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Abstract

Social media platforms are increasingly used to convey advertising campaigns for
products or services. A key issue is to identify an appropriate set of influencers
within a social network, investing resources to get them to adopt a product.
Influence maximization is an optimization problem that aims at finding a small
set of users that maximize the spread of influence in a social network. In this pa-
per we propose an influence maximization algorithm, named Weighted Artificial
Bee Colony (WABC), that is based on a bio-inspired technique for identifying a
subset of users which maximizes the spread. The proposed algorithm has been
applied to a case study that analyzes the propagation of information among
Twitter users during the Constitutional Referendum held in Italy in 2016. Our
analysis is aimed at identifying the main influencers of the yes and no factions,
and deriving the main information diffusion strategies of each faction during
the political campaign. WABC outperformed ranking-proxy techniques based
on classical centrality measures, i.e., PageRank, Rank and Degree. Even com-
pared to DIRIE, which exploits a more complex algorithm, WABC was able to
find a more accurate set of users which allows to maximize the spread in almost
all the considered configurations.

Keywords: Influence maximization, information diffusion, information spread,
social network analysis, bio-inspired computing, heuristic algorithms.

1. Introduction

Millions of people every day interact on social media platforms by generat-
ing large amounts of data [12], which can be exploited for extracting valuable
information in different application contexts, such as information diffusion [1],
sentiment [16] and opinion mining [4, 27], news gathering [34] and misinforma-
tion blocking [26].
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A very active research area that seeks to exploit the data available on social
media is viral marketing. Viral marketing or viral advertising is a business strat-
egy that uses social media to promote a product or service. An efficient way for
performing a good marketing campaign is to identify an appropriate set of influ-
encers among users and invest resources to make them adopt a product/service.
This can lead to a cascade process, influencing consumer preferences in a large
part of the network [33, 15].

Influence maximization is an optimization problem that aims at finding a
small set of users that maximize the spread of influence in a social network [2].
Initially proposed as a stochastic optimization problem in [11], it consists in
identifying a set of k users with the greatest overall influence, by analyzing
the structure of the network and user interconnections, as well as user-specific
features such as demographic properties [32].

Influence maximization is an NP-Hard problem, with two sources of hard-
ness: i) the complexity of computing the spread, i.e. the number of influenced
users; ii) the combinatorial nature of identifying the best solution, that max-
imizes the influence, among all possible combinations. For this reason, imple-
menting efficient influence maximization algorithms requires the use of heuristic
methods and also of parallel computing models. An effective parallel computing
paradigm to be used here is the Bulk Synchronous Parallel (BSP) model, that
simplifies the implementation of parallel applications by exploiting distributed-
memory parallelism. An efficient implementation of BSP is provided by the
Apache Hama framework.

This paper describes the functioning and the implementation of an influ-
ence maximization algorithm, namely Weighted Artificial Bee Colony (WABC),
aimed at identifying a subset of users which maximizes the spread. It is based
on a bio-inspired approach based on the Artificial Bee Colony algorithm [18]
that has been modified for implementing the influence maximization task [31],
by introducing several changes and improvements with respect to previous re-
lated work. In particular, the proposed algorithm exploits an effective approach
to evaluate the fitness value, which can be considered as the resolution of a
reachability problem centered on the paths of maximum probability. We also
addressed the influence overlap problem of classical influence ranking-proxy al-
gorithms, avoiding the negative effects caused by influence redundancy during
the maximization process. Moreover, the proposed algorithm is less sensitive
to parameter tuning in comparison to related work, as it dynamically sets the
depth at which to explore the graph, focusing more on the most promising paths.
All of these factors contribute in making the model able to produce an accurate
estimate of the total spread for the final seed set, which is useful for estimating
the number of users who will actually be influenced.

The WABC algorithm has been applied to a case study that analyzes the
propagation of information in Twitter during the Constitutional Referendum
held in Italy in 2016, for identifying the main influencers of the two factions, i.e.
yes and no, and deriving the main information diffusion strategies of each fac-
tion during the political campaign. We experimentally evaluated the accuracy of
the WABC algorithm through its implementation in Apache Hama. For analyz-
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ing qualitative aspects, we classified the identified influencers according to their
profile (journalistic page, political activist, popular or normal user) to better
determine the type of political campaign. We carried out several simulations in
order to measure their influence strength. For what concerns quantitative anal-
ysis, we compared the obtained results with both standard ABC algorithm and
other related state-of-art techniques in terms of computing time, evaluated spread
and relative error on the expected spread. Specifically, WABC turned out to be
more time consuming than its classical version (ABC), but much more accurate
in determining the expected spread, with an up to 24% decrease of the relative
estimation error. Furthermore, it outperformed ranking-proxy techniques based
on classical centrality measures, i.e., PageRank, Rank and Degree, with an up
to 40% improvement. Even compared to DIRIE, which is based on the Inde-
pendent Cascade model and exploits a more complex algorithm, WABC was
able to find a more accurate set of users which allows to maximize the spread in
almost all the considered configurations. Overall, the obtained results confirm
the effectiveness of the proposed approach in identifying the leading influencers
of a social network and understanding the main information diffusion strategies.

The remainder of the paper is organized as follows. Section 2 describes the
main information diffusion models used in literature. Section 3 discusses influ-
ence maximization related work. Section 4 describes the proposed algorithm.
Section 5 presents the experimental evaluation on a case study, and Section 6
concludes the paper.

2. Information diffusion models

Interactions among users of a social network can be represented as a directed
graph G = (V,E), where V is the set of users in the network and E represents
the relationship among them as edges directed from one vertex to another. The
influence exercises by a user on the other members of the network is modeled as
a function p : E → [0, 1] that associates a weight to each relationship (u, v) ∈ E.
Given a user node u ∈ V , we define with N in(u) and Nout(u) the sets of users
v ∈ V for which there exists a relationship (v, u) ∈ E and (u, v) ∈ E respectively.

In a diffusion model, nodes can be partitioned according to their current
state: influenced (i.e., nodes that have been activated during the diffusion pro-
cess), active (i.e., nodes that can propagate influence and activate others), and
idle (i.e., nodes that have not yet been activated). The diffusion process starts
from a small set of active nodes, called seed set S ⊆ V . Therefore, each node of
the seed set can iteratively influence its out-neighbors and the process generally
stops when there are no new active users. Diffusion models can be divided in
two classes: i) progressive models, which does not allow a user to become idle
once activated; ii) non progressive, in which deactivation is allowed at any time.

The most used diffusion models in literature are progressive, since the growth
of the active set is monotonic, which ensures the termination of the propagation
process in a finite number of steps when the number of users is finite. In the
following we outline the two most used models, Independent Cascade (IC) and
Linear Threshold (LT).
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Independent Cascade. The independent Cascade model (IC) originally
described by Kempe et al. [19], is characterized by the independence of activation
among nodes. Given the input network graph G = (V,E) an initial set of active
nodes, i.e. the seed set S, is chosen. Therefore, the IC model generates the
active sets At for each step t ≥ 1 following a randomized diffusion dynamics,
with A0 = S. Specifically at the step t, for each inactive node v /∈ At−1,
each node u ∈ N in(v) activated at the previous step attempts to activate v
through a Bernoulli trial with probability of success equal to p(u, v). If the test
is successful, the node v is added to the active set of the current iteration.

Linear Threshold Model. Similar to IC, the Linear Threshold model
(LT) [19], takes the network graph G = (V,E) and the initial seed set S0 as
input. The probability on the in-edges is normalized so that

∑
u∈Nin(v) p(u, v) ≤

1,∀v ∈ V . Therefore, LT generates the active sets At for each step t ≥ 1,
according to the following mechanism. Initially each node v ∈ V independently
selects a threshold θv by sampling a uniform distribution in the interval [0.1].
At the step t, for each inactive node v ∈ V , if the sum of the weights of the
active in-neighbors reaches the threshold θv, i.e.

∑
u∈Nin(v)∩At−1

p(u, v) ≥ θv,

then v is activated and is included in the active set At. Intuitively, threshold
θv models the likelihood with which v is influenced by its active neighborhood:
a high threshold value represents a greater resistance to the influence in the
propagation process. The random choice of the threshold reflects the lack of
information on users’ tendency to be influenced and is the only source of non-
determinism in the model.

The aforementioned propagation models need techniques for establishing
the influence probability and therefore the weights to be assigned to the edges
of the network. A widely used practice is weighted cascade (WC), where the
probability of influence p(u, v) is defined as 1

|Nin(v)| , where |N in(v)| is the in-

degree of v. The main idea behind this weighting scheme is that an important
node (i.e., a public figure) is more likely to influence a user that tends to express
interest only for its contents, assuming that edges are oriented according to a
relationship of interest. Recent studies proposed the estimation of the influence
probabilities starting from logs. The first proposal was formalized by [30] who
represented the acquisition of influence weights from existing logs as a likelihood
maximization problem, exploiting the Expectation Maximization algorithm.

2.1. Spread function properties

Independent Cascade and Linear Threshold are progressive models that
share two important properties in terms of influence spread, that is the function
σ, which estimates the expected number of users who will be active at the end
of the information diffusion process. For both models the spread function is:

1. monotonic, the inclusion of a new node v in the active set S can not lead
to a decrement of the spread function: σ(S ∪ v) ≥ σ(S),∀v ∈ V, S ⊆ V .

2. submodular, the marginal gain obtained by adding a new node v to a set S
is at least equal to the marginal gain obtained by adding the same element
to a superset T of S: σ(S ∪ v)− σ(S) ≥ σ(T ∪ v)− σ(T ), ∀v ∈ V, S ⊆ T .
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3. Related work

The problem of identifying a set of k elements that maximizes the spread
σ is an NP-Hard optimization problem. However, thanks to the properties of
monotonicity and submodularity of σ, a greedy hill-climbing procedure, which
selects at each iteration the most promising node in terms of influence spread,
provides a pseudo-optimal solution S∗, achieving a (1− 1

e ) approximation ratio.
Despite the theoretical bound provided by the greedy algorithm, the influ-

ence maximization task remains hard to solve. In fact, besides the complexity
related to the maximization of the spread σ, which derives from the combi-
natorial nature of the problem, another crucial point is the calculation of σ
with respect to the addition of a node v in the active set, which is a #P-hard
counting problem. For this reason different resolution techniques have been de-
veloped. They can be grouped into three main categories [25], according to the
approach used in the evaluation of the spread function: simulation-, proxy- and
sketch-based. Another interesting class related to context-aware approaches is
described in the following.

Simulation-based. The key idea of this approach is to perform a series of
Monte Carlo simulations for evaluating the spread function for a given seed set.
Considering the IC model, given a graph G, this approach consists in considering
an initial seed set S and removing the edges with probability 1− p(u, v). This
way a set of instances can be generated and the spread can be estimated on
these sampled instances. The advantage of such models is their generality, as
this process can be applied to any information propagation model, and also
the bound provided by the greedy algorithm is preserved. However, the main
problem here is the computational efficiency related to the large number of
simulations needed to obtain a good estimate. Kempe et al. [19] extended
the greedy algorithm using simulations for evaluating the marginal gain for a
given node added to the active set. In particular, a seed set S is built by
considering the most promising nodes with respect to their marginal gain on
the spread function, estimated after r simulations, as the average cardinality
of the active set. The number of simulations is a crucial parameter in such
a mechanism, which affects computational complexity. For this reason several
methods have been proposed aimed at reducing r. The CELF technique [24]
aims to estimate an upper bound of the marginal gain determined by adding a
node to the current seed set. This avoids the evaluation of some nodes whose
influence is considered insignificant, thus exploiting the submodularity of the
spread function and a power law assumption on the degree distribution of the
network graph. Another technique used to reduce the complexity of this kind of
approach is the Community-based greedy algorithm (CGA) [6]. This technique
is based on the divide-and-conquer paradigm for reducing the complexity of the
Monte Carlo simulations by partitioning the graph according to a community
structure and evaluating the spread only within communities.

Proxy-based. The main idea behind this class of algorithms is to define
proxy models such as PageRank or shortest path, for approximating the spread
function σ. Therefore, its main advantage is the reduced complexity of the proxy
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model, but there are no guarantees of optimality. Proxy based algorithms can
be divided into influence ranking proxy and diffusion model reduction proxy.

i) Influence Ranking Proxy are models that provide a rank to each user in
the graph G in order to estimate a metric for their influence rate and subse-
quently generate the seed set directly from that ranking. There are different
approaches based on ranking that can be directly derived from the graph, such
as degree, PageRank, and other centrality measures. However, these techniques
are usually not very suitable to solve the problem of influence maximization,
as the ranking defined on users often does not take into account any overlap
of influence; two users with a high ranking could influence an almost identical
set of users, providing an incorrect solution to the problem. To deal with this
issue, the DegreeDiscount technique [9] has been proposed, which introduces a
penalty on σ for a given node v proportional to the overlap of influence with
the other nodes in the active set. The IRIE [17] algorithm is based on the In-
dependent Cascade model and it includes two steps: i) the influence ranking of
each node is computed and the node with maximum ranking is determined; ii)
for each node the pSact(u) contribution is evaluated, that is the probability that
u is active following the diffusion process started from the seed set S.

ii) Diffusion model reduction proxy tries to reduce the complexity in com-
puting the spread σ following two main approaches: i) reducing the stochastic
propagation model in a deterministic one; ii) estimating the influence form a
local subgraph. The Shortest-Path Model (SPM) [22] considers the shortest
path between two nodes in the activation process. In the MIA/PMIA [10] algo-
rithm, for each pair of nodes (u, v), u can influence v only along the maximum
influence path (MIP), defined on a tree where unpromising paths are pruned
using a threshold. The IPA algorithm [20] is similar to MIA/PMIA, but can
evaluate multiple paths besides the MIP. The LDAG algorithm [10] restricts
the influence to acyclic graphs, by building a DAG for a node v, exploiting the
Dijkstra algorithm for the shortest-path length. Goyal et al. [14] proposed the
Sim-Path algorithm, where the influence of a set of nodes, propagated through
the LT model, is calculated by enumerating all the simple paths starting from
each node within the set. However, as this is a #P-Hard problem, the SimPath
limits this enumeration to a restricted neighborhood, cutting those paths with
a probability lower than a threshold. Lee et al. [23] proposed a fast greedy
approximation algorithm for influence maximization exploiting the concept of
2-hop influence spread. It is based on the interesting observation that an item
is generally diffused from a seed within a very small number of hops in on-
line social network services. Specifically, even if we consider only users who are
within 2-hops away from seeds, the estimated influence spread is experimentally
expected to be at least 81% of the exact influence spread.

Sketch-based. The goal of sketch based models is to preserve the the-
oretical bounds provided by simulation-based methods, while providing com-
putational efficiency. In order to avoid the repetition of several Monte Carlo
simulations, these techniques calculate different sketches based on a specific dif-
fusion model and evaluate the spread function σ by exploring them. Depending
on how the sketches are generated, this class of algorithms can be divided into
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two main categories: Forward Influence Sketch (FI-Sketch) and Reverse Reach-
able Sketch (RR-Sketch). The main idea behind forward influence sketches is to
build sketches extracting the subgraph induced by an instance of the diffusion
process with respect to the considered propagation model, then estimate the
spread of a seed set using that subgraph. One of the most famous algorithms is
NewGreIC [9], which extends the Independent Cascade model building a given
number of sketches by sampling the graph G for evaluating the marginal gain of
each node. Borges et al. [5] discovered that it is not necessary to estimate the
influence using sketches generated starting from the entire graph. They devel-
oped the reverse reachable sketch approach, a technique in which the influence
of each seed set S is estimated by selecting a random subset of nodes and an-
alyzing which of these can be reached. By creating multiple random RRs on
different nodes, if a node u has a great impact on the other nodes, then it will
have a high probability of appearing within these RR sets. Similarly, if a seed
set S covers a maximum number of RR sets, it is likely to be the optimal seed
set. Borges et al. [5] proposed the RIS algorithm, which generates random RRs
until the total number of edges examined during the generation process does
not reach a threshold.

Context-aware. The common factor which characterizes all the aforemen-
tioned algorithms, categorized in taxonomy [25], is that the influence propaga-
tion process is often modeled in an unrealistic way, never referring to a specific
context. For this reason, other influence maximization algorithms have been
proposed in the literature, for dealing with several tasks in specific contexts. In
topic aware influence maximization (TAIM) the IM problem is extended con-
sidering what are the topics to be propagated. TAIM introduces the topics to
exploit the interests of users interacting in the social networks while computing
the spread. TAIM models are TIC (topic aware Independent Cascade) and TLT
(topic aware Linear Threshold) [3]. The standard IM algorithm does not take
the time dimension into account. Such an assumption could be unreasonable
in some cases, time-aware diffusion models introduce the concept of step as a
temporal measure, and restrict the process of diffusion within these steps. Chen
et al. [8] proposed IC-M the model, where for each edge between the nodes u
and v, a meeting probability p(u, v) is defined, and the IM problem consists in
identifying the optimal seed set capable of activating the greatest number of
nodes in at the most τ steps. Kim et al. [21] proposed the CT-IC model, based
on the concept of continuous time, by defining an activation delay of the nodes
and a delay distribution.

Data-driven. The main goal of data-driven approaches is to exploit propa-
gation traces available in historical data for learning how influence flows in the
network, and thus estimating the expected spread of influence. As an example,
Goyal et al. [13] proposed a data-driven approach based on the credit distri-
bution model, which can learn different levels of influenceability of users, also
taking into account the temporal aspects. Data-driven approaches are more flex-
ible and able to adapt to different networks and application scenarios, compared
to those models that randomly assign influence probabilities by generating large
errors in spread prediction. However, they require more computational resources
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and a large number of propagation traces representative of user interactions.
Comparison. The Weighted Artificial Bee Colony (WABC) proposed in

this paper effectively exploits a bio-inspired approach to deal with the influence
maximization task. It can be classified as an influence ranking-proxy algorithm
and is characterized by several changes and improvements with respect to pre-
vious related work. Primarily, the proposed algorithm exploits a more effective
way for evaluating fitness, which can be considered as the resolution of a reach-
ability problem, where the maximum probability path is considered among all
possible ones connecting two distinct nodes. This feature leads to two main
benefits:

� The total spread can be accurately estimated. It is a crucial result for
an influence maximization task, as it measures the expected number of
influenced users, without providing incorrect assessments.

� The influence overlap problem is addressed. This is a common issue of
classical influence ranking-proxy algorithms, which can lead to negative
effects caused by influence redundancy during the maximization process.

Furthermore, the proposed algorithm is less sensitive to parameter tuning in
comparison to related approaches, as it does not use a fixed a-priori depth at
which to explore the graph like in [18]. In particular, WABC exploits a threshold
on the influence probability, dynamically focusing more on the most promising
paths. Moreover, for what concerns the application domain, it was combined
with a polarization analysis and a user classification process, in order to identify
also the main information diffusion strategies in a scenario characterized by
multiple opposing factions. Also the evaluation tests carried out confirmed the
effectiveness of the proposed algorithm with respect to the main techniques
present in literature (see Section 5). WABC was able to find a more suitable set
of users for maximizing the spread in almost all the considered configurations.

4. Proposed algorithm

In recent years, nature has been a great source of inspiration for the devel-
opment of different algorithms aimed at solving many real world optimization
problems [28]. These bio-inspired techniques are related to Swarm Intelligence
(SI), a particular field of Artificial Intelligence (AI) based on observing the be-
havior of social animals such as ants and bees. Swarm Intelligence can be defined
as the collective behavior of decentralized and self-organized systems, in which
the interaction among components causes the emergence of a complex behavior.

4.1. Artificial Bee Colony (ABC)

Among the various swarm intelligence algorithms, Artificial Bee Colony
(ABC) results to be one of the most studied and one of the most applied to
real world problems. It is a meta-heuristic algorithm, introduced in 2005 by
Derviş Karaboğa [18] and applied to the influence maximization task by Sankar
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et al. [31], inspired by the food supply model of bee colonies. It consists of
three main components: food sources, employed bees and unemployed bees. In
the colony system, the quality of a food resource depends on several factors,
like the distance from the hive, the amount of food and the ease of extraction.
Each resource is assigned to a bee, whose task is to store the information re-
lated to that resource. The main behavior of such a model is the search of a
source rich in nectar and the abandonment of a poor source. Employed bees
collect nectar from a flower and bring it to the hive, carrying details about the
source of food and sharing this information with other bees. Unemployed bees
are those bees that are not currently picking up nectar from any flower and can
be divided into two types: Scout bees whose job is to search new nearby sources
of food; Onlooker bees which wait for choosing a food source based on informa-
tion brought to the hive by employed bees. The most interesting aspect of this
behavior is the exchange of information in the swarm, which takes place within
the hive through a particular technique called waggle dance [29]. It consists in
a physical movement of bees, whose duration is proportional to the goodness of
the food source. Therefore the details relating to all the identified sources are
communicated through this dance to onlooker bees which in this way can select
the most promising source of food.

The ABC algorithm can be adapted to explore a social network for iden-
tifying a subset of nodes with maximum influence, based on the waggle dance
mechanism. Each node of the social network is considered as a source of food.
The employed bees, used to identify the opinion leaders of the network, are
initially assigned on the basis of a ranking vector. Scout bees are used for ex-
ploring the neighborhood of employed bees for obtaining better solutions, while
onlooker bees are used to indicate influenced nodes. For reader’s convenience,
Table 1 reports the meaning of the main symbols used throughout the sections.

Symbol Meaning

V Set of graph nodes
E Set of graph edges
S Seed set
At Set of active nodes at time t
EB Set of employed bees eb
SB Set of scout bees sb
fitx Fitness value of the node x
F (t) Global fitness value at time t
p(x, u) Probability of the path between x and u

σ(S)
Expected spread, i.e. an estimate defined
by the algorithm starting from the seed set S

σ̃(S)
Evaluated spread, i.e. an estimate defined
via simulation starting from the seed set S

ω Convergence distance
θ Cutting threshold
Nx Set of all neighbors of the node x
N in

x Set of in-neighbors of the node x
N out

x Set of out-neighbors of the node x
N d

x Set of distinct nodes reachable from x in d steps

Table 1: Table of symbols
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Algorithm 1 shows the pseudo-code of the ABC algorithm. The input is
composed of: a graph G = (V,E), a ranking vector R, with |R| = |V |, and an
integer k representing the seed set size. The output consists of: i) a set of nodes
S with S ⊂ V and |S| = k, which maximizes the spread (i.e., the number of
influenced users); ii) the expected spread σ(S).

ALGORITHM 1: Artificial Bee Colony (ABC)

Input : Graph G = (V,E), a ranking vector R, an integer k
Output: Seed set S, Expected spread σ(S)

1 EB ← top-k nodes ordered by ranking
2 SB ← ∅
3 for eb ∈ EB do

4 SB ← SB ∪N out
eb

5 FitEB ← ∅
6 for eb ∈ EB do

7 fiteb ← evalF itness({eb}, G)

8 FitEB ← FitEB ∪ fiteb
9 /* Local optimum search */

10 while not convergence reached do

11 SB ← orderByRanking(SB)

12 for sb ∈ SB do

13 fitsb ← evalF itness({sb} ∪ EB,G)

14 if ∃ eb | fitsb ≥ fiteb then

15 EB ← EB \ {argminebFitEB} ∪ {sb}

16 SB ← ∅
17 for eb ∈ EB do

18 SB ← SB ∪N out
eb

19 /* Estimate global optimum */

20 S ← EB

21 for s ∈ S do

22 σ(S)← σ(S) + fits

23 return S, σ(S)

The algorithm starts by defining two sets:

� The set of employed bees EB ⊂ V is initialized with the best k nodes of
the input ranking vector R, identifying the initial seed set (line 1).

� The set of scout bees SB ⊂ V is initialized with an empty set and filled
by joining the out-neighborhood N out

eb of each employed bee (lines 2-4).

Then the vector FitEB is obtained evaluating the fitness function, for each em-
ployed bee in EB (lines 5-8), whose goal is to iteratively determine local optima
during the diffusion process. To that end, the algorithm starts an iterative phase
(lines 10-18), performing at each iteration the following operations:

� The set of scout bees SB is ordered by ranking value (line 11).
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� For each scout bee in descending order of ranking the fitness fitsb is eval-
uated (lines 12-13).

� If fitsb exceeds the fitness value of one of the scout bees then the roles are
exchanged (lines 14-15).

This phase is repeated until the evaluation of the whole set SB. The set
of scout bees is therefore repopulated with the out-neighborhood of the new
employed bees (line 16-18) and the process iterates until a termination criterion
is reached. Once this criterion is reached the final seed set S is filled with
the employed bees eb in EB (line 20). The expected spread σ(S) is evaluated
by summing up the fitness fits of each seed s ∈ S (rows 21-22). Finally the
algorithm returns the final seed set S and the expected spread σ(S) (line 23).

4.2. Weighted Artificial Bee Colony (WABC)

Weighted Artificial Bee Colony (WABC) is the extension of the classical
ABC algorithm [31] we designed. The main advantages are related to how the
fitness function is calculated.

ALGORITHM 2: ABC fitness evaluation

Input : Graph G = (V,E), a distance d, a set of nodes X
Output: Fitness value fitX

1 covered ← ∅
2 /* For each x ∈ X store each node u ∈ V reachable by x in d steps, i.e.

the dout-neighborhood of x (N d
x ) */

3 for x ∈ X do

4 coveredx ← N d
x ⊂ X

5 /* Each node evaluate its fitness as the number of unique nodes that

compose its dout-neighborhood N d
x */

6 for x ∈ X do

7 fitx ← 0

8 for u ∈ coveredx do

9 if !∃ z ∈ X|u ∈ coveredz then

10 fitx ← fitx + 1

11 fitX ←
∑

x∈X fitx
12 return fitX

In ABC the fitness evaluation (see Algorithm 2) is based on the difference
between sets. The input is composed of the graph G = (V,E), a distance d and
the set of nodes X with respect to which fitness is evaluated. For each node
x ∈ X, the coveredx set is filled with each node u ∈ V reachable by x in d steps,
i.e. the dout-neighborhood of x (N d

x ), where d is generally equals to one (lines
3-4). Therefore, each node x ∈ X evaluates its fitness (fitx) as the difference
between the coveredx and coveredz for each node z ∈ X with z 6= x, i.e. the
number of nodes that only x can reach in d steps (lines 6-10). Finally, the global
fitness value fitX is obtained by summing up fitx∀x and returned (lines 11-12).
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ALGORITHM 3: WABC fitness evaluation

Input : Graph G = (V,E), a threshold θ, a set of nodes X
Output: Fitness value fitX

1 covered ← ∅
2 /* Find the best activation path for each pair employed bee x ∈ X, node

u ∈ V */

3 for x ∈ X do

4 for u ∈ V do

5 p(x, u)← maxP∈Paths(x,u)

∏
(i,j)∈P p(i, j)

6 coveredx ← coveredx ∪ 〈u, p(x, u) | p(x, u) ≥ θ〉

7 /* The employed bee with the highest influence probability increases its

fitness */

8 for x ∈ X do

9 fitx ← 0

10 for 〈u, p(x, u)〉 ∈ coveredx do

11 if !(∃〈u, p(z, u) z, u ∈ X〉 ∈ coveredz | p(z, u) > p(x, u)) then

12 fitx ← fitx + p(x, u)

13 fitX ←
∑

x∈X fitx
14 return fitX

Differently, in WABC (see Algorithm 3), each node evaluates the weighted
sum with respect to the unique nodes it can activate. Similarly the input is
composed of: the graph G = (V,E), a threshold θ and the set of nodes X. For
each employed node x ∈ X, the coveredx set is filled with the pair 〈u, p(x, u)〉
for each node u covered by x, where p(x, u) represents the maximum influence
probability of x on u. The evaluation of the fitness can be considered as the
resolution of a reachability problem where the maximum probability path is
considered among all the paths P ∈ Paths(u, v), connecting x and u. How-
ever, we must note that considering all the possible influence paths between an
employed bee and the other nodes is often computationally infeasible. For this
reason, the algorithm takes as input positive threshold ∈ <, θ ≥ 0, which de-
fines the minimum probability of influence, i.e., a cutting value for those paths
having a negligible activation probability. Therefore, given this threshold, each
employed x determines the set of nodes reachable along a path of total prob-
ability at least equal to θ, where the probability of a path P from x to u, i.e.
p(x, u), is given by the product of the weights associated to each edge (i, j) ∈ P
(line 3-6).

At this point, the fitness value fitx for each x ∈ X is computed. Specifically,
for each pair 〈u, p(x, u)〉 ∈ coveredx, fitx is incremented of p(x, u) if x has the
highest influence on the node u, i.e. there not exists another node z such that
p(z, u) > p(x, u). So, when two nodes reach the same target, only the most
influential will increase its fitness by a value of p(x, u) (lines 8-12). Finally, the
global fitness value fitX is obtained by summing up all the obtained fitx and
returned (lines 13-14).
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The described fitness function introduces two main improvements with re-
spect to the classical ABC approach. Firstly, the weighted activation, with a
strength equal to the influence probability, leads to a more accurate estimate
of the final spread, compared to the classical binary activation used in ABC.
Moreover, the algorithm dynamically focuses more on the most promising paths,
leading to a more effective and efficient exploration of the social graph compared
to ABC, which considers the neighborhood of each employer node within a fixed
small number of hops, often equals to one.

4.3. Implementation details

In the following we show some implementation details of the proposed al-
gorithm, implemented by using the Vertex-Centric model provided by Apache
Hama. The system requires as input a file representing the graph, in which the
main characteristics of each node are provided, i.e., id, ranking, and a list of
outgoing edges. For each edge is also defined the ranking of the target vertex.
Further parameters to be specified are: the threshold θ, a parameter ω which
controls convergence and the size of the seed set k used for identifying the initial
seed vector.

During the setup phase, nodes initialize their data structures and one of
them is elected as master, taking on the role of coordinator. The vertices have
a simple behavior: they receive a message and check the corresponding flag for
determining the behavior to be adopted.

During the first phase each seed vertex provides the master with information
about its neighborhood, specifying the ranking for each neighbor. Once notified
by the master, a seed vertex evaluates its reachability set, sending along its
outgoing edges a new message characterized by the flag influence and by a value,
which represents the probability of activation. Each vertex who receives this
message proceeds by storing the information, forwarding the message if it has
not already received a greater influence value for that node. Once the phase of
propagation of the values is ended, i.e., when there are no more messages within
the network, each non-seed node v ∈ V \S selects a seed node s ∈ S to belong
to, that is the seed with maximum probability of influence on v. Therefore,
these values are conveyed to an aggregator which evaluates the fitness of the
different seeds.

Once the first iterative phase is over, the master node elects the scout bees
with the highest ranking and notifies the beginning of the influence evaluation
procedure. At this point, the scout bees send an influence message along the
outgoing edges in order to evaluate their fitness. Once the aggregator has com-
pleted the evaluation, the master node determines whether it is necessary to
proceed with the role switch or not, communicating it to the other nodes.

The process iterates until the entire set of scout bees is evaluated, then the
stop condition is evaluated. The convergence of the algorithm is controlled by ω,
which specifies the minimum increment in percentage of the spread between two
subsequent iterations. Let F (t) be the global fitness value, evaluated as the sum
of the fitness of each employed bee, at the current iteration t, and F (t− 1) the

global fitness value at the previous step: the algorithm stops if F (t)−F (t−1)
F (t−1) < ω.
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5. Experimental evaluation

In this section, we evaluated the performances of the proposed algorithm im-
plemented by the Apache Hama framework and applied to the influence max-
imization task. Experiments have been designed for answering the following
research questions: i) what are the main advantages of the WABC algorithm
with respect to its original version (ABC)? ii) how does WABC perform com-
pared to the other state-of-art ranking-proxy approaches?

5.1. Case study

We applied the methodology described in the previous section to the con-
stitutional referendum that was held in Italy on 4th December 2016. This is
a real-world case study that involves significant data and complex influencing
behaviors. The Italian voters were asked whether they approve a constitutional
law that amends the Italian Constitution to reform the composition and powers
of the Parliament of Italy, as well as the division of powers between the State,
regions, and administrative entities1. The main supporter of the referendum
(i.e., in favor of yes) was the Democratic Party (in Italian Partito Democratico
or PD) and its leader, also Italian prime minister Matteo Renzi. On the other
side, in favor of no were the main opposition parties (e.g., Movimento 5 Stelle,
Forza Italia) and several citizen committees. The referendum saw a high voter
turnout (approximately 65% of voters) and a majority of the votes opposed to
the reform (i.e., voting no), which exceeded 59% of the expressed preferences.
A political effect of the referendum’s result was the resignation of the Italian
prime minister.

The political event under analysis P is a two-faction event F = {yes, no}. In
order to investigate the information diffusion processes involved in the political
campaign of both factions, also identifying the main influencers, we build two
polarity-based subgraphs, Gyes and Gno. The subgraphs generation process is
based on: i) the identification of retweet relationships among users and ii) the
binary classification of tweets based on a set of faction keywords.

As a first step, we collected the main keywords K used as hashtags in tweets
related to P. Such keywords have been grouped as follows:

� Kneutral = {#referendumcostituzionale, #siono, #riformacostituzionale,
#referendum, #4dicembre, #referendum4dicembre}

� Kyes = {#bastaunsi, #iovotosi, #leragionidelsi, #italiachedicesi, #iodi-
cosi, }

� Kno = {#iovotono, #iodicono, #bastaunno, #famiglieperilno, #leragionidelno}

Given the keywords K := Kneutral ∪Kyes ∪Kno, we collected 338,592 tweets
containing at least one of these keywords posted from 23rd October (5 weeks
before the voting day) to 3rd December 2016 (one day before).

1http://www.interno.gov.it/it/italiani-voto-referendum-costituzionale
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Collected tweets were pre-processed as described in [27]. Afterwards tweets
are classified as follows: if a tweet t contains only keywords that are in favor of a
specific faction f ∈ F , then t is classified as in favor of f ; otherwise, t is classified
as neutral. For instance, Table 2 shows some examples of tweets we collected
with their classification (translated in English for the Reader’s convenience).

Text Keywords Class

Why is important to be well informed
on #ReferendumCostituzionale

#referendum
costituzionale

neutral

#IoVotoNO: all the reasons to vote
against this reform

#iovotono no

For a stronger Italy in Europe!
#iovotosi #referendum #democrazia

#iovotosi
#referendum
#democrazia

yes

Table 2: Examples of tweets on the Italian constitutional referendum.

The first tweet expresses the importance of going to vote by using a neutral
hashtag (#ReferendumCostituzionale) and so it is classified as neutral . The
second tweet shows the dissatisfaction of a user with the reform by using a
hashtag supporting no (#iovotono) and is classified as in favor of no. The
third tweet contains a hashtag supporting yes (#iovotosi), a neutral hashtag
(#referendum), and a co-hashtag (#democrazia) and for this reason is classified
as in favor of yes.

Starting from the set of classified tweets, we generated two subgraphs Gyes
and Gno, relating to the users who supported the yes and no faction respectively.
For example, the graph Gyes = (V , E) is obtained as follows:

� The set of nodes V is represented by users who have at least published a
tweet or a retweet classified in favor of yes.

� The set of direct edges E is determined using the retweet relationship. In
particular, there is an edge (u1, u2) from user u1 to user u2 if there exists
at least one tweet classified in favor of yes published by u1 and retweeted
by u2.

� The influence weight is established by using a weighted cascade criterion.
In particular, the probability of influence p(u, v) ∈ R associated to the
edge (u, v) is defined as 1

|N inv |
, where |N in

v | is the in-degree of v, i.e., the

number of retweets published by user v.

The generation process for the Gno graph is analogous. Once derived the
graphs Gyes and Gno, the leading influencers and the main information diffusion
strategies of the yes and no factions can be identified.

5.2. Graph properties

The yes graph Gyes has 117, 000 nodes and 270, 000 edges, with a density
of 1.95 · 10−5; the no graph Gno has 130, 000 nodes and 440, 000 edges, with
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a density of 2.72 · 10−5. The low density values are related to an accentuated
sparsity of the graphs, induced by the presence of many isolated nodes (i.e.,
users publishing tweets that have not caught the attention of any user). For
this reason, the analysis we carried out is focused on the Giant Component
(GC ), i.e. the largest connected component of the two graphs, represented in
Figure 1.

(a) Graph of yes (Gyes). (b) Graph of no (Gno).

Figure 1: Representation of the two graphs and their giant components.

Table 3 shows the main properties of the yes and no GC subgraphs, while
Table 4 shows the top-5 most influential nodes computed through the PageRank
scoring strategy. The underlying assumption of this algorithm is that more
important users are likely to receive more links from the others.

Feature Gyes Gno

Num. of nodes 72,225 78,899
Num. of edges 269,218 437,608
Diameter 18 18
Average in-degree 3.98 5.67
Clustering coefficient 0.05 0.06
Average path length 5.92 5.28

Table 3: Giant components properties of the two graphs

Pos. Gyes Gno

1 bastaunsi Mov5Stelle
2 matteorenzi matteosalvimini
3 davidefaraone marionecomix
4 fanpage beppe grillo
5 repubblicait bastaunsi

Table 4: Top-5 most influential nodes calculated using PageRank
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5.3. Parameter sensitive analysis

We investigated the effect of different parameters on performance. The
WABC algorithm requires as input the network graph G = (V,E), an inte-
ger k which represents the seed set cardinality, a threshold θ, a real number ω
which control convergence and a diffusion model. In our case study, we used the
following parameters: ω = 2 · 10−2, k = 10 and Weighted Cascade as a diffusion
model. As with the hyperparameter optimization of many algorithms, we set the
threshold θ by performing various experiments, varying its value within a given
range. This process, based on grid search, requires the optimization of a score
function, f(θ), derived as follows. We analyzed the behavior of the algorithm
varying θ with respect to the expected spread given by the algorithm (σθ(S)),
an estimate of the real spread achieved through 20 000 simulations (σ̃θ(S)), and
the overall execution time (Tθ). These different metrics, are jointly modeled in
the following score function:

f(θ) = Errrel(θ) + Timerel(θ) + Covrel(θ)

where Θ = {θ1, ..., θn} is the set of all considered thresholds. The above formula
takes three factors into account:

� The relative error of the expected spread with respect to its estimate
achieved by simulating the diffusion process starting from the k seeds
identified by the algorithm:

Errrel(θ) = |σθ(S)−σ̃θ(S)|
σ̃θ(S)

� The relative execution time, i.e. the ratio between the overall execution
time with the current threshold θ and the maximum time taken by the
other instances executed with different values of θ:

Timerel(θ) = T θ

maxθ∈ΘT θ

� The percentage decrement between the number of covered nodes with
the current threshold and the maximum number of nodes covered with
different values of θ:

Covrel(θ) = (1− σ̃θ(S)
maxθ∈Θσ̃θ(S) )

The threshold values are sorted in descending order. We estimated the optimal
value of the threshold as:

θ̂ = argminθ∈Θf(θ)

Figure 2 shows the trend of f(θ) (in blue) varying θ for yes and no graphs.
For decreasing values of θ, the relative error of expected spread (in green) de-
creases, while the overall execution time (in red) increases. Thus, through the
minimization of f(θ), we are able to find a suitable value for θ, reached at
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θ̂ = 8 · 10−2 for both graphs, which provides a good trade-off between accuracy
and complexity. Subsequently, this configuration can be used to evaluate quan-
titative and qualitative aspects of the obtained results, such as comparing the
members of the final seed set with the major activists and journalistic pages
affiliated with the corresponding faction.
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(a) Graph of yes (Gyes).
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(b) Graph of no (Gno).

Figure 2: Trend of the f(θ) score function and its components (Errrel, T imerel, Covrel).

5.4. WABC vs. ABC

In this section we investigate the main advantages of the WABC algorithm
with respect to its original version (ABC), by varying the cardinality of the seed
set k, where k ∈ K and K = {5, 7, ..., 25}. Our analysis focuses on evaluating: i)
the execution time; ii) the evaluated spread (σ̃(S)), an estimate of the real spread
achieved via simulation; and iii) the expected spread (σ(S)), an estimate given
by the algorithm. The computing system used for the experimental evaluation
is a machine equipped with 4 CPUs (AMD 6376), each one with 16 cores of
2.3GHz, 256 GB of memory and 1TB of disk space.

Figure 3 shows the execution time for the two algorithms by varying the value
of k. The ABC algorithm provides better performance thanks to the greater
simplicity in computing the fitness function that analyzes only the neighbors of
the seeds at a fixed distance. Besides this factor, greater simplicity emerges in
terms of convergence, as ABC generally converges after a single iteration.

Figure 4 shows the number of influenced nodes, estimated by simulating the
information diffusion process, starting from the seed set identified by the two
algorithms. In this case, WABC achieved similar results with respect to ABC,
finding sets of seeds which allow to reach almost the same number of nodes in all
the considered configurations. The average in-degree of the subgraph induced
by the set of influenced users for Gyes and Gno graphs is equal to 3.86 and 6.15
respectively. These values highlight the tendency of users, especially in the Gno
graph, to retweet content from different sources. This results in a small number
of exclusive retweet relationships with individual users, characterized by a high
probability of influence.
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Figure 3: Comparison between WABC and its classical version ABC in terms of execution
time.

ABC
WABC

E
va

lu
at

ed
 s

pr
ea

d

0

5000

10000

15000

20000

25000

k
5 10 15 20 25

(a) Graph of yes (Gyes).

ABC
WABC

E
va

lu
at

ed
 s

pr
ea

d

0

5000

10000

15000

20000

25000

k
5 10 15 20 25

(b) Graph of no (Gno).

Figure 4: Comparison between WABC and ABC in terms of evaluated spread σ̃k(S).

A third aspect to analyze concerns the quality of the expected spread. The
majority of ranking-proxy models, such as Degree, PageRank, Rank and IRIE
are unable to provide an estimate of the expected spread, highlighting the need
for identifying appropriate solutions for this issue. The ABC algorithm provides
an estimate of the spread, returning the number of unique reachable nodes, at a
distance one, starting from the identified seed set. Figure 5 shows a comparison
between WABC and ABC in terms of relative error on the expected spread. In

formulas: |σk(S)−σ̃k(S)|
σ̃k(S) , varying k ∈ K, with respect to the seed set S, where

σk(S) is the expected spread given by the algorithm and σ̃k(S) is the evaluated
spread, i.e. an estimate of its real value determined through 20 000 simulations.
It can be clearly observed that the WABC algorithm provides more accurate
spread estimates compared to ABC, with an up to 24% decrease (on average
10%) of the relative estimation error.
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Figure 5: Comparison between WABC and ABC in terms of estimation error on the expected
spread.

Summing up, the following emerged from the comparison between WABC
and ABC. The two algorithms achieved very similar results in terms of number
of influenced users in almost all configurations tested during our simulations.
WABC showed to be more time-consuming as it exploits a more sophisticated
approach for fitness evaluation. Consequently, WABC is able to obtain much
more precise estimates of the expected spread, a crucial aspect that makes the
algorithm more suitable for use in real contexts.

5.4.1. Qualitative analysis

We also carried out a qualitative analysis of our results discriminating the
category of the influencers identified by WABC, simulating also the diffusion
process in order to visualize their hypothetical influence within the network.

We firstly compared the two seed sets generated by WABC and ABC for
Gyes and Gno graphs.

Gyes Gno

ABC WABC ABC WABC

lucatelese serracchiani dukana2 dukana2
bastaunsi fnicodemo beppe grillo beppe grillo
ArsenaleKappa TwitterItalia matteosalvinimi matteosalvinimi
antonio bordin matteorenzi marionecomix comitatono
GiorgiaMeloni pdnetwork figprov ale dibattista
nonleggerlo ArsenaleKappa antonio bordin antonio bordin
matteorenzi repubblicait tuseivitaearia luigidimaio
TwitterItalia Tgcom24 ArsenaleKappa ArsenaleKappa
tuseivitaearia tuseivitaearia arsenaletv Mov5Stelle
molumbe bastaunsi ComitatoDelNo GiorgiaMeloni

overlap: 50% overlap: 50%

Table 5: Comparison between the seed sets identified by WABC and ABC.
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As shown in Table 5, the two algorithms produced quite different results,
with a seed set overlap equal to 50% for both graphs. It is also worth noting
that the results generated by WABC are more accurate from the point of view of
political polarization. In fact, a correct correspondence is present between each
member of the seed set of both factions and his/her actual political alignment.
Afterwards, we divided influencers identified by WABC in four categories, news
pages (information or satire), political activist, popular user and normal user,
finding out the composition shown in Table 6.

news pages political activist popular user normal user

Gyes 50% 20% 20% 10%
Gno 20% 60% 10% 10%

Table 6: Classification of the influencers for Gyes and Gno graphs.

By observing this categorization, we can determine the type of the political
campaign for the two factions, characterized in the case of no by a greater effort
of leading politicians, such as Matteo Salvini, Alessandro Di Battista, Luigi Di
Maio, Beppe Grillo and Giorgia Meloni. The yes faction instead saw Matteo
Renzi as the main leader, followed by news pages such as La Repubblica and
Tgcom24, confirming the communication strategy of yes faction, centralized on
the head of government.

Lastly, Figure 6 shows the results of a simulation executed starting from
the seed set identified for the two graphs. By coloring each node according
to the seed node (influencer) that determined its activation, we can see that
the aforementioned political activists and news page can activate a remarkable
portion of the network.

(a) Graph of yes (Gyes). (b) Graph of no (Gno).

Figure 6: Simulation of the influence diffusion process starting from the seed set identified for
the two graphs.
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5.5. WABC vs ranking-proxy models

For better assessing the effectiveness of WABC we also carried out a compar-
ison, in terms of evaluated spread, with the most relevant ranking-proxy models
used in literature:

� Degree: uses the out-degree of each node as the seed set selection criterion.

� PageRank : uses the pagerank [7] of each node, evaluated on the reversed
graph, as the seed set selection criterion.

� Rank : uses the rank, proposed in [31] of each node as the seed set selection
criterion.

� DIRIE : is a distributed version of the IRIE algorithm [17].

Figure 7 shows the results obtained by WABC in comparison with these
ranking-proxy techniques by varying k. Compared to the aforementioned tech-
niques, WABC turned out to be the most effective, providing the best solution
in almost any configuration. In particular, WABC outperformed ranking-proxy
techniques based on simple classical centrality measures, i.e. PageRank, Rank
and Degree, with an up to 40% improvement over the latter. Even compared to
DIRIE, which is based on the Independent Cascade model and exploits a more
complex algorithm, WABC was able to find a more accurate seed set which
allows to maximize the spread in almost all the considered configurations.
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Figure 7: Comparison between WABC and the most relevant state-of-art ranking-proxy tech-
niques in terms of evaluated spread.

5.6. Worst, average and best case analysis

The extensive experimental evaluation described in the previous sections
empirically demonstrated the efficiency and effectiveness of the proposed algo-
rithm. In this section we provide an analysis of the worst, average and best
cases from the viewpoint of result quality and performance.
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The main factor that can influence the quality of the results produced by
the algorithm is the choice of the initial seed set with respect to the underlying
community structure C = c1, c2, . . . , ck, generally composed by a number of
communities k > 1. In the worst case, the initial seed set S is composed of
nodes belonging to the same community. This can lead to the algorithm being
trapped within that community, losing the contribution of important nodes
located in different communities and converging towards a local optimum. On
the contrary, the best case occurs when the nodes belonging to S cover all the
communities in C, which allows the social graph to be fully explored maximizing
the effectiveness of the algorithm. On average, the number of initial seeds is less
than the number of communities in the graph, k > |S|, so the seed set is unlikely
to cover all communities in C, but at the same time it should not consider a
single community ci ∈ C.

Taking into account performance, the algorithm can suffer from convergence
problems. Convergence time can be heavily influenced by the choice of the pa-
rameter ω > 0, which specifies the minimum increment in percentage of the

spread between two subsequent iterations, defined as F (t)−F (t−1)
F (t−1) . As a conse-

quence, this parameter controls the trade-off between accuracy and execution
time: smaller values of ω may lead to more accurate solutions and a higher
number of iterations. In the worst case, the greedy algorithm maximizes the
total spread performing a high number of small steps, characterized by an incre-
ment ε ≥ ω, which prevents stopping on a local maximum. In such a situation
the algorithm slowly converges towards an optimal solution whose fitness value
is only slightly better than the local maximum, albeit paying a very high cost
in terms of execution time. On the contrary, in the best situation we would
find the global optimum in the first iterations, which will lead to an increment
ε = 0 < ω. On average, if the selected value of ω identifies a good trade-off, the
algorithm will converge on an acceptable local optimum in a reasonable number
of iterations.

6. Conclusion

Influence maximization is an optimization problem aimed at finding a k-seed
set which maximizes the spread of influence in a social network. This problem
is a central one in understanding how information flows within a network of
users, and is related to a wide range of applications in viral marketing, adver-
tisement and news spread. In this paper we proposed a bio-inspired influence
maximization algorithm, namely Weighted Artificial Bee Colony (WABC), im-
proving fitness evaluation with respect to classical Artificial Bee Colony (ABC).
WABC has been applied to a real case study related to the Constitutional Refer-
endum held in Italy in 2016. By analyzing the propagation of information within
the Twitter network, we identified the main influencers for the yes and no fac-
tions, deriving also the main information diffusion strategies of each faction
during the political campaign. The tests carried out confirmed the effective-
ness of the proposed algorithm, which outperformed ranking-proxy techniques
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based on standard centrality measures, i.e., PageRank, Rank and Degree. Even
compared to DIRIE, which is based on the Independent Cascade model and
exploits a more complex algorithm, WABC was able to find a more accurate
set of users which allows to maximize the spread in almost all the considered
configurations. Furthermore, WABC proved to be much more accurate than
ABC, with an improvement of up to 24% in estimating the expected spread.

As a future work, the relationship between the diffusion of influence and
political polarization can be further investigated, analyzing how the tendency
of users to polarize in favor of a faction affects the dynamics of information
diffusion and vice versa. Furthermore, we can analyze how this phenomenon
varies over time for identifying patterns on the evolution of users’ polarization.
Consequently, once identified the most influential users supporting the different
factions, the outcome of a political event can be predicted. Finally, our algo-
rithm can be adapted and applied to scenarios other than the political one, in
order to analyze for example the spread of news, the adoption of new technolo-
gies, or the promotion of new products.
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