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Abstract—More and more in recent years, IT companies have
adopted edge-cloud continuum solutions to efficiently perform
analysis tasks on data generated by IoT devices. As an example,
in the context of urban mobility, the use of edge solutions
can be extremely effective in managing tasks that require real-
time analysis and low response times, such as driver assistance,
collision avoidance and traffic sign recognition. On the other
hand, the integration with cloud systems can be convenient for
tasks that require a lot of computing resources for accessing and
analyzing big data collections, such as route calculations and
targeted advertising. Designing and testing such hybrid edge-
cloud architectures are still open issues due to their novelty, large
scale, heterogeneity, and complexity. In this paper, we analyze
how the compute continuum can be exploited for efficiently
managing urban mobility tasks. In particular, we focus on a case
study related to taxi fleets that need to find locations where they
are more likely to find new passengers. Through a simulation-
based approach, we demonstrate that these solutions turn out to
be effective for this class of problems, especially as the number
of connected vehicles increases.

Index Terms—Edge-cloud architecture, IoT infrastructure,
Edge computing, Urban computing, Smart cities, Urban mobility

I. INTRODUCTION

Thanks to the large-scale availability of Internet-of-Things
(IoT) devices, nowadays it is possible to collect large volumes
of data from different sources, such as sensors, cameras,
wearable devices and smartphones [1]. The characteristics of
these data, such as large volume, high velocity, and format
heterogeneity, make their collection, storage and analysis
really challenging. For this reason, much effort has been made
to develop new technologies, architectures and algorithms for
extracting valuable information quickly and accurately [2].

In most cases, the applications used today for processing
data from IoT devices are highly centralized and leverage
cloud platforms to perform all major operations involving data
collection, storage, processing, and analysis. However, using
only the cloud may produce serious inefficiencies in terms
of network traffic, latency times and optimization of energy
consumption. These issues become particularly critical for
some kinds of applications, such as those in the medical and
security fields, where it is vital to have low-latency response
times to avoid serious problems (e.g., fatal accidents) [3]. Be-
cause of this, researchers and IT companies have proposed the
adoption of the edge computing paradigm for processing data
closer to where it is generated, so as to achieve low latency,

privacy preservation and scalability. These benefits can be
complemented by those provided by the cloud, which allows to
aggregate big data persistently and perform compute-intensive
analyses using a large amount of computing resources, from
which the concept of edge-cloud compute continuum [4].

Even in the context of urban mobility, the use of edge-cloud
solutions can prove to be extremely effective in managing the
different tasks that are generated. For example, tasks like driver
assistance, collision avoidance and traffic sign recognition,
which require real-time analysis and low response times, can
benefit from edge computing. Differently, tasks like diagnostic
data collection and analysis, route calculations and targeted
advertising, which require a lot of computing resources and
access to large datasets, can benefit from the use of cloud
computing. However, designing and testing large-scale and
multi-layer edge-cloud architectures are still open issues, espe-
cially for architectures composed of several components based
on different technologies and software stacks [5]. For these
reasons, simulation-based approaches result to be a powerful
and flexible tool for reproducing and testing edge-cloud archi-
tectures, avoiding the risks, costs and failures associated with
extensive field experimentation [6].

This paper analyzes how the compute continuum can be ex-
ploited for efficiently managing tasks related to urban mobility
in large-scale computing environments. In particular, we focus
on a case study related to taxi fleets that need to find locations
where they are more likely to find new passengers. First, a
detailed description of the application scenario is provided,
in which geotagged data generated by taxis is analyzed by
machine learning algorithms. Then, an edge-cloud continuum
architecture is modeled to efficiently handle a large number
of IoT devices and execute machine learning algorithms. The
paper concludes with an experimental evaluation of different
design choices (e.g. number of devices, task type, orchestration
policies) in terms of processing time, network delay, task
failure, and computational resource usage.

The structure of the paper is as follows. Section II discusses
related work. Section III describes the edge-cloud continuum
architecture. Section IV presents a case study and a perfor-
mance evaluation by using two different orchestration policies.
Finally, Section V concludes the paper.



II. RELATED WORK

The widespread availability of IoT devices has posed a chal-
lenge for big data analytics in IoT environments, especially for
processing and analyzing huge amounts of heterogeneous data
produced by such devices. These tasks require new methods
and tools to extract knowledge and in particular machine
learning algorithms to identify patterns and correlations in data
[7], [8]. However, when these algorithms are run by devices
with limited resources (e.g., memory, CPU, bandwidth, and
energy power), it is crucial to guarantee a trade-off between
performance (e.g., the accuracy of the learning model) and
amount of resources required for computation [9]. In this
scenario, the compute continuum has emerged as an efficient
solution to process and analyze the data generated by IoT
devices [10], by complementing edge resources with those
provided by the cloud. However, it must be noticed that
analyzing and validating these solutions would require a large
number of tests on IoT environments using a large number of
devices, which makes it an infeasible approach. As discussed
by D’Angelo et al. [11], using simulation and modeling (M&S)
techniques can overcome this issue. These techniques can help
in designing and evaluating IoT environments by simulating
the structure and behavior of real-world systems, thus making
it possible to manage their complexity.

In recent years there has been a growing interest in ex-
ploiting simulation for the design of IoT solutions to support
a large set of urban mobility applications, including those
using geotagged data [12]. Due to the ubiquitous spread of
end devices equipped with GPS trackers, location-based appli-
cations can benefit from the enormous amount of geotagged
data produced. Those data, usually modeled as trajectories
[13], permit to obtain valuable insights from mobility patterns
for location-based services, such as traffic optimization and
targeted advertising. As an example, analyzing trajectories
generated by taxis to predict the next destination on a journey
can reduce route costs and traffic jams in modern cities. In
fact, unlike other public transports, such as buses or subways,
taxis do not follow fixed routes but plan their routes once a
passenger has been left [14]. In modern smart cities, taxis are
equipped with GPS trackers, which allow real-time monitoring
of vehicles in a specific area. Those geotagged data are usually
sent to an operative center that will route user calls to the
nearest taxi in order to reduce travel costs. In this scenario,
trajectory analysis can be used to know in advance where a taxi
will move after the end of a ride, by predicting where users
will request the service, also known as the next destination
prediction problem. In particular, this problem can be modeled
as a short- or long-term trajectory prediction task, where the
current coordinates are exploited to predict the next position or
a complete route respectively [15]. The simplest way to predict
the next destination is to split an area of interest into a grid
of cells and predict the next visited cell based on the current
one, thereby modeling the problem as a multiclass classifica-
tion [16]. Several solutions have been proposed to predict the
next position of a moving object. Most of them are based on

frequent patterns and association rules and define a trajectory
as an ordered sequence of locations [17]. Nevertheless, the
need to extract meaningful patterns from large-scale and high-
dimensional trajectory data has prompted the use of advanced
analytical techniques, usually based on both supervised and
unsupervised machine learning methods [18]. As an example,
Rathore et al. [15] proposed a scalable clustering and Markov
chain-based framework for trajectory prediction, which can
handle a large number of trajectories in a dense road network,
while Lin et al. [19] employed a neural network-based model.

In terms of tools and software solutions, different simulators
of IoT environments have been proposed in recent years, such
as iFog-Sim [20], IoTSim [21], FogNetSim++ [22], and Edge-
CloudSim [23]. Among these, EdgeCloudSim is particularly
suitable for modeling urban mobility scenarios, as it supports
different architectures, devices, and mobility. For these reasons
it was chosen for this study (see Section IV).

III. SYSTEM ARCHITECTURE

Although cloud computing provides high scalability with
dynamic resource allocation, it may raise performance issues
as a result of the centralization of data collection and process-
ing [24], [25]. An edge-cloud continuum architecture might
address these issues by enabling efficient and fast management
of the massive volume of data generated by IoT devices. In
particular, these architectures enhance computation capabilities
and scalability while reducing network congestion and failed
tasks. For these reasons, such architectures can also have a sig-
nificant impact on urban mobility applications. Figure 1 shows
a three-layer edge-cloud continuum architecture for supporting
urban mobility. The edge-cloud continuum leverages all the
resources from the edge of the network (i.e., IoT devices) to
the core (i.e., cloud data centers) [26]. Specifically:

• At the device layer the IoT devices are leveraged by
vehicles to share information during their movements
across different urban cells. Such vehicles, including
taxis, produce a very high volume of data through em-
bedded modules, such as GPS trackers or infotainment
devices. Those data are then sent to the edge server of
the current cell.

• At the edge layer the devices that compose the edge in-
frastructure process data coming from the device layer as
long as it has sufficient computing and storage resources.
The edge layer may include heterogeneous hardware
components (e.g., gateways, micro data centers), which
serve as elements of the infrastructure that collect and
partially process raw data generated at the device layer.

• At the cloud layer large sets of computing and storage
resources can be dynamically allocated for executing
tasks that cannot be performed by edge servers. From
the perspective of the client, the cloud is an abstraction
for remote, scalable provisioning of computation and
storage resources. For these reasons, it has emerged as
an effective computing paradigm to meet the challenge of
processing big data in limited time, as well as to provide
an efficient data analysis environment [27].
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Fig. 1: The edge-cloud continuum architecture.

The edge layer includes a key component called Edge
Orchestrator (EO), which is responsible for managing and
coordinating the execution of tasks, determining whether each
task will run on the edge or cloud. It can be programmed
to apply various orchestration policies in order to optimize
the overall performance of the architecture, taking into con-
sideration many parameters, such as network congestion, data
volume to be processed, status and workload level of both
edge nodes and cloud. Two orchestration policies were em-
ployed in this work, namely network-based (edge/cloud-NB)
and utilization-based (edge/cloud-UB), whose pseudocode is
shown in Algorithm 1.

Algorithm 1 Edge Orchestrator
1: Initializing EO and orchestration policy p.
2: procedure GETSERVER(task, coord, θ1, θ2)
3: cell← getCell(coord)
4: edgeS ← getEdgeServer(cell)
5: layer ← null
6: if p == Utilization Based then
7: edgeUtilization← getEdgeUtilization()
8: if edgeUtilization>θ1 then
9: layer ← CLOUD

10: else
11: layer ← EDGE
12: end if
13: else
14: wanDelay ← getUpDelay(task.getDevice(),

CLOUD)
15: wanUBW ← getBandwidthUtilization(wanDelay)
16: if wanUBW<θ2 then
17: layer ← CLOUD
18: else
19: layer ← EDGE
20: end if
21: end if
22: return (layer == EDGE)?edgeS : cloud
23: end procedure

In particular, for each task to be scheduled, the cell and
the associated edge server are identified from the coordinates
of the IoT object generating that task (lines 3-4). Then, the
desired orchestration policy (i.e. utilization-based or network-
based) is applied to decide where the incoming task must be
executed. Specifically, the utilization-based policy schedules
tasks based on the utilization of edge nodes (lines 6-12). If
the average edge utilization is greater than a fixed threshold
(i.e., θ1), the incoming task is offloaded to the cloud (lines
8-9); otherwise, it is assigned to the edge layer (lines 10-11).
Instead, the network-based orchestration policy (lines 14-21)
measures the network delay from the device that generated the
task to the cloud (line 14), which is leveraged to determine
the percentage of used bandwidth compared to the maximum
bandwidth (line 15). If it is less than a fixed threshold (i.e.,
θ2), the incoming task is offloaded to the cloud (lines 16-17);
otherwise, it is assigned to the edge layer (lines 18-19). In
the end, according to the chosen layer, the task is assigned
to the cloud or to the edge server of the current cell (line
22). Therefore, the decision whether to offload a task to the
cloud or perform it on the edge server is driven by two main
parameters, i.e. the two thresholds θ1 and θ2. These thresholds
can be chosen according to conventions often used on cloud
platforms [28]–[30] to determine when to scale the computing
resources (e.g., 80% of the total resources).

IV. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed edge-cloud
continuum architecture for supporting urban mobility applica-
tions, we used the EdgeCloudSim simulator. It is a Java-based,
open-source, and discrete event-based simulator designed for
modeling IoT devices and applications, and edge-cloud con-
tinuum architectures. In particular, we considered three tasks:

• Data collection: it consists in collecting and preprocess-
ing the data generated by taxis.



Parameter Description Value

Simulation time (min.) Duration of the simulation in seconds. 36
Number of devices Number of devices (i.e., taxis) used in the simulation scenario. 5k-12.5k
Edge servers Number of edge servers. 100
MIPS for edge server VM Computing processor’s speed of edge servers. 2.5k
MIPS for cloud VM Computing processor’s speed of cloud. 300k
WLAN bandwidth (Mbps) Bandwidth between devices and edge servers. 300
WAN bandwidth (Mbps) Bandwidth between edge servers and the cloud. 150

TABLE I: EdgeCloudSim simulation parameters.

Parameter Description Task
Data

Collection
Model

Training Prediction

Poisson interarrival (s) Mean interarrival time between two tasks. 1k 10k 600
Active period (s) The active period of the task. 10 500 5
Idle period (s) The idle period of the task. 10 10 10
Upload data size (KB) Mean input file sizes to upload. 200 1 200
Download data size (KB) Mean output file sizes to download. 1 1 200

Task length (MI) Mean number of instructions to execute
the incoming task. 25k 60M 50k

TABLE II: Parameter values of the three tasks.

• Model training: it consists in training a machine learning
model, which is periodically updated with new mobility
patterns.

• Prediction: it exploits the trained model for suggesting
the next destination where a taxi should move to find
new passengers.

Table I reports the main simulation parameters used for con-
figuring EdgeCloudSim, while Table II details the parameter
values used for configuring the three tasks described in the
previous. In particular, the three tasks are generated using a
Poisson distribution with different active/idle task generation
patterns and interarrival times. For what concerns the simu-
lation parameters, the training and inference times together
with the information on the hardware characteristics reported
by Rathore et al. [15] have been used to determine the type
of tasks and their average length. For each task, we modeled
a set of information, including the Poisson interarrival, the
active/idle period time of tasks, and the amount of data that is
downloaded and uploaded. In particular, for data collection and
prediction tasks modeling, a low Poisson interarrival value was
set to reflect high device activity in the urban area. Conversely,
a high value was chosen for the training task to represent its
low frequency. Instead, the active and idle periods control the
amount of time a device spends actively generating or not
generating a specific task. For example, a high active period
represents that the task is frequently generated by the device
(i.e., a taxi frequently requests the next location). Finally, the
upload and download data size controls the amount of data
that is generated and transmitted by devices in the simulation.
For example, large upload and download data sizes indicate
a task with high data transmission requirements, such as the
prediction and data collection tasks that involve significant
data exchange.

A large number of experiments have been carried out using
an architecture composed of a cloud and 100 edge servers.
Each edge server is assigned to a specific cell of the urban

area and handles data generated by taxis that are located in that
cell. Specifically, the cloud has been configured as a virtual
machine (VM) equipped with 8 CPU cores, 32 GB of RAM
and 1 TB of storage memory. Instead, each edge server has
been configured as a VM having 4 cores, 4 GB of RAM and
64 GB of storage memory.

As explained above, the described architecture uses two
orchestration policies, which are network-based (edge/cloud-
NB) and utilization-based (edge/cloud-UB). In particular, for
both orchestration policies the threshold values of Algorithm
1 were set at 80%, which means that the computing/network
resources are preserved from being used no more than 80%
of their capacity in order to avoid their saturation. Moreover,
to evaluate the effectiveness of these orchestration policies,
we compared them with a configuration in which data are
processed entirely by the cloud (i.e., cloud-only) and another
in which data are processed entirely by edge servers (i.e.,
edge-only). Four metrics were used to evaluate and compare
the different configurations, i.e. the average processing time,
percentage of failed tasks (i.e., tasks that are unable to be
executed), network delay, and VM utilization.

A. Performance evaluation

In this section, we present the main results we obtained.
Figure 2 reports the performance metrics for each of the four
configurations (cloud-only, edge-only, edge/cloud-NB, and
edge/cloud-UB). In particular, the application is modeled to
simulate the behavior of a taxi fleet in a city like Rome, which
according to official data has about 10k taxi licenses [31].
However, we considered a variable number of taxis, ranging
from 5k to 12.5k, to investigate how a different number of
taxis can impact the performance of the proposed architecture.

Figure 2(a) shows the average processing time obtained
by the different configurations. In particular, the edge-only
configuration showed the worst results, with a significant
drop in performance as the number of vehicles increased (the
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Fig. 2: Performance results for the different configurations (cloud-only, edge-only, edge/cloud-UB and edge/cloud-NB).

processing time has increased from about 10 seconds with
5k vehicles up to about 70 seconds with 12.5k vehicles). In
contrast, the cloud-only configuration achieved a very low
average processing time but with a high number of failed
tasks, which grows significantly as the number of vehicles
increases. In fact, as shown in Figure 2(b), the percentage
of failed tasks for the cloud- and edge-only configurations
increases rapidly as the number of vehicles increases. In
particular, a steep increase can be observed when using more
than 7.5k vehicles: this means that, as long as there are few
vehicles, the cloud-only configuration is able to handle the
incoming workload better than other solutions, but as the
number of devices increases it leads to a higher percentage
of failed tasks (up to 56%). On the other hand, the edge-cloud
solutions lead to a lower task failure rate (on average 6.8%
for edge/cloud-NB and 1.3% for edge/cloud-UB). This is a
crucial aspect to be considered, since in many contexts having
a high number of failed tasks can compromise the usability
of the IoT application. It is worth noting that a task can fail
for three reasons: VM capacity, low network bandwidth or
due to mobility. In particular, if the VM utilization is too
high, incoming tasks may be rejected by any VM. Likewise,

if too many vehicles connect to the same edge server, network
congestion may occur and tasks may fail. Finally, a task may
fail due to the vehicle movement from one cell to another.
As an example, if we analyze the percentage of failed tasks
in the cloud-only configuration, we find that only the 0.02%
fails due to low computation capacity, while almost all failed
tasks are due to network congestion. Among all the considered
configurations, the edge/cloud-NB is able to balance data
traffic between edge and cloud, avoiding sending traffic over
the WAN when it is congested.

Figure 2(c) shows the average network delay. In particular,
it emerges how the cloud-only configuration generates a very
high network delay. In fact, data transfer from the edge to the
cloud results in a significant increase of communication delay
(up to around 98% higher than edge-only), while processing
data locally at the edge does not produce significant effects.

Figure 2(d) illustrates the average VM utilization obtained
by the different simulated configurations. The edge/cloud-
NB achieved the best result showing a low utilization of
resources, while keeping a low processing time and a low
percentage of failed tasks. Reducing the use of VMs is a
crucial aspect in large-scale applications that involve large



computing resources, because it allows for optimizing costs
and energy consumption. Additionally, reducing the risk of
saturating computational resources allows to efficiently man-
age unexpected workload spikes that may occur. It should
be also noted that the edge-only configuration produces a
significant increase in the VM utilization for a high number
of vehicles, but it still achieves a lower task failure rate
than the cloud-only one (see Figure 2(b)). If we analyze in
detail the percentage of VM utilization for the two edge-cloud
continuum configurations, we can get more details about the
behavior of the edge orchestrator. In particular, Figure 3 shows
the percentage of VM utilization on both cloud and edge when
we consider 12.5k taxis. The utilization-based policy results
in a higher utilization of the edge resources (73% compared
to 49% of cloud), while the network-based policy produces a
higher utilization of cloud resources (57% compared to 12%
of edge).
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Fig. 3: Average VM utilization on both cloud and edge with
the two orchestration policies for 12.5K taxis.

Overall, the edge/cloud-UB and edge/cloud-NB outper-
formed the conventional cloud- or edge-only configurations.
Compared to the edge-only configuration, the edge orchestra-
tor leads to a significant reduction in processing time, which
ranges from 30% for edge/cloud-UB to 87% for edge/cloud-
NB. In addition, compared to both cloud- and edge-only
configurations, it permits to reduce the number of failed tasks
(up to 38% for edge/cloud-UB and 40% for edge/cloud-NB)
and the VM utilization (up to 29% for edge/cloud-UB and
38% for edge/cloud-NB).

V. CONCLUSIONS

With the widespread diffusion of IoT devices, edge-cloud
continuum solutions have been proposed to combine the
advantages of edge computing in processing data closer to
where they are generated with those of the cloud in supporting
compute-intensive tasks.

In this paper, we investigated the use of the edge-cloud
continuum for supporting urban mobility applications in a
large-scale environment. In particular, we focused on an ap-
plication scenario that exploits geotagged data for predicting
the next destination where taxis can find passengers. To
assess the benefits of edge-cloud continuum over edge- and
cloud-only, we used a simulation-based approach and two
orchestration policies, based on network (edge/cloud-NB) and
computational resources (edge/cloud-UB) utilization.

Through an experimental campaign, we demonstrated that
the edge-cloud continuum architecture, coupled with the de-
fined orchestration policies, outperforms traditional cloud- or
edge-only architectures, obtaining a significant reduction in
processing time, task failure rate, and resource utilization.

Future research efforts should be devoted to defining novel
and more complex orchestration policies, which can exploit
machine and deep reinforcement learning for improving task
scheduling in the edge-cloud continuum. Such policies can be
further evaluated using emulators instead of simulators to test
how software interacts with underlying hardware.
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