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Abstract MapReduce is one of the most popular programming models for paral-
lel data processing in Cloud environments. Standard MapReduce implementations
are based on centralized master-slave architectures that do not cope well with dy-
namic Cloud environments in which nodes may join and leave the network at high
rates. In this chapter we describe P2P-MapReduce, a framework that exploits a Peer-
to-Peer (P2P) model to manage intermittent nodes participation, master failures and
MapReduce job recovery in a decentralized but effective way. Specifically, the chap-
ter describes the P2P-MapReduce architecture, mechanisms and implementation,
and provides an evaluation of its performance. The performance results confirm that
P2P-MapReduce ensures a higher level of fault tolerance compared to a centralized
implementation of MapReduce.

1 Introduction

Clouds are used as effective computing platforms to face the challenge of extracting
knowledge from big data repositories, as well as to provide efficient data analysis
environments to both researchers and companies [1]. A key point for the effective
implementation of data analysis environments on Cloud platforms is the availabil-
ity of programming models that support a wide range of applications and system
scenarios [2]. One of the most popular programming models adopted for the imple-
mentation of data-intensive Cloud applications is MapReduce [3].
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Since its introduction by Google, MapReduce has proven to be applicable to
many domains, including machine learning and data mining, log file analysis, finan-
cial analysis, scientific simulation, image retrieval and processing, blog crawling,
machine translation, language modelling, and bioinformatics. It is widely recog-
nized as one of the most important programming models for Cloud environments,
being it supported by leading providers such as Amazon, with its Elastic MapReduce
service1, and Google itself, which released a MapReduce API for its App Engine2.

MapReduce defines a framework for processing large data sets in a highly par-
allel way by exploiting computing facilities available in a large cluster or through
a Cloud system. Users specify the computation in terms of a map function that
processes a key/value pair to generate a list of intermediate key/value pairs, and a
reduce function that merges all intermediate values associated with the same inter-
mediate key. Standard MapReduce implementations (e.g., Googles MapReduce [4]
and Apache Hadoop [5]) are based on a master-slave model. A job is submitted by
a user node to a master node that selects idle workers and assigns each one a map
or a reduce task. When all map and reduce tasks have been completed, the master
node returns the result to the user node. The failure of a worker is managed by re-
executing its task on another worker, while standard MapReduce implementations
do not handle with master failures as designers consider failures unlikely in large
clusters or in reliable Cloud environments.

On the contrary, node failures - including master failures - can occur in large
clusters and are likely to happen in dynamic Cloud environments like a Cloud of
clouds, which can be formed by a large number of computing nodes that join and
leave the network at very high rates. Therefore, providing effective mechanisms
to manage master failures is fundamental to exploit the MapReduce model in the
implementation of data-intensive applications in large dynamic Cloud environments
where standard MapReduce implementations could be unreliable.

P2P-MapReduce [6] exploits a peer-to-peer model to manage node churn, mas-
ter failures, and job recovery in a decentralized but effective way, so as to pro-
vide a more reliable MapReduce middleware that can be effectively exploited in
dynamic Cloud infrastructures. This chapter describes the P2P-MapReduce archi-
tecture, mechanisms and implementation, and provides an evaluation of its perfor-
mance. The performance results confirm that P2P-MapReduce ensures a higher level
of fault tolerance compared to a centralized implementation of MapReduce.

The remainder of the chapter is organized as follows. Section 2 provides a back-
ground on MapReduce. Section 3 describes the P2P-MapReduce architecture. Sec-
tion 4 discusses the fault tolerance mechanisms used in P2P-MapReduce. Section 5
describes how the system has been implemented. Section 6 presents an evaluation
of its performance. Finally, Section 7 concludes the chapter.

1 http://aws.amazon.com/emr/
2 https://cloud.google.com/appengine/docs/java/dataprocessing/
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2 MapReduce Background

This section describes the operations performed by a generic MapReduce applica-
tion to transform input data into output data according to the standard master-slave
model, and discusses some popular MapReduce frameworks.

MapReduce Users define a map and a reduce function [3]. The map function
processes a (key, value) pair and returns a list of intermediate (key, value) pairs:

map (k1,v1)→ list(k2,v2).

The reduce function merges all intermediate values having the same intermediate
key:

reduce (k2, list(v2))→ list(v2).

The whole transformation process can be described through the following steps
(see Fig. 1):

Data 
splits

MASTER

Reducer

Input 
data

Output
data

Mapper

Job
descriptor

Distributed File System

Mapper

Mapper

Intermediate 
results

Reducer

Final 
results

Fig. 1 Execution phases in a generic MapReduce application

1. A master process receives a job descriptor that specifies the MapReduce job to
be executed. The job descriptor contains, among other information, the location
of the input data, which may be accessed using a distributed file system or an
HTTP/FTP server.

2. According to the job descriptor, the master starts a number of mapper and re-
ducer processes on different machines. At the same time, it starts a process that
reads the input data from its location, partitions that data into a set of splits, and
distributes those splits to the various mappers.
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3. After receiving its data partition, each mapper process executes the map function
(provided as part of the job descriptor) to generate a list of intermediate key/value
pairs. Those pairs are then grouped on the basis of their keys.

4. All pairs with the same keys are assigned to the same reducer process. Hence,
each reducer process executes the reduce function (defined by the job descriptor)
which merges all the values associated to the same key to generate a possibly
smaller set of values.

5. The results generated by each reducer process are then collected and delivered to
a location specified by the job descriptor, so as to form the final output data.

Several applications of MapReduce have been demonstrated, including: perform-
ing a distributed grep; counting URL access frequency; building a reverse Web-link
graph; building a term-vector per host; building inverted indexes, performing a dis-
tributed sort. Ref. [5] mentions many significant types of applications implemented
exploiting the MapReduce model, including: machine learning and data mining, log
file analysis, financial analysis, scientific simulation, image retrieval and processing,
blog crawling, machine translation, language modelling, and bioinformatics.

Besides the original MapReduce implementation by Google [4], several other
MapReduce implementations have been realized within other systems, including
Hadoop [5], GridGain [7], Skynet [8], MapSharp [9] and Disco [10]. Another sys-
tem sharing most of the design principles of MapReduce is Sector/Sphere [11],
which has been designed to support distributed data storage and processing over
large Cloud systems. Sector is a high-performance distributed file system; Sphere
is a parallel data processing engine used to process Sector data files. Some other
works focused on providing more efficient implementations of MapReduce compo-
nents, such as the scheduler [12] and the I/O system [13], while others focused on
adapting the MapReduce model to specific computing environments, like shared-
memory systems [14], volunteer computing environments [15], desktop grids [16],
and mobile environments [17].

Even though P2P-MapReduce [18] shares some basic ideas with some of the sys-
tems discussed above (in particular, [15] and [17]), it also differs from all of them
for its use of a peer-to-peer approach both for job and system management. Indeed,
the peer-to-peer mechanisms implemented by P2P-MapReduce allow nodes to dy-
namically join and leave the network, change state over time, manage nodes and job
failures in a way that is completely transparent both to users and applications.

3 P2P-MapReduce Architecture

The P2P-MapReduce architecture includes three types of nodes, as shown in Fig-
ure 2: user, master and slave. Computing nodes are dynamically assigned the master
or the slave role, thus the sets of master and slave nodes change their composition
over time, as discussed later. User nodes submit their MapReduce jobs, composed
by multiple map/reduce tasks, through one of the available masters. The choice of
the master to which submit the job may be done on the basis of the current workload
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of the available masters, i.e., the user may choose the master that is managing the
lowest number of jobs.

Master nodes are at the core of the system. They perform three types of oper-
ations: management, recovery and coordination. Management operations are those
performed by masters that are acting as the primary master for one or more jobs.
Recovery operations are executed by masters that are acting as backup master for
one or more jobs. Coordination operations are performed by the master that is acting
as the network coordinator. The coordinator has the power of changing slaves into
masters, and vice versa, so as to keep the desired master/slave ratio.

Each slave executes the tasks that are assigned to it by one or more primary
masters. Task assignment may follow various policies, based on current workload,
highest reliability, and so on. In our implementation tasks are assigned to the slaves
with the lowest workload, i.e., with the lowest number of assigned tasks. Jobs and
tasks are managed by processes called Job Managers and Task Managers, respec-
tively. Each primary master runs one Job Manager thread per managed job, while
each slave runs one Task Manager thread per managed task. Moreover, masters use
a Backup Job Manager for each job they are responsible for as backup masters.
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Fig. 2 Architecture of P2P-MapReduce.
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Figure 2 shows an example scenario in which three jobs have been submitted:
one job by User1 (Job1) and two jobs by User2 (Job2 and Job3). Focusing on Job1,
Node1 is the primary master, and two backup masters are used (Node2 and Node3).
Job1 is composed by five tasks: two of them are assigned to Node4, and one each to
Node7, Node9 and Node11.

If the primary master Node1 fails before the completion of Job1, the following
recovery procedure takes place:

• Backup masters Node2 and Node3 detect the failure of Node1 and start a dis-
tributed procedure to elect the new primary master among them.

• Assuming that Node3 is elected as the new primary master, Node2 continues
to play the backup function and, to keep the desired number of backup masters
active (two, in this example), another backup node is chosen by Node3. Then,
Node3 binds to the connections that were previously associated to Node1, and
proceeds to manage the job using its local replica of the job state.

As soon as the job is completed, the (new) primary master notifies the result to
the user node that submitted the managed job.

4 System Mechanisms

The behavior of a generic node is modeled as a state diagram that defines the differ-
ent states a node can assume, and all the events that determine the transitions from
a state to another state. Figure 3 shows such state diagram modeled using the UML
State Diagram formalism.

The state diagram includes two macro-states, SLAVE and MASTER, which de-
scribe the two roles that can be assumed by each node. The SLAVE macro-state
has three states, IDLE, CHECK MASTER and ACTIVE, which represent respec-
tively: a slave waiting for task assignment; a slave checking the existence of at
least one master in the network; a slave executing one or more tasks. The MASTER
macro-state is modelled with three parallel macro-states, which represent the dif-
ferent roles a master can perform concurrently: possibly acting as the primary mas-
ter for one or more jobs (MANAGEMENT); possibly acting as a backup master for
one or more jobs (RECOVERY); coordinating the network for maintenance purposes
(COORDINATION).

The MANAGEMENT macro-state contains two states: NOT PRIMARY, which rep-
resents a master node currently not acting as the primary master for any job, and
PRIMARY, which, in contrast, represents a master node currently managing at least
one job as the primary master. Similarly, the RECOVERY macro-state includes two
states: NOT BACKUP (the node is not managing any job as backup master) and
BACKUP (at least one job is currently being backed up on this node). Finally, the
COORDINATION macro-state includes four states: NOT COORDINATOR (the node
is not acting as the coordinator), COORDINATOR (the node is acting as the co-
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Fig. 3 Behavior of a generic node described by a UML State Diagram.

ordinator), WAITING COORDINATOR and ELECTING COORDINATOR for nodes
currently participating to the election of the new coordinator, as specified later.

The combination of the concurrent states [NOT PRIMARY, NOT BACKUP,
NOT COORDINATOR] represents the abstract state MASTER.IDLE. The transition
from master to slave role is allowed only to masters in the MASTER.IDLE state.
Similarly, the transition from slave to master role is allowed to slaves that are not in
ACTIVE state.

5 Implementation

We implemented a prototype of the P2P-MapReduce framework using the JXTA
framework [19]. JXTA provides a set of XML-based protocols that allow comput-
ers and other devices to communicate and collaborate in a peer-to-peer fashion. In
JXTA there are two main types of peers: rendezvous and edge. The rendezvous peers
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act as routers in a network, forwarding the discovery requests submitted by edge
peers to locate the resources of interest. Peers sharing a common set of interests
are organized into a peer group. To send messages to each other, JXTA peers use
asynchronous communication mechanisms called pipes. Pipes can be either point-
to-point or multicast, so as to support a wide range of communication schemes. All
resources (peers, services, etc.) are described by advertisements that are published
within the peer group for resource discovery purposes.

All master and slave nodes in the P2P-MapReduce system belong to a single
JXTA peer group called MapReduceGroup. Most of these nodes are edge peers,
but some of them also act as rendezvous peers, in a way that is transparent to the
users. Each node exposes its features by publishing an advertisement containing
basic information that are useful during the discovery process, such as its role and
workload. Each advertisement includes an expiration time; a node must renew its
advertisement before expiration; nodes associated with expired advertisements are
considered as no longer present in the network.

Each node publishes its advertisement in a local cache and sends some keys iden-
tifying that advertisement to a rendezvous peer. The rendezvous peer uses those keys
to index the advertisement in a distributed hash table called Shared Resource Dis-
tributed Index (SRDI), that is managed by all the rendezvous peers of MapReduce-
Group. Queries for a given type of resource (e.g., master nodes) are submitted to
the JXTA Discovery Service that uses SRDI to locate all the resources of that type
without flooding the entire network.

Pipes are the fundamental communication mechanisms of the P2P-MapReduce
system, since they allow the asynchronous delivery of event messages among nodes.
Different types of pipes are employed within the system: bidirectional pipes are
used between users and primary masters to submit jobs and return results, as well
as between primary masters and their slaves to submit tasks and receive results no-
tifications, while multicast pipes are used by primary masters to send job updates to
their backups.

Figure 4 uses the UML Deployment/Component Diagram formalism to describe
the software modules inside each node and how those modules interact with each
other in a P2P-MapReduce network.

Each node includes three software modules/layers: Network, Node and MapRe-
duce:

• The Network module is in charge of the interactions with the other nodes by using
the pipe communication mechanisms provided by the JXTA framework. When
a connection timeout is detected on a pipe associated with a remote node, this
module propagates the appropriate failure event to the Node module. Addition-
ally, this module allows the node to interact with the JXTA Discovery Service for
publishing its features and for querying the system (e.g., when looking for idle
slave nodes).

• The Node module controls the lifecycle of the node in its various aspects, includ-
ing network maintenance, job management, and so on. Its core is represented by
the FSM component which implements the logic of the finite state machine de-
scribed in Figure 3, steering the behavior of the node in response to inner events
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Fig. 4 Software modules inside each node and interactions among nodes.

or messages coming from other nodes (i.e., job assignments, job updates, and so
on).

• The MapReduce module manages the local execution of jobs (when the node is
acting as a master) or tasks (when the node is acting as a slave). Currently this
module is built around the local execution engine of the Hadoop system [5].

6 Evaluation

The evaluation has been carried out by using a custom-made discrete-event simula-
tor that reproduces the behavior of the P2P-MapReduce prototype described in the
previous section, as well as the behavior of a centralized MapReduce system that
performs the standard operations described in Section 2.

The simulator models joins and leaves of nodes and job submissions as Pois-
son processes; therefore, the inter-arrival times of all the join, leave and submission
events are independent and obey an exponential distribution with a given rate. Ta-
ble 1 shows the input parameters used during the simulation.
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Table 1 Simulation parameters

Symbol Description Values
N Initial number of nodes in the network 10000

NM Number of masters (% on N) 1 (P2P only)

NB Number of backup masters per job 1 (P2P only)

LR
Leaving rate: avg. number of nodes that leave the network
every minute (% on N) 0.025, 0.05, 0.1, 0.2, 0.4

JR
Joining rate: avg. number of nodes that join the network ev-
ery minute (% on N) equal to LR

SR
Submission rate: avg. number of jobs submitted every
minute (% on N) 0.01

CT Avg. computing time of a job (hours) 150

NT Avg. number of tasks of a job 300

As shown in the table, we simulated MapReduce systems having a size of 10000
nodes, including both slaves and masters. In the centralized implementation, there
is one master only and there are not backup nodes. In the P2P implementation,
there are 1% masters (out of N) and each job is managed by one master which
dynamically replicates the job state on one backup master.

To simulate node churn, a joining rate JR and a leaving rate LR have been defined.
On average, every minute JR nodes join the network, while LR nodes abruptly leave
the network so as to simulate an event of failure (or a graceless disconnection). In
our simulation JR = LR to keep the total number of nodes approximatively constant
during the whole simulation. In particular, we used five values for JR and LR: 0.025,
0.05, 0.1, 0.2 and 0.4, so as to evaluate the system under different churn rates. Note
that such values are expressed as a percentage of N. For example, if N = 10000 and
LR = 0.05, there are on average 5 nodes leaving the network every minute.

Every minute, SR jobs are submitted on average to the system by user entities.
The value of such submission rate is 0.01, expressed, as for JR and LR, as a percent-
age of N. Each job submitted to the system is characterized by two parameters, total
computing time CT and number of tasks NT , whose average values are reported in
the table.

For a given submitted job, the system calculates the amount of time that each
slave needs to complete the task assigned to it as the ratio between the total com-
puting time and the number of tasks required by that job. Tasks are assigned to the
slaves with the lowest workload, i.e., with the lowest number of assigned tasks. Each
slave keeps the assigned tasks in a priority queue. After the completion of the cur-
rent task, the slave selects for execution the task that has failed the highest number
of times among those present in the queue.

At the end of the simulation, we collected two main performance indicators:

• The percentage of failed jobs, which is the number of jobs failed expressed as a
percentage of the total number of jobs submitted.
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• The percentage of lost computing time, which is the amount of time spent exe-
cuting tasks that were part of failed jobs, expressed as a percentage of the total
computing time.

For the purpose of our evaluation, a “failed” job is a job that does not complete
its execution, i.e., does not return a result to the submitting user entity. The failure
of a job is always caused by a not-managed failure of the master responsible for that
job. The failure of a slave, on the contrary, never causes a failure of the whole job
because its task is reassigned to another slave.

Figure 5 compares the P2P and centralized implementations in terms of percent-
age of failed jobs.
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Fig. 5 Percentage of failed jobs

As expected, with the centralized MapReduce implementation the percentage
of failed jobs significantly increases with the leaving rate, passing from 2.5% when
LR = 0.025, to 38.0% when LR = 0.4. In contrast to the centralized implementation,
the P2P-MapReduce framework is limitedly affected by job failures. In particular,
the percentage of failed jobs is 0% for LR≤ 0.2, while it is 0.2% for LR = 0.4 even
if only one backup master per job is used.

Figure 6 reports the percentage of lost computing time in centralized and P2P
implementations related to the same experiments of Figure 5, for different leaving
rates. The figure also shows the amount of lost computing time, expressed in hours,
in correspondence of each graph point for the centralized and P2P cases.

The lost computing time follows a similar trend as the percentage of failed jobs.
For example, the percentage of lost computing time for the centralized system passes
from 1.9% when LR = 0.025 to 24.2% when LR = 0.4, while the percentage of time
lost by the P2P system is under 0.1% in the same configurations. The difference
between centralized and P2P is even clearer if we look at the absolute amount of
computing time lost in the various scenarios. In the worst case (LR=0.4), the cen-
tralized system loses 29753 hours of computation, while the amount of lost comput-
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Fig. 6 Percentage of lost time. The numbers in correspondence of each graph point represent the
amount of lost computing time expressed in hours.

ing time with the P2P-MapReduce system is only 62 hours. An additional series of
simulation results can be found in [6].

7 Conclusions

Providing effective mechanisms to manage master failures, job recovery and inter-
mittent participation of nodes is fundamental to exploit the MapReduce model in
the implementation of data-intensive applications in dynamic Cloud environments
where current MapReduce implementations may be unreliable.

The P2P-MapReduce model described in this chapter exploits a P2P model to
perform job state replication, manage master failures and allow intermittent partic-
ipation of nodes in a decentralized but effective way. Using a P2P approach, we
extended the MapReduce architectural model making it suitable for highly dynamic
environments where failure must be managed to avoid a critical loss of computing
resources and time.

The performance analysis conducted through simulation confirms that P2P-
MapReduce ensures a higher level of fault tolerance compared to a centralized im-
plementation of MapReduce. A prototype of the system is available at the following
url: http://gridlab.dimes.unical.it/projects/p2p-mapreduce/.
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