility (Marozzo et al (2015)). In
particular, script-based applications can
be designed in different ways: i) with
a programming language that allows to
define tasks and dependencies among
them; ii) with annotations that allows the
compiler to identify which instructions
will be executed in parallel; and iii)
using a library in the application code
to define tasks and dependencies among
them. As an alternative, the visual-based
formalism is a very effective design ap-
proach for high-level users, e.g., domain
expert analysts having a limited knowl-
edge of programming languages. A
visual-based application can be created
by using a visual programming language
that lets users develop applications by
programming the workflow components
graphically. A visual representation
of workflows intrinsically captures
parallelism at the task level, without
the need to make parallelism explicit
through control structures (Maheshwari
et al (2013)).
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Key Research Findings

To cope with the need of high-level tools
for the design and execution of Big Data
analysis workflows, in the past years,
many efforts have been made for the
development of distributed Workflow
Management Systems (WMSs), which
are devoted to support the definition,
creation, and execution of workflows.
A WMS is a software environment
providing tools to define, compose,
map, and execute workflows. A key
function of a WMS during the workflow
execution is coordinating the operations
of individual activities that constitute
the workflow. There are several WMSs
on the market, most of them targeted to
a specific application domain. Existing
WMSs can be grouped roughly into two
main classes:

• Script-based systems, which permits
to define workflow tasks and their
dependencies through instructions of
traditional programming languages
(e.g., Python, Ruby or Java) or
custom-defined languages. Such lan-
guages provide specific instructions
to define and execute workflow tasks,
such as sequences, loops, while-do,
or parallel constructs. These types
of instructions declare tasks and
their parameters using textual spec-
ifications. Typically data and task
dependencies can be defined through
specific instructions or code anno-
tations. Examples of script-based
workflow systems are Swift (Wilde
et al (2011), COMPSs (Lordan et al
(2014)) and DMCF (Marozzo et al
(2015)).

• Visual-based systems, which allows
to define workflows as a graph, where
the nodes are resources and the edges

represent dependencies among re-
sources. Compared with script-based
systems, visual-based systems are
easier to use and more intuitive for
domain-expert analysts having a lim-
ited understanding of programming.
Visual-based workflow systems often
incorporate graphical user interfaces
that allow users to model workflows
by dragging and dropping graph
elements (e.g., nodes and edges).
Examples of visual-based systems
are Pegasus (Deelman et al (2015)),
ClowdFlows( Kranjc et al (2012))
and Kepler (Ludäscher et al (2006)).

Another classification can be done
according to the way a workflow is
represented. Although a standard work-
flow language like Business Process
Execution Language (BPEL) (Juric
et al (2006)) has been defined, scientific
workflow systems often have developed
their own workflow representations.
Other than BPEL, other formalisms
are used to represent and store work-
flows, such as JSON (Marozzo et al
(2015)), Petri nets (Guan et al (2006)),
XML-based languages (Atay et al
(2007)). This situation makes difficult
sharing workflow codes and limits
interoperability among workflow-based
applications developed by using dif-
ferent workflow management systems.
Nevertheless, there are some historical
reasons for that, as many scientific
workflow systems and their workflow
representations were developed before
BPEL existed (Andrews et al (2003)).

In the following, we presents some
representative example of workflow sys-
tems that can be used to implement ap-
plications for Big Data analysis. Some of
them have been implemented on paral-
lel computing systems, other on Grids,
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recently some have made available on
Clouds.

Swift (Wilde et al (2011)) is a script-
ing system for designing and running
workflows across several distributed
systems, like clusters and Clouds,
exploiting an implicit data-driven task
parallelism. In fact, a workflow in Swift
is written as a sequential code using a
C-like syntax, where all variables are
futures, thus the execution is based
on data availability. When the input
data is ready, functions are executed in
parallel. The Swift language provides
a functional programming paradigm
where workflows are designed as a set
of code invocations with their asso-
ciated command-line arguments and
input/output files.

COMPSs (Lordan et al (2014)) is
another workflow system that aims at
easing the development and execution of
workflows in distributed environments,
including Grids and Clouds. COMPSs
applications are written in Java and im-
plemented in a sequential way, without
having to deal with the infrastructure
or with duties of parallelization and
distribution (e.g., synchronizations, data
transfer). In fact, the COMPSs runtime
take care of the actual execution of the
application by converting the methods
in remote tasks and executes them in
parallel according to their dependencies.
Recently, PyCOMPSs (Tejedor et al
(2017)), a new system built on top of
COMPSs, has been proposed with the
aim of facilitate the development of
computational workflows in Python for
distributed infrastructures.

Data Mining Cloud Framework
(DMCF) (Marozzo et al (2016)) is
a software system for designing and
executing data analysis workflows
on Clouds. A workflow in DMCF

can be developed using a visual lan-
guage, namely VL4Cloud (Marozzo
et al (2016)), or a script-based lan-
guage, called JS4Cloud (Marozzo et al
(2015)). VL4Cloud is a convenient
design approach for high-level users,
while JS4Cloud allows skilled users
to program complex applications more
concisely and with greater flexibility.
VL4Cloud/JS4Cloud workflows can
also include MapReduce-based work-
flows that are executed in parallel on
DMCF enabling scalable data process-
ing on Clouds (Belcastro et al (2015a)).
DMCF provides an implicit data-driven
task parallelism. Its runtime is able to
parallelize the execution of workflow
tasks by exploiting the maximal concur-
rency permitted by data dependencies.
It also provides a pipeline parallelism,
since the (partial) output of an array is
passed to the next tasks to be processed.

Pegasus (Deelman et al (2015))
is a workflow management system
developed at the University of Southern
California for supporting the imple-
mentation of scientific applications also
in the area of data analysis. Pegasus
includes a set of software modules to
execute workflow-based applications
in a number of different environments,
including desktops, Clouds, Grids, and
clusters. It has been used in several
scientific areas including bioinformat-
ics, astronomy, earthquake science,
gravitational wave physics, and ocean
science.

ClowdFlows (Kranjc et al (2012))
is a Cloud-based platform for the
composition, execution, and sharing of
interactive data mining workflows. It
provides a user interface that allows pro-
gramming visual workflows in any Web
browser. In addition, its service-oriented
architecture allows using third party
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services (e.g., Web services wrapping
open-source or custom data mining
algorithms). The server side consists of
methods for the client side workflow ed-
itor to compose and execute workflows,
and a relational database of workflows
and data.

Microsoft Azure Machine Learning
(Azure ML) 1 is a SaaS that provides a
Web-based development environment
for creating and sharing machine learn-
ing workflows. Through its user-friendly
interface, data scientists and developers
can perform several common data
analysis and mining tasks and automate
their workflows, without needing to
buy any hardware/software nor manage
virtual machine manually.

Taverna (Wolstencroft et al (2013)) is
a workflow management system devel-
oped at the University of Manchester. Its
primary goal is supporting the life sci-
ences community (biology, chemistry,
and medicine) to design and execute
scientific workflows and support in
silico experimentation, where research
is performed through computer simula-
tions with models closely reflecting the
real world. Even though most Taverna
applications lie in the bio-informatics
domain, it can be applied to a wide
range of fields since it can invoke any
REST or SOAP-based Web services.

ParSoDA (Belcastro et al (2019b))
is a high-level programming library for
developing parallel data mining work-
flows based on the extraction of useful
knowledge from large datasets from
social media. The library provides a set
of widely used functions for processing
and analyzing social media data, which
can be used to extract useful knowledge
and patterns (e.g., topics trends, user

1 https://azure.microsoft.com/it-
it/services/machine-learning-studio/

mobility, user opinions). To simplify
the development process, ParSoDA
defines a general structure for a social
data analysis application that includes
a number of configurable steps and
provides a predefined (but extensible)
set of functions that can be used for
each step. User applications based on
the ParSoDA library can be run on both
Apache Hadoop and Spark clusters.

Examples of Application

Workflows are widely used by sci-
entists to acquire and analyze huge
amount of data for complex analy-
sis, such as in physics (Brown et al
(2007)), medicine (Lu et al (2006) and
sociology (Marin and Wellman (2011)).

The Pan-STARRS astronomical
survey (Deelman et al (2009)) used
Microsoft Trident Scientific Workflow
Workbench for loading and validat-
ing telescope detections running at
about 30 TB per year. Similarly, the
USC Epigenome Center is currently
using Pegasus for generating high
throughput DNA sequence data (up
to 8 billion nucleotides per week) to
map the epigenetic state of human
cells on a genome-wide scale (Juve
et al (2009)). The Laser Interferometer
Gravitational Wave Observatory (LIGO)
uses workflows to design and implement
gravitational wave data analysis, such
as the collision of two black holes or
the explosion of supernovae. The exper-
iment records approximately 1 TB of
data per day, which is analyzed by sci-
entists in all parts of the world (Brown
et al (2007)). In this scenario, workflow
formalism demonstrates its effective-
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ness in programming Big data scientific
applications.

The workflow formalism has been
also used for implementing and execut-
ing complex data mining applications
on large datasets. Some examples are:
Parallel clustering (Marozzo et al
(2011)), where multiple instances of
a clustering algorithm are executed
concurrently on a large census dataset
to find the most accurate data grouping;
RoI mining (Belcastro et al (2020b))
that defines a data mining workflow,
combining both spatial clustering and
text mining techniques, for the parallel
extraction of Regions-of-Interest from
large social media datasets. Association
rule analysis (Agapito et al (2013)),
which is a workflow for association rule
analysis between genome variations
and clinical conditions of a group of
patients; Trajectory mining (Altomare
et al (2017)) for discovering patterns and
rules from trajectory data of vehicles
in a wide urban scenario; Political
polarization (Belcastro et al (2020a))
that exploits a workflow combining
multiple machine learning algorithms
to estimate the polarization of social
media users on political events, which
are characterized by the competition of
different factions or parties. In some
cases, the workflow formalism has been
integrated with other programming
models, such as MapReduce (Dean
and Ghemawat (2008)), to exploit the
inherent parallelism of the application
in presence of Big Data. As an example,
in (Belcastro et al (2015b)) a workflow
management system has been integrated
with MapReduce for implementing a
scalable predictor of flight delays due
to weather conditions (Belcastro et al
(2016)).

Future Directions for Research

Workflow systems for Big Data analy-
sis require high-level and easy-to-use de-
sign tools for programming complex ap-
plications dealing with huge amount of
data. There are several open issues that
will require research and development in
the near future, such as:

• Programming models. Several scal-
able programming models have
been proposed, such as MapRe-
duce, Message Passing (Gropp et al
(1999)), and Bulk Synchronous
Parallel (Valiant (1990)). Such pro-
gramming models could provide
developers with different features
and benefits, in term of level of
abstraction, type of parallelism (e.g.,
task, data, or pipeline parallelism),
capability of executing applications
on a large number of computing
nodes (Belcastro et al (2019a)).
Some development works must be
done for extending workflow systems
to support different programming
models, which could improve their
capabilities in terms of efficiency,
scalability and interoperability with
other systems. In addition, existing
programming paradigms are not
ready to fully support program-
ming software designed to run on
future Exascale systems (i.e., high-
performance computing systems
composed of a very large number
of multi-core processors expected
to deliver at least one exaFLOPS).
Thus, for supporting the Exascale
revolution, new programming mod-
els must be defined to combine
abstraction with both scalability and
performance (Talia et al (2019)).
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• Data storage. The increasing amount
of data generated every day needs
even more scalable data storage
systems. Workflow systems should
improve their capabilities to access
data stored on high-performance stor-
age systems (e.g., NoSQL systems,
Object based storage on Clouds) by
using different protocols.

• Data availability. Workflows sys-
tems have to deal with the problem of
granting service and data availability,
which is an opened challenge that
can negatively affect performances.
Several solutions have been proposed
for improving exploitation, such
as using a cooperative multi-Cloud
model to support Big Data acces-
sibility in emergency cases (Lee
et al (2012)), but more studies are
still needed to handle the continue
increasing demand for more real time
and broad network access.

• Local mining and distributed model
combination. Workflow-based ap-
plications often process data from
different sources (local and dis-
tributed). In such cases, collecting
data on centralized storage is often
impractical or impossible. To ensure
scalability, workflow systems have to
enable local mining of data sources
and model exchange and fusion
mechanisms to compose the results
produced in the distributed nodes.
According to this approach, the
global analysis can be performed
by distributing the local mining
and supporting the global combi-
nation of every local knowledge
to generate the complete model.
Moreover, with the coming arrival
of Exascale systems, data locality
and data affinity mechanisms should
be enabled into workflow systems

so a to take into account local data
access and communication overhead,
which facilitate high performance
and scalability (Talia et al (2019)).

• Integration of Big Data analysis
frameworks. The service-oriented
paradigm allows running large-scale
distributed workflows on heteroge-
neous platforms along with software
components developed using differ-
ent programming languages or tools.
This feature should improve the inte-
gration between workflows and other
scalable Big Data analysis software
systems, such as frameworks for
fine grain in-memory data access
and analysis. In such way, it will be
possible to extend workflows towards
exascale computing, since exascale
processors and storage devices must
be exploited with fine-grain runtime
models.

• Data and tool interoperability and
openness. Interoperability is a main
open issue in large-scale distributed
applications that use resources such
as data and computing nodes. Work-
flow systems should be extended
to support interoperability and ease
cooperation among teams using
different data formats and tools.
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