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Abstract The rise of virtualized and distributed in-

frastructures has led to new challenges to accomplish

the effective use of compute resources through the de-

sign and orchestration of distributed applications. As

legacy, monolithic applications are replaced with service-

oriented applications, questions arise about the steps to

be taken in order to maximize the usefulness of the in-

frastructures and to provide users with tools for the

development and execution of distributed applications.

One of the issues to be solved is the existence of mul-

tiple cloud solutions that are not interoperable, which

forces the user to be locked to a specific provider or to

continuously adapt applications.

With the objective of simplifying the programmers

challenges, ServiceSs provides a straightforward pro-

gramming model and an execution framework that helps

on abstracting applications from the actual execution
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Lezzi, R. Sirvent, R. M. Badia
Department of Computer Sciences,
Barcelona Supercomputing Center (BSC-CNS)
Barcelona - Spain
E-mail: francesc.lordan@bsc.es, enric.tejedor@bsc.es,
jorge.ejarque@bsc.es, roger.rafanell@bsc.es,
javier.alvarez@bsc.es, daniele.lezzi@bsc.es,
raul.sirvent@bsc.es

R. M. Badia
Artificial Intelligence Research Institute (IIIA),
Spanish Council for Scientific Research (CSIC)
Barcelona - Spain
E-mail: rosa.m.badia@bsc.es

F. Marozzo, D. Talia
DIMES, University of Calabria, Rende (CS), Italy
E-mail: fmarozzo@deis.unical.it, talia@deis.unical.it

D. Talia
ICAR-CNR, Rende (CS), Italy

environment. This paper presents how ServiceSs trans-

parently interoperates with multiple providers imple-

menting the appropriate interfaces to execute scientific

applications on federated clouds.
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1 Introduction

Cloud computing has emerged in the recent years as

an answer to the needs of the society for computing

services on demand. With this paradigm, IT users have

access to computing services reducing the cost of owner-

ship and operation to the minimum. What is more, they

can establish SLAs with the providers that guarantee

their QoS requirements. Well known examples of com-

mercial offerings of Cloud Computing are the Amazon

Elastic Compute Cloud (Amazon EC2) [1], Microsoft

Windows Azure [14], or Google App Engine [10]. On

the open source side, several solutions are available to

to build private clouds, like OpenNebula [53], Eucalyp-

tus [48], OpenStack [51] or EMOTIVE Cloud [31].

Initially adopted in the business sectors due to eco-

nomical choices in the design of IT departments, cloud

has started to have wide acceptance also in science sec-

tors. The scientific community adopted grid computing

as a paradigm suitable to run their applications, with

features such as sharing and volunteering at a best ef-

fort policy being appealing to them. The appearance

of cloud computing has somehow eclipsed the grid and

the scientific community is looking at the cloud as an

alternative computing paradigm, although supercom-

puting is still considered as well for those applications

that have specific high performance computing require-

ments.
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Writing an application that uses resources of a dis-

tributed environment is not as easy as writing a sequen-

tial application, and requires the programmer to deal

with a number of technological concerns. One of the

issues to be solved in this process is the existence of

multiple cloud solutions that are not interoperable due

to the current difference between the individual ven-

dor approaches. The lack of interoperability has to be

solved in order to allow applications and services to run

on federated infrastructures without having to contin-

uously adapt the code. Another important property of

cloud computing that poses a requirement in the design

of the runtime is the elastic scaling, i.e. the capability

to automatically provision (and de-provision) resources

on demand as needed by users and applications load.

The design of a programming framework that al-

lows the execution of scientific applications on top of

virtualized infrastructures is a pressing requirement for

those scientists interested in exploiting the capabilities

of clouds.

Service Superscalar (ServiceSs) is a programming

framework that aims at solving the previous issues eas-

ing the development of applications (i.e. parallel appli-

cations, business or scientific workflows, compositions

of services mixing services and code, etc.) and their ex-

ecution on distributed environments. From now on, in

this paper, we will refer indistinctly to complex services

or applications when describing implementations done

with ServiceSs. The reader must consider that ServiceSs

can be used for all these different types of applications.

This paper focuses on two aspects of the proposed

framework, the programming model and the interoper-

ability features of the runtime. The framework imple-

ments a task-based programming model that allows ap-

plications to be written following a sequential paradigm

and without need of a specific API, leaving to the run-

time the responsibility to execute the code detecting

data dependencies between tasks and exploiting the in-

herent parallelism of the sequential code.

The other important feature of the ServiceSs pro-

gramming framework is the capability to execute the

applications transparently with regards to the underly-

ing infrastructure. The availability of a different connec-

tor, each implementing the specific cloud provider API,

makes possible the run of computational loads on multi

cloud environments without the need of code adapta-

tion, providing scaling and elasticity features and al-

lowing to adapt the number of available resources to

the actual execution needs.

This paper presents the details of the ServiceSs pro-

gramming model and the programming of composite

workflows in sections 2 and 3. Section 4 describes a

component that allows the deployment and execution

of ServiceSs applications. Section 5 details how the com-

posed services are orchestrated by the runtime and sec-

tion 6 analyzes how ServiceSs achieves interoperability

through specific connectors. Section 7 presents results

of the evaluation of the proposed framework through

the execution of ServiceSs applications on different cloud

testbeds and analyzing the overhead introduced by the

runtime. Section 8 describes the related work and sec-

tion 9 concludes the paper.

2 ServiceSs introduction: an interoperable

programming framework

2.1 Solutions to current challenges

In order to overcome the challenges presented previ-

ously, we propose a programming model that simplifies

the development and execution of applications in cloud

infrastructures. Our proposal has as a starting point the

COMPSs programming model [54]. We have adapted

the theoretical foundations of COMPSs to the particu-

larities of cloud infrastructures, creating ServiceSs [55].

We summarize these foundations in the next paragraphs,

although we encourage the reader to visit the mentioned

references for more specific details.

The most important idea behind COMPSs is the

possibility of developing a sequential application that

can be run in parallel in the underlying infrastructure.

This idea is based on how superscalar microprocessors

execute instructions in an out-of-order manner [35]. In-

structions to be executed in the processor have input

and output registers, and in order to guarantee that

an out-of-order execution will produce a correct result,
data dependencies between instructions need to be de-

tected. In this analogy with superscalar microprocessors

applied to a different scale, the instructions correspond

to method calls inside an application, and the registers

correspond to the data that a method is reading or writ-

ing. COMPSs runtime automatically creates a workflow

that describes data dependencies between method calls.

Besides, as it is done in superscalar processors, data

renaming techniques can be applied in order to elim-

inate false data dependencies (WaR, WaW). In sum-

mary, with this idea we enable sequential applications

to run in parallel in a distributed infrastructure.

COMPSs applications are implemented in a sequen-

tial way, and without APIs that deal with the infras-

tructure or with duties of parallelization and distribu-

tion (synchronizations, data transfer, ...). This is very

important to ensure to provide a unique and simple pro-

gramming interface to create applications. This means,

on the one hand, that the application will not be based

on a specific API to express the interaction with the
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infrastructure, thus avoiding vendor lock-in and lack of

portability of applications. On the other hand, we are

adopting sequential programming as the main program-

ming paradigm, which is the most easy paradigm to be

offered to end users, therefore achieving an easy way

for users to program applications. Users do not need to

think of how their program is going to be run in the

infrastructure, because the COMPSs runtime will take

care of the actual execution of the application on a spe-

cific infrastructure. Instead, users only need to focus

on their specific domain of knowledge to create a new

program that will be able to run in the cloud.

Another key aspect of providing a cloud-unaware

programming model is that programs can be developed

once and run in multiple clouds without changing the

implementation. This is very important when portabil-

ity between clouds must be achieved. In ServiceSs, the

programmer is freed from having to deal with the spe-

cific cloud details, because ServiceSs runtime will be

in charge of it. As discussed later in this article, the

runtime follows a plug-in approach to deal with several

cloud frameworks, hiding this burden to the end user

and enabling interoperability.

In addition, one of the main players in the cloud ar-

chitecture is the Web Service. The cloud is widely used

to deploy services, since it offers a very dynamic envi-

ronment suitable for them. Thus, our interest is to be

able to support Web Services when creating applica-

tions in the cloud, and not only in an isolated manner,

but Web Services that interact between them (typically

described by a workflow). This is known in the litera-

ture as orchestration of services. In ServiceSs, we have

included the capability of orchestrating workflows com-

posed of services mixed with regular methods (pieces

of code not intended to be services). Both services and

methods can be ServiceSs tasks and be part of a Ser-

viceSs application workflow. An application published

as a service and contains calls to service and method

tasks will be referred to as a composite service.

Taking advantage of the knowledge the ServiceSs

runtime has at application level (the workflow), Ser-

viceSs is able to determine at any moment if reserving

more resources in the cloud could pay off or not. This is

mainly because of the data dependencies related to the

application that is being executed. If there are many

tasks ready to be executed (no data dependencies to be

solved), new resources could be useful. In this article

we will see how adequate is the cloud to play with the

elasticity of resources dedicated to an application, when

workflows are used as the main knowledge to make de-

cisions.

The class of applications targeted by ServiceSs are

based on algorithms that may be easily split in calls

to computational methods or services, usually coarse-

grained, loosely coupled, with low requirements on com-

munications and whose parameters are files, objects, ar-

rays or primitive types. ServiceSs is typically adopted

to port legacy applications used mainly in the scien-

tific domain and whose execution patterns follow high-

throughput parallelism, data flows and many-task co-

ordination models. Workflows are implemented in sci-

entific applications, as for example in the bioinformat-

ics area, dealing with data and going through different

stages with different levels of concurrency. These prob-

lems can be split into several individual sub-problems

thus needing aggregation steps. In this case, applica-

tions need data synchronization and automatic staging-

in and out of files, according to their dependencies.

These workflows may require also to use control-flow

features for the coordination of these sub-problems.

2.2 Summary of the solution

ServiceSs does not only provide a programming model,

but the framework is complemented with a set of plat-

form tools which ease: the ServiceSs applications im-

plementation by means of an Integrated Development

Environment (IDE); the application deployment in dis-

tributed infrastructures by means of the Programming

Model Enactment Service (PMES); and the monitoring

of executions by means of the Monitoring and Tracing

tools. Figure 1 shows a diagram with all the tools com-

posing the framework, and their correspondence to a

service lifecycle.

Service
Developer

Service Construction Service Deployment Service Operation

ServiceSs Framework

Programming

Model

Enactment

Service

Integrated

Development

Environment

Programming 

Model

ServiceSs

Runtime

Monitoring 

and Tracing

Fig. 1 ServiceSs Framework Overview.

The programming model syntax enables the easy de-

velopment of cloud applications as composite services.

A composite is written as a sequential program from

which other services and regular methods are called.

Therefore, composites can be hybrid codes that reuse

functionalities wrapped in services or methods, adding

some value to create a new product that can also be

published as a service. Besides, all the information needed

for data-dependency detection and task-based paral-

lelization is contained in a separate annotated interface.
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Above all, the cloud is kept transparent to the program-

mer as no information about aspects like deployment or

scheduling has to be described in the code.

The model can be defined as task-based and depen-

dency-aware. In a first step, users select the set of ser-

vices and methods called from the composite that they

intend to run as tasks in parallel on the available re-

sources. The task selection is done by means of a inter-

face which declares those services/methods, along with

some metadata in the form of annotations [11]. One of

these annotations is used to state the direction of each

task parameter (input, output or in-out); with this in-

formation the ServiceSs runtime discovers, at execution

time, the data dependencies between tasks and dynam-

ically builds a dependency graph.

From this point on, the composite service will be

referred to as Orchestration Element (OE). Those ser-

vices and methods, invoked from the OE and selected

as candidates to be executed in the cloud, will be called

Core Elements (CE), and the interface where they are

chosen will be the Core Element Interface (CEI). Thus,

to clarify the terminology for the rest of the article: a

CE can be a coded method (as in COMPSs) or a Web

Service. When a CE is invoked we talk about a task,

which is also a node in the application workflow. So, a

task is effectively an instance to an invocation of a CE.

And finally, when the task is executed in a particular

resource, we will use the term job, that is the final in-

carnation of the CE (i.e. a piece of code executed in a

resource).

On the other hand, the offered platform services are

composed by the IDE, the PMES and the Monitor-

ing and Tracing tools. The IDE programming environ-
ment for developers, acts as a showcase of the program-

ming model. Its implementation is based on the Eclipse

platform [5], a very popular development environment

on programmers world. Targeting Eclipse allows us to

achieve visibility to a wide audience of developers as

potential users of the programming model.

The PMES provides a standard interface enabling

the deployment and execution of the new programmed

service on different types of infrastructures. The IDE

directly invokes PMES to deploy the virtual appliances

related to a new programmed service in the different

infrastructures that will be executing it, thus acting as

a single contact point to deal with the heterogeneity of

the underlying platform middlewares.

The Monitoring and Tracing tools provide online in-

formation about the execution of the service, allowing

end users to visualize the existing data dependencies be-

tween service components, and what components have

been executed or are pending in a particular moment.

Besides, this component is able to generate low-level

trace files of the execution (i.e. detailing CPU time,

idle time, etc.) that can be analyzed in order to pre-

cisely determine the performance and identify possible

bottlenecks.

3 Service Construction

As introduced in section 2, the Service Construction

layer of the ServiceSs framework is composed of the

Programming Model (PM) and the IDE. On one side,

the PM provides a syntax to implement applications for

cloud infrastructures without using any kind of provider

API and offers the capability to port the application

and distribute the service components across multiple

cloud providers. On the other side, the IDE provides a

user-friendly environment to guide the users during the

implementation and building phases. The next subsec-

tions provide more details about the PM syntax and

the IDE component.

3.1 Programming Model Syntax

Section 2 already introduces the main concepts behind

the ServiceSs Programming Model. The application de-

veloper writes a sequential code for the application and,

then, selects which of its methods becomes a CE by

declaring them in the CEI. Any ServiceSs application

can be composed of two different kinds of CE: Method

CE and Service CE. On the one hand, Method CEs

are regular methods of the application selected to be

run remotely. To pick a method CE, the programmer

declares the method in the CEI adding the @Method

annotation indicating the implementing class.

On the other hand, Service CEs correspond to SOAP

Web Service operations described in WSDL documents.

To select a SOAP operation as a CE, the developer de-

clares the service operation accompanied by the @Ser-

vice annotation describing the service details (names-

pace, service name and service port). The location of

the service is not included in the CEI, but in the run-

time configuration that actually decides which server

runs the task; thus, the programming model syntax re-

mains completely unaware of the underlying infrastruc-

ture.

For the runtime system to determine the depen-

dencies between the different CE composing the ap-

plication, the programmer has to state how the CE

operates on each data it accesses, i.e. its parameters.

For this purpose, the programmer adds some annota-

tions(@Parameter) to the CE declaration in the CEI

specifying for each piece of data its type and its direc-
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tion (in, out, inout) depending on the operation per-

formed on it (reading, creation, modification).

Finally, by adding the @Constraints annotation, the

programmer can impose a set of hardware and software

constraints to be fulfilled by any resource hosting a task

execution of a given CE.

The implementation of the ServiceSs runtime has

been performed using the Java language and, because

of this fact, it becomes a natural programming language

to create ServiceSs applications (like the example con-

tained in Figure 2). Nevertheless, other programming

languages such as C, Python or Scala are supported to

create new ServiceSs applications or port already exist-

ing ones.

Subfigure 2(a) contains an example of annotated in-

terface with two CEs declared: update and sampleSer-

vice. Update corresponds to a method CE implemented

in the sample.Example class as line 1 details. The dec-

laration also describes the accesses to its three param-

eters: option, an integer that is read (lines 6-7); value,

an object that is modified (lines 8-9); and log, a file cre-

ated along the task execution (lines 10-11). The @Con-

straints annotation on line 3 restricts its execution to

resources with more than 4 cores and at least 1GB of

physical memory.

The other CE defined in the SampleCEI corresponds

to a SOAP web service operation in the service sam-

pleService detailed in the @Service annotation in lines

14 and 15. The sampleOperation CE operates on two

pieces of data: a Query object read by the service and

the return value of the operation: a Reply object. The

classes involved in service operations, such as Reply and
Query, can be generated directly from the WSDL of the

service.

Once the CEI is completed, the CEs defined in it can

be combined in Orchestration Elements. The body of an

OE is programmed as a sequential code, without using

any API or specific syntax constructions. Subfigure 2(b)

depicts a sample OE composed by CEs declared on the

subfigure 2(a) CEI. A regular method is marked as OE

by adding an @Orchestration annotation to it as shown

in line 1. The CEs are invoked as regular methods; the

ServiceSs runtime is in charge of replacing the method

invocation with the creation of a new task, managing

its dependencies and execution on top of the available

infrastructure.

The following paragraphs point out some key oper-

ations used in the sample OE code and summarizes the

runtime behavior in each case. [55] includes further de-

tails about the task detection, the management of data

dependencies and the scheduling of tasks.

1 public interface SampleCEI {
2 @Method(declaringClass = ”sample.Example”)
3 @Constraints( processorCPUCount = 4,
4 memoryPhysicalSize = 1.0f)
5 void update(
6 @Parameter(direction = IN)
7 int option
8 @Parameter(direction = INOUT)
9 Reply value
10 @Parameter(type=FILE, direction = OUT)
11 String log
12 );
13

14 @Service(namespace = ”http://servicess.com/example”,
15 name = ”SampleWS”, port = ”samplePort”)
16 Reply sampleService(
17 @Parameter(direction = IN)
18 Query query
19 );
20

21 }
(a) Sample Core Element Interface. The update method is des-
ignated as a method CE implemented in the sample.Example
class. It accesses three pieces of data: reads an integer, mod-
ifies an R object and creates a file; its execution is restricted
to resources with more than 4 cores and 1GB of memory. The
other CE, (sampleOperation) is declared as Service CEs linked
to the samplePort port of the sampleWS service that reads a
Query object and produces a Reply object.

1 @Orchestration
2 public void SampleOE(String[] args) {
3

4 Example e = new Example();
5

6 Query query = new Query(args[0]);
7 Reply reply = sampleOperation(query);
8

9 e.update(3,reply,”log.txt”);
10

11 System.out.println(e.getValue());
12 }

(b) Sample Orchestration Element using the CE presented in
Figure 2(a).

Fig. 2 Sample application code written in Java.

Service CE invocation Lines 6-7 show a simple example

of how to call a service. The sampleOperation represents

a SOAP operation that receives a Query instance and

produces a Reply. The call to sampleOperation by the

OE is performed on a local method representative of

the service operation (generated beforehand for com-

piling purposes). This representative is never executed

because the runtime replaces the actual call by a task

creation. Since the query object is generated by the

OE, the task has no dependencies and its execution is

scheduled immediately.

Method CE invocation As in any normal Java applica-

tion, there are two ways to invoke a method: statically

or in a class instance. Line 9 contains an example of

a non-static method invocation where the OE invokes

the update method on the Example instance (e). Since e

has been declared and initialized in line 4 and no other

task modifies it, the runtime does not detect any depen-
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dency due to this access. However, the task accesses the

Reply instance generated by the task created by line 7.

The runtime waits until the update task is free of de-

pendencies, i.e. the sampleOperation task ends produc-

ing the reply instance, to schedule the task. In addition

to its parameters, any operation can also access two

more pieces of data: its callee (e) and the return value.

Since the callee and return value are objects and their

directions are implicit (inout and out respectively), the

programmer does not need to describe them in the CEI.

Synchronization in the OE Any data produced or mod-

ified by a task can be accessed later by the OE as de-

picted in line 11. From the point of view of the program-

mer, the access to this data is not different whether it

has been written by a previous task or not. In order

to keep the coherence of the values and guarantee the

correct execution of the application, when a task mod-

ifies a preexisting object or creates a new one which is

accessed later by the OE, a synchronization is needed

to fetch the proper value. From that moment on, the

main code execution is paused, i.e. no more tasks are

generated, until the value is accessible.

3.2 Integrated Development Enviroment

The ServiceSs Integrated Development Environment pro-

vides a graphical interface for facilitating the construc-

tion of services and applications following the program-

ming model syntax, described in section 3.1. The IDE is

implemented as an Eclipse [5] plug-in which extends the

Java development tools offered by the Eclipse core with

a Service Editor (Figure 3) and a set of wizards and ac-

tions to implement and build ServiceSs applications in

an easy way. The Service Editor guides the develop-

ers during the process of defining, implementing and

building the Orchestration and Core Elements accord-

ing to the Programming Model syntax. It is composed

of two tabs: the Implementation tab which provides an

overview of the service implementation status showing

the Orchestration and Core Elements defined for each

class, and the Build and Deploy tab which provides a

graphical interface to build and deploy the service once

its implementation has been finished. From the Imple-

mentation tab, developers can execute different wizards

to perform the creation of Orchestration and Core El-

ements from scratch as well as from existing software

such as jar libraries, binaries and web services. This

wizards also automatically creates the Core Element

Interface in a transparent way for the developer. On

the other hand, developers can use the Build section

to perform the building action which compiles, instru-

ments and packages the different service elements in

order to have the ServiceSs application ready for de-

ployment and execution. Finally, the IDE provides a

deployment widget which allows developers to deploy

the ServiceSs application either in the local host, to

test and debug the application, or in a production cloud

infrastructure through the Programming Model Enact-

ment Service.

4 Service Deployment

The transparent deployment of ServiceSs applications

on cloud infrastructures is delegated to the PMES [38]

PaaS component. The PMES exposes the needed op-

erations to ServiceSs IDE dealing with the intricacies

of deployment and contextualization operations, of the

installation of the application packages and of the re-

quired libraries and of the monitoring processes.

4.1 PMES Interface

The PMES interface implements the OGF HPC-BP [20]

profile that includes the adoption of the Basic Execu-

tion Service (BES) [8] specification to define the set of

operations available to instantiate an application and of

the Job Submission Description Language (OGF JSDL)

[24] used to provide the details of the deployment and

execution operations.

The BES interface provides operations to update,

monitor and terminate deployments and to request ap-

plications status at runtime, which are: Pending, Run-

ning and Finished states for proper deployment situ-

ations, and Failed or Cancelled for terminated ones,

as defined by the standard BES states-model. More-

over, more detailed information about ServiceSs real-

time monitoring and average cloud workload can be

also obtained. Thanks to the adoption of standards

other existing BES-compliant clients, as for example

Unicore [37], can be used to instantiate computational

loads on this management system, being PMES a key

component on ServiceSs ecosystem.

4.2 PMES Implementation

The PMES implements, on top of the Simple API for

Grid Applications (SAGA) [32], a manager which deals

with the deployments lifecycle. The use of SAGA en-

ables the deployment on a set of different infrastruc-

tures and middlewares such as PBS, TORQUE, Ama-

zon EC2, etc.

Figure 4 depicts the ServiceSs-PMES architecture

and its main components:
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Fig. 3 IDE Service Editor screenshot

BES WS-Interface

ServiceSs PMES

  DispatcherResource 

Manager

     

Scheduler JavaSAGA

Executor Data Stager

Cloud Broker

Deployment Manager

Fig. 4 The ServiceSs-PMES architecture.

– Resource Manager: controls a pool of usable resources

notifying the scheduler of their availability for a par-

ticular deployment request.

– Scheduler: checks with the Resource Manager the

availability of the required resources to deploy the

application or service and forwards the request to

the Dispatcher component. If no resources are avail-

able the operation is enqueued and handled accord-

ing to the chosen scheduling policy.

– Dispatcher: handles the deployment cycle interact-

ing with the following components:

1. Cloud Broker: requests virtual machines to a

cloud provider and deploys the ServiceSs appli-

cation package as well as the needed applica-

tions/libraries.

2. Data Stager: deals with service/application data

transfers (such as logs, periodically-updatable files,

...) moving the required input/output data from

the user-defined storage location to the local disk

of the VM. Several back-ends are supported such

as Cloud Data Management Interface (CDMI) [40],

FTP, etc.

3. Executor: initialize the application once it has

been deployed in the VMs.

4. JavaSAGA: the Java implementation of the SAGA

specification is used as an interface to different

communication protocols. In PMES, persistent

SSH connections are established with every de-

ployed virtual machine.

5 Service Operation

Once a service is deployed on top of a cloud infrastruc-

ture, it becomes ready to start receiving execution re-

quests. When such a request arrives, the Service Oper-

ation layer of the framework runs the service and mon-

itors its execution. On the one hand, this third layer of

the framework provides the user with a runtime system

that orchestrates the execution of the tasks compos-

ing the application on top of a resource pool. On the

other hand, it allows the user to inspect the progress of

the service execution and profile it in order to make a

proper performance analysis. The following subsections

give more details about the components of the opera-

tion layer.
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5.1 Runtime System

The ServiceSs syntax, described in section 3.1, allows

developers to compose parallel applications and services

being totally unaware of the infrastructure and the par-

allelism details. The sequential code is executed, and

the ServiceSs runtime intercepts the CE invocations re-

placing them by calls to the runtime that creates new

asynchronous tasks. Also accesses to task data from

the OE are instrumented, so that the runtime fetches

the proper values of the data from the remote resource

where they were generated (synchronization).

In order to support several programming languages,

as introduced in section 3.1, the tools and the pro-

cesses used for implementing these interceptions code

are bound to each specific language. For instance, Java

codes, like the one presented on Figure 2, are modified

before the OE is executed. We developed a custom Java

class loader that uses Javassist [12], a library for Java

class editing, to create a new class with the necessary

code to create tasks and trigger synchronizations. This

modified class replaces the original one and runs as a

normal Java class with methods that include calls to

the runtime interface.

The runtime architecture is composed by two main

components: the Task Processor (TP) and the Task Dis-

patcher (TD). The Task Processor is the front-end of

the runtime. It receives calls from the application code

and analyses each data access looking for the data de-

pendencies with previous tasks. When a task is free of

dependencies, the TP sends it to the back-end of the

runtime, the Task Dispatcher, which schedules the exe-

cution of the tasks and submits a job to a free resource.

Figure 5 depicts an overview of the architecture of the

runtime. The following paragraphs go into detail of the

functionalities of each component that appears on it.

The Task Processor leverages on the Task Analyzer

(TA) and the Data Info Provider (DIP) to check the

task dependencies. The DIP is responsible for applying

the renaming technique by creating a new version of

each data every time a task writes on it. By keeping

track of all data versions, the DIP assigns a unique re-

naming to each version. On the other hand, the Task

Analyzer keeps the information related to the task de-

pendencies up to date by storing them in the form of

a directed acyclic graph where tasks are represented as

nodes and arcs depict the dependencies between tasks.

When one node of this graph has no longer any direct

predecessor, the task represented by that node is free

of dependencies and it is submitted to the Task Dis-

patcher.

Regarding the Task Dispatcher, scheduling is man-

aged by the Task Scheduler (TS) in cooperation with

the Scheduler Optimizer (SO) and the Resource Man-

ager (RM). As soon as the Task Dispatcher receives the

task, the Task Scheduler picks a resource to host its ex-

ecution using a basic algorithm taking into account the

features of each resource (stored by the RM), the con-

straints of the invoked CEs and the number of tasks

that can run simultaneously in each resource (slots).

Besides, in order to improve the load balancing, the

Scheduler Optimizer dynamically checks and modifies,

if necessary, the TS decisions. Although both schedul-

ing policies have an important impact on the applica-

tion performance, we do not describe them in this paper

since this kind of algorithms is out of the scope of this

paper context.

Once the TS decides that is the proper time to ex-

ecute a task, it communicates its decision to the Job

Manager (JM), which actually manages its execution.

On the one hand, in case of dealing with a task corre-

sponding to a method CE, the JM submits it to the se-

lected resource and monitors its execution. Before run-

ning the task, the JM must ensure that the remote re-

source has all the data required to execute it, i.e. all

the input values missing on the resource must be trans-

ferred there. The Job Manager delegates the data man-

agement to the File Transfer Manager (FTM). On the

other hand, if the JM deals with a service CE task,

the service is invoked from the JM using a dynamic

client generated through Apache CXF configured with

the data extracted from the @Service annotation prop-

erties (see section 3.1). Since some data required by the

task might be the result of a method CE task, the in-

put values for the invocation can be located in other

resources; again, the JM delegates the FTM to obtain

these values.

Fig. 5 Architecture of the ServiceSs runtime.
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5.1.1 Job Management

The interaction between the ServiceSs runtime and the

computational resources is a critical point in the de-

sign of the framework interoperability due to the wide

variety of existing protocols and middlewares. The Ser-

viceSs runtime leverages JavaGAT [13] to enable the

interaction with the resources to execute the applica-

tion tasks whether they are physical resources or VMs

deployed in the cloud. JavaGAT is a toolkit which of-

fers a uniform interface to interact with computational

resources; the calls to its API are redirected to a spe-

cific adaptor which operates through a given middle-

ware with some remote resource. ServiceSs uses Java-

GAT API for two capabilities: requesting data transfers

and submitting tasks to remote resources.

5.1.2 Resource Management

Another important feature of the ServiceSs runtime is

its ability to exploit the cloud to adapt automatically

the size and capabilities of the resource pool to the cur-

rent workload. Depending on the amount of tasks to

execute and their requirements the runtime can turn

to one cloud provider or another to change the amount

of computational resources deployed on their servers.

When the runtime notices a lack of resources, it asks

for them to the cloud provider who offers the kind of

resources that fits better to the application needs. Sym-

metrically, when it detects that some resources are no

longer profitable, it orders their destruction.

The component in charge of detecting the lack/excess

of resources is the Scheduler Optimizer. By considering

the amount of tasks waiting for an available resource,

their hardware and software constraints (provided by

the developer in the application CEI) and some histor-

ical data about previous tasks execution, the SO quan-

tifies the amount resources required by the application

and asks the Resource Manager to interact with the

cloud providers to get/free the proper amount of vir-

tual resources.

In order to simplify the Resource Manager code and

make it interoperable with different cloud providers, we

have defined a simple and generic interface to manage

the creation of additional resources, free already de-

ployed ones and query the providers about cost details.

The implementations of this interface are called connec-

tors and each of them manages the actual interactions

with the cloud providers that offer the same API.

Many cloud providers restrict the features of their

resources by offering some predefined resource templates

(e.g. small, medium, large) and they contextualize them

with some software and files by loading some pre-created

image or some configuration file. The application user

specifies which providers are available and the usage of

each one by means of a configuration XML file. There,

he specifies for each provider which connector has to

be used for interacting with it, the offered images and

templates, the range of resources that can be deployed

simultaneously or specific connector details such as the

authentication information or the provider endpoint.

5.2 Monitoring and Tracing

In addition to the functionality explained above, the

ServiceSs runtime components also collect different in-

formation about how the application execution is pro-

gressing. It stores the Core Element invocations by the

current application execution, data dependencies de-

tected between these invocations, which Core Elements

have already been executed, which are currently work-

ing and which are still pending. Based on this infor-

mation, the ServiceSs framework provides a Monitor-

ing tool to visualize: the data dependency graph gener-

ated at runtime, which part of it is currently running

and how the current resources are used to execute this

graph.

At the end of each Core Element execution or file

transfer, the ServiceSs runtime also creates usage re-

cords [42]. This usage records contain information about

the resource involved in the Core Element execution,

the source and destination resources in data transfers,

as well as the start and end time of each operation. Once

the application finishes, all these usage records can be

processed by the Tracing tool in order to perform a

postmortem reconstruction of the application execution

across the different cloud resources. This reconstruction

can be visualized by tools such as Paraver [30] in order

to detect bottlenecks and unbalanced parts of the appli-

cation which could be fixed to increase the application

performance.

6 Exploiting Interoperability

In ServiceSs, there exist two mechanisms that enable in-

teroperability between different cloud vendors. On the

one hand, the ServiceSs runtime is able to interact with

diverse IaaS providers by means of pluggable connec-

tors. Each connector implements the communication of

the runtime with a given provider, e.g. to create or de-

stroy a VM. On the other hand, ServiceSs also features

adaptors that manage jobs and data transfers in the

cloud in two scenarios: first, in virtual resources ob-

tained from an IaaS provider; second, by invoking a

particular PaaS API.
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The next subsections explain how ServiceSs achieves

interoperability both at IaaS and PaaS level, and pro-

vide examples of the interaction of ServiceSs with dif-

ferent cloud providers.

6.1 IaaS Interoperability

A feature shared among all the IaaS providers is the

SSH protocol used to access the VM instances requested

by their customers. ServiceSs leverages the JavaGAT

SSH as a default adaptor for job management and data

transfer. Although the market has reached an agree-

ment on the VM access, the IaaS providers have not

agreed on a standard API for the VM instance man-

agement. For this reason, the ServiceSs runtime defines

a common interface whose implementations (the con-

nectors) translate a set of abstract operations into calls

of the specific API offered by the provider. Such opera-

tions include the ones to create and release VMs, used

by ServiceSs runtime when decides to vary the comput-

ing pool. Besides, connectors also implement the oper-

ations to get the cost per hour and creation time of a

certain VM in the provider.

The next subsections describe two examples of IaaS

connectors implemented by the ServiceSs runtime.

6.1.1 Open Cloud Computing Interface (OCCI)

connector

One solution provided by the ServiceSs framework for

interoperating with different clouds is the OCCI [16]

connector. It implements the operations defined in the

ServiceSs runtime connector using a subset of the OCCI

v1.0 interface to create Compute and Network resources.

As a Compute resource descriptor for this OCCI ver-

sion, the connector uses the OVF, which provides a

standard way to describe the characteristics of the VMs.

This connector provides the ServiceSs runtime with the

availability to interoperate with all the cloud providers

whose front-ends are compatible with this OCCI + OVF

standard format. Two examples of this are EMOTIVE

Cloud, which offers it by means of the Dynamic Re-

source Provisioning (DRP) service, and OpenNebula,

providing it through the OVF4ONE [18] service.

6.1.2 Amazon EC2

The ServiceSs runtime also features a connector to in-

teract with the Amazon Elastic Compute Cloud (EC2),

the public cloud solution that is currently dominating

the IaaS market.

Amazon EC2 offers a well-defined pricing system for

VM rental. A total of 8 pricing zones are established,

corresponding to 8 different locations of Amazon dat-

acenters around the globe. Besides, inside each zone,

several per-hour prices exist for VM instances with dif-

ferent capabilities. The ServiceSs EC2 connector stores

the prices of standard on-demand VM types (micro,

small, medium, large and extra large) for each zone.

When the ServiceSs runtime chooses to create a VM

in Amazon, the EC2 connector receives the informa-

tion about the requested characteristics of the new VM,

namely the number of cores, memory, disk and archi-

tecture (32/64 bits). According to that information, the

connector tries to find the VM type in Amazon that

better matches those characteristics and then requests

the creation of a new VM instance of that type.

Once an EC2 VM is created, a whole hour slot is

paid in advance; therefore, it makes sense to keep the

VM alive at least during such period. For this reason the

EC2 connector saves VMs for later use. When the task

load decreases and the VM is no longer necessary, the

connector puts it aside if the hour slot has not expired

yet, instead of terminating it. After that, if the task

load increases again and the EC2 connector requests a

VM, first the set of saved VMs is examined in order

to find a VM that is compatible with the requested

characteristics. If one is found, the VM is reused and

becomes eligible again for the execution of tasks; hence,

the cost and time to create a new VM are not paid. A

VM is only destroyed when the end of its hour slot is

approaching and it is still in saved state.

6.2 PaaS interoperability

As in the IaaS case, ServiceSs also manages PaaS re-

sources by means of connectors that interact with a par-

ticular PaaS API. More precisely, the ServiceSs runtime

manages PaaS offerings by abstracting the computing

platform resources as a single logical machine, where

multiple jobs can be executed at the same time. In con-

trast to the IaaS case, where new resource templates

are instanced, for PaaS the runtime enlarges or shrinks

the amount of computing slots changing the resource

description on-the-fly, depending on the workload.

In ServiceSs, the interaction with a PaaS resource

is implemented in two parts: (i) a connector to acquire

more computing slots (as in the IaaS case); (ii) a Java-

GAT adaptor, to perform data transfer and job submis-

sion operations to the PaaS resource. Both the connec-

tor and the adaptor use the API of a specific vendor.

6.2.1 Microsoft Azure

This subsection describes the Azure JavaGAT adaptor,

which enriches ServiceSs with data management and
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Fig. 6 The Azure GAT adaptor architecture.

execution capabilities making it interoperable with the

Azure platform.

The adaptor is composed of two subcomponents.

The data management is supported by the Azure File

Adaptor component, which allows to read and write

data on the Azure Blob Storage (Blobs), deploy the

needed libraries to execute on the platform, and store

the jobs input/output data (taskdata). The second sub-

component, the Azure Resource Broker Adaptor, is re-

sponsible for the job submission. Following the Azure

Work Queue pattern, this subcomponent adds into a

Task Queue the ones that must be executed by a Worker.

Thus, in order to keep the runtime informed about

each job execution, the status of the job is updated in

a Task Status Table.

The numbered components in Figure 6 correspond

to the items in the list below, which describes the dif-

ferent stages of a remote job execution. When the Ser-

viceSs runtime submits a job j into the platform it fol-

lows the next steps:

1. The Azure GAT adaptor, through the Azure File

Adaptor, prepares the execution environment up-

loading the input application files and libraries into

the Blob containers, taskdata and libraries.

2. The adaptor, via the Azure Resource Broker, inserts

a job j description into the Task Queue.

3. Then, it sets the status of the job j to Submitted

in the Task Status Table polling it periodically in

order to monitor the status until it becomes Done

or Failed.

4. An idle worker W picks the job j description from

the queue, parses the parameters and runs the task.

This step could be divided into the following sub-

steps:

4.1. The worker W takes the job j from the Task

Queue starting its execution on a virtual resource,

and the worker sets the status of j to Running.

4.2. The worker gets the needed input data and li-

braries according to the description of j. Then,

it performs a file transfer from where the input

data is located (Blob storage), to the local stor-

age of the resource, launching, finally, the job.

4.3. After job completion, the worker W moves the

resulting files in the taskdata Blob container.

4.4. The worker updates the status of the job into

the Task Status Table setting it to a final one

that could be Done or Failed.

5. When the adaptor detects that the job j execu-

tion has been completed, it notifies the end of the

execution to the runtime which will look for new

dependency-freed jobs. If the output files are not go-

ing to be used by any other job, the runtime down-

loads them from the Azure Blob Storage.

7 Evaluation

In order to evaluate the performance of ServiceSs, a set

of experiments has been conducted using three different

configurations: i) Cloud Federation: two clouds man-

aged by the EMOTIVE Cloud and OpenNebula IaaS

middleware; ii) IaaS Multi-Cloud: the combination of

an EMOTIVE Cloud and Amazon EC2 VMs; iii) IaaS

+ PaaS Multi-Cloud: EMOTIVE Cloud plus Microsoft

Azure instances.

The next subsection will describe the applications

used in the tests, prior to the presentation of the results.
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7.1 Applications

Two applications were chosen to run the experiments

presented in this paper:

– Gene Detection: the tests in sections 7.2 and 7.3

executed a real example of an e-Science compos-

ite service, used for the detection of genes and pro-

grammed with ServiceSs. This service first finds a

set of relevant regions (genes) in a DNA sequence

for a given input protein, and then analyses only

those genes. A more detailed description of Gene

Detection can be found in [55].

– Data Mining : A data mining application has been

adapted to run in a cloud environment with Ser-

viceSs. Such application runs multiple instances of

the same classification algorithm on a given dataset,

obtaining multiple classification models, then it chooses

the one which classifies in a more accurate way. A

more detailed description of Data Mining can be

found in [43].

Please note that these applications are written as

sequential programs. However, they encompass invoca-

tions to different computations, either regular methods

or external services, and some of these invocations can

execute concurrently. This makes them suitable to be

executed with ServiceSs, selecting such computations as

ServiceSs CEs. In addition, in some cases the compu-

tations have data dependencies, which are dynamically

discovered by ServiceSs to build the workflow of each

application and exploit its inherent parallelism at exe-

cution time.

7.2 Cloud Federation

This section describes the evaluation of ServiceSs in a

scenario composed by a cloud federation of two clouds,

one managed by EMOTIVE Cloud and another one by

OpenNebula. As said before, these tests have been per-

formed by running a gene detection application.

7.2.1 Testbed

The structure of the used testbed is depicted in Figure 7

and is composed by the following elements:

– Master : laptop where the master runtime of Ser-

viceSs is executed and the main code of the appli-

cation is run. Also, an OpenVPN [17] client is used

to be able to contact the virtual machines in the

cloud federation.

– Task server : machine running an Apache Tomcat

7.0 WS [4] container, which hosts a service that

Fig. 7 Testbed comprising two clouds: one managed by
EMOTIVE Cloud and another one managed by OpenNebula.
The GeneDetection application is executed in a laptop, which
contacts the VMs of the clouds through a VPN. An external
server publishes the operations corresponding to service CEs.

offers the service CE operations. Such container is

contacted by the ServiceSs runtime to execute ser-

vice tasks called from the composite.

– Cloud federation: cluster managed by EMOTIVE

Cloud and OpenNebula. The cluster has a front-end

node that acts as an OpenVPN server, EMOTIVE

scheduler and OpenNebula front-end. Besides, a to-

tal of 7 nodes are used for hosting VMs: 3 nodes

with two eight-core AMD Opteron 6140 at 2.6 GHz

processors, 32 GB of memory and 2 TB of storage

each; 4 nodes with two six-core Intel Xeon X5650 at

2.67 GHz processors, 24 GB of memory and 2 TB

of storage each. The nodes are interconnected by

a Gigabit Ethernet network. In these tests, EMO-

TIVE manages 2 AMD and 4 Intel machines, while

OpenNebula controls 1 AMD machine, all of them

running XEN 4.0.1 hypervisor. The Master, Task

server and the clouds are all located in the BSC

premises in Barcelona, Spain.

To launch an execution, ServiceSs runs the main

code of the application in the master machine issuing

Web Service requests to the Task server and creating

VMs to execute methods in either EMOTIVE or Open-

Nebula. In this case, since both infrastructure providers

offer an OCCI interface, ServiceSs can use the same

connector to interact with them.

7.2.2 Results

In order to evaluate ServiceSs in the described testbed,

a series of executions of the gene detection application

have been performed with different number of VMs in

each cloud. The VMs always consisted of 4 cores and

2 GB of memory. Figure 8 shows the execution times

obtained for each configuration, the first four VMs (i.e.

up to 16 cores) were created using only EMOTIVE in
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the Intel nodes since their performance is slightly bet-

ter, and for the executions with 32 and 48 cores, 4 VMs

were created in OpenNebula and the rest in EMOTIVE

to validate the interoperability.

As it can be seen in the plot, despite the execution

time keeps on descending, the application does not scale

as it would be expected. This is because many Web

Service requests are issued at the same time and the

task server becomes a bottleneck. However, using more

cores always implies an increase in performance because

the time spent in the computational part is reduced.

Fig. 8 Execution times of the application when using differ-
ent number of cores. The 32 and 48 cases were done with 16
cores in VMs under OpenNebula and the rest in EMOTIVE.

7.3 IaaS Multi-Cloud

This series of tests provides some performance results of

ServiceSs when combining a cloud managed by EMO-

TIVE and the Amazon EC2 public cloud. Next we de-
scribe the testbed and the results obtained.

7.3.1 Testbed

The testbed used in the experiments is formed by the

following actors and infrastructures (see Figure 9):

– Client : Java application that invokes the gene de-

tection composite service.

– Composite server : machine running an Apache Tom-

cat 7.0 WS container that hosts the gene detection

service. It is a dual-core Intel Core i7 at 2.8 GHz,

8 GB of RAM and 120 GB of disk space. Both the

composite’s main program and the ServiceSs master

runtime execute in this machine. This machine also

runs an OpenVPN client.

– Task server : same as in section 7.2.

– EMOTIVE Cloud : the same cluster described in sec-

tion 7.2. In these tests, the cluster was entirely man-

aged by EMOTIVE Cloud. The Client, Composite

Fig. 9 Testbed comprising two clouds: an EMOTIVE Cloud
located at BSC and the Amazon EC2 public cloud (Ireland
data center). The GeneDetection composite service is de-
ployed in a server machine, which contacts the VMs of the
EMOTIVE Cloud through a VPN. An external server pub-
lishes the operations corresponding to service CEs.

server, Task server and EMOTIVE Cloud are all lo-

cated in the BSC premises in Barcelona, Spain.

– Amazon EC2 : public IaaS cloud provider. In the

tests, all the Amazon VMs are deployed in the Eu-

ropean Union West zone, which corresponds to a

data center located near Dublin, Ireland.

A typical execution begins when a Client issues a

WS invocation request to the gene detection service

published in the Composite server. This triggers the

execution of the composite, leading to the creation of

new method and service tasks. The ServiceSs runtime

executes service tasks by issuing WS requests to the

Task server container. Method tasks are run in VMs on
the EMOTIVE Cloud or on Amazon EC2. In the case

of the EMOTIVE Cloud, the Composite server and the

VMs belong to the same virtual private network, so

that they can communicate through SSH. Regarding

Amazon, the VMs are also contacted by SSH to their

public IP addresses. All the VMs run a Linux distribu-

tion where the ServiceSs worker runtime, BLAST and

GeneWise have been pre-installed.

7.3.2 Results

The tests in this subsection will focus in the most compu-

tationally-intensive part of the GeneDetection compos-

ite, that is, the execution of the GeneWise algorithm

on a set of relevant regions of the genomic sequence.

This part of the application generates a graph with the

shape of a reversed binary tree, like the one in Fig-

ure 10, which first runs GeneWise on every relevant

region previously found and then merges all the partial

reports into one.
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Fig. 10 Graph generated by the GeneWise computation in
the gene detection composite, for an execution that finds 8
relevant regions in the genomic sequence. Red (dark) tasks
correspond to the genewise method, whereas yellow (light)
ones represent calls to mergeGenewise.

In these experiments, the VMs were created before-

hand, and so there is no delay associated with progres-

sively acquiring/releasing VMs. The EMOTIVE VMs

have 4 cores, 2 GB of RAM and 1 GB of storage (home

directory). The Amazon VMs are of type ‘m1.xlarge’

(extra large), which also features 4 cores, 15 GB of

RAM and 1690 GB of storage. On the other hand, the

scheduling algorithm applied takes into account data

locality when choosing the destination VM of a task, in

order to reduce the number of transfers.

Figure 11 depicts the execution times (in logarith-

mic scale) of the GeneWise computation for different

numbers of cores, more precisely the average of three

executions per number of cores. In each execution, a to-

tal of 3068 genewise and 3067 mergeGenewise tasks are

generated, with an average duration per task of 12 sec-

onds and 200 milliseconds, respectively. One line cor-

responds to runs with only EMOTIVE VMs (‘Single-

Cloud’), while the other line plots the combination of
both EMOTIVE and Amazon VMs (‘Multi-Cloud’).

The measures show that ServiceSs achieves good

scalability, especially when running the whole compu-

tation in one cloud provider (‘Single-Cloud’). In the

‘Multi-Cloud’ executions, the results are affected by

the distributed nature of the testbed (Figure 9). When

distributing the tasks of the GeneWise computation

graph over more than one provider, task dependen-

cies eventually lead to data transfers between VMs in

different providers, even if the locality-aware schedul-

ing algorithm of ServiceSs tries to minimize the num-

ber of transfers. Providers can be geographically dis-

persed, like in our testbed, and consequently latencies

can be higher than in other cloud scenarios. Moreover,

there can be no connectivity between VMs of different

providers: this happens in our case, where every data

transfer between an EMOTIVE and an Amazon VM

passes through the Composite server first. However, the

fact that the GeneWise reports are rather small (up to

a few kilobytes) helps scale better the application even
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Fig. 11 Execution times of the GeneWise computation, with
EMOTIVE VMs only (‘Single-Cloud’) and a combination of
EMOTIVE and public Amazon VMs (‘Multi-Cloud’).

under those conditions. Please note that the difference

in performance when using a single cloud or multiple

clouds is not due to the overhead of the runtime, but

to the fact of distributing data and computations over

distant cloud sites.

On the other hand, task granularity also plays an

important role in the performance of GeneWise. The

duration of the genewise is quite varying, which chal-

lenges the load balancing mechanism of the runtime,

while the small execution time of mergeGenewise com-

plicates the overlapping of transfers and computation,

particularly for the ‘Multi-Cloud’ case where the aver-

age transfer time is higher. Nevertheless, even if they

are hardly worth to distribute, the mergeGenewise me-

thod invocations are run as tasks to prevent the main

program from having to reduce all the partial GeneWise

reports.

7.4 IaaS + PaaS Multi-Cloud

This section describes the evaluation of ServiceSs when

using EMOTIVE Cloud and Microsoft Azure platform

under a data mining application environment. The final

goal is to compare the behavior and performance of our

framework in single-cloud and multi-cloud scenarios.

7.4.1 Testbed

On this experiment, a testbed with 14 quad-core virtual

machines with 5 GB of memory, 2 GB of disk space and

running Linux distribution has been created on EMO-

TIVE Cloud. In the same way, the public infrastructure,

based on Windows Azure, was composed by up to 20

small virtual appliances equivalent to 1.6 GHz single

core processor, 1.75 GB of memory and 225 GB of disk

space. In order to reduce the impact of data transfer on

the execution time, the Azure’s Affinity Group feature

has been exploited allowing the storage and computing
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Fig. 12 Execution time and speedup values depending on the number of cores.

servers to be located in the same data center improving

the global performance.

On execution, the covertype [21] dataset has been

used as data source. This dataset contains information

about forest cover type of a large number of sites in

the United States. Each instance corresponds to a site

observation and contains 54 attributes that describe the

main features of a site (e.g., elevation, aspect, slope,

etc.). The original dataset is made of 581.012 instances

sizing 72 MB. A subset of it, with 290.000 instances,

has been used creating a new 36 MB one.

For evaluating the performance of the application, a

set of experiments has been conducted using three dif-

ferent configurations: i) execution only on EMOTIVE

Cloud using up to 52 cores; ii) execution only on Azure

using up to 20 cores; iii) a Multi-Cloud configuration

using both (32+20 cores).

7.4.2 Results

As depicted in Figure 12, execution times and speedup

from 1 to 20 cores are similar in both cases when a sin-

gle provider (EMOTIVE or Azure) is used, keeping a

quasi-linear speedup along the execution up to the point

where cloud bursting starts. At this time, two differ-

ent experiments has been conducted. Starting from 32

EMOTIVE cores, 20 Azure and EMOTIVE cores have

been added progressively in order to evaluate the sys-

tem behaviour when running on this two different envi-

ronments: 20 locally-wired Cores vs 20 Internet-wired

ones. In order to calculate network speed differences

a 753 MB file has been transferred across different lo-

cal VMs and across Internet from local to Azure VMs

obtaining a 752.9 Mbps vs 13.2 Mbps speeds respec-

tively. Although the application is not data-intensive,

the scenario condition and a workload unbalance, due

to the impossibility to adjust the total number of tasks

(constrained by the specific use case) to the amount of

available resources, influences on the overall application

performance showing a slightly variable curve.

Despite this, when the number of resources allows a

good load balancing, the speedup curve recovers some

of the performance loss as depicted in 32+16 case where

the gain starts to increase again. Thus, in general cases,

when the workload does not depend on the applica-

tion input, the ServiceSs runtime scheduler is able to

adapt the number of tasks to the number of available

resources.

7.5 Runtime Overhead Analysis

The main goal of this section is to evaluate the ServiceSs

runtime overhead running a synthetic benchmark ap-

plication on a cloud scenario (defined on section 7.2),

determining the performance loss within the runtime

system according to the amount of tasks and comput-

ing resources.

7.5.1 Runtime benchmarking

The presented experiment varies the amount of tasks

keeping constant the volume of transferred data and

execution time of each task.

In order to measure the overhead of the runtime,

four aspects have been considered. The Dependency

Management overhead has been quantified considering

the time spent on analyzing tasks data accesses and the

time needed to add and remove them from the depen-

dency graph. The Scheduling time has been measured

considering the time since a task becomes dependency-

free until its assignment to a certain resource as well

as the time to free the resource once the task finishes.

The Job Submission time is defined from the instant

when the decision to execute a task is made until this
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Fig. 13 ServiceSs runtime cumulative per-component overhead, depending on the amount of tasks and resources. Figure 13(a)
and Figure 13(b) represent the results running on 16 and 96 computing slots respectively.

decision is communicated to JavaGAT. The GAT over-

head considers the time spent by JavaGAT to submit

and finalize the task.

7.5.2 Results

The tests conducted in this section aim to stress the

runtime system, forcing it to handle up to 25000 tasks

in two configurations with 16 and 96 computing nodes.

Figure 13(a) highlights that the general overhead

does not depend on the number of managed tasks and

that it becomes almost constant during the set of ex-

periments. It is worth noting that the use of JavaGAT

as communication layer introduces around 90% of the

total overhead.

In the other experiment, whose results are depicted

in Figure 13(b), it can be observed that while the over-

head is constant and does not depend on the number of

tasks, the Job Submission time grows again due to the

JavaGAT component. Although this component allows

the execution of many tasks in a concurrent way, it can

only manage one job submission request at a time, with

an average processing time of 300 ms. This time is ac-

cumulated when several tasks are ready for submission

causing an overhead of about 60%.

8 Related Work

We have classified the related work into four categories:

PaaS frameworks, programming models for computing

intensive workloads, workflows managers and program-

ming models for big data. For each one of the consid-

ered categories we concentrate on the programmability

features and on the interoperability capabilities offered.

8.1 PaaS Frameworks

Numerous Platform-as-a-Service (PaaS) solutions have

appeared to facilitate the process of developing, deploy-

ing and running applications in the cloud. Some of them

propose programming models that offer APIs to write

applications. In the Microsoft Azure Cloud program-

ming model the applications are structured in roles,

which use APIs to communicate (queues) and to ac-

cess persistent storage (blobs and tables). Microsoft

Generic Worker [52] proposes a mechanism to develop

a Worker Role that eases the porting of legacy code in

the Azure platform. Even if the user does not have to

change the core of the code, the creation of workflows

is not automated, as in ServiceSs, but has to be ex-

plicitly enacted through separated executions. Google

App Engine provides libraries to invoke external ser-

vices and queue units of work (tasks) for execution; fur-

thermore, it allows to run applications programmed in

the MapReduce model. Contrarily to these platforms,

ServiceSs does not require including any API call in

the application code; CE creation (either from regular

methods or services), data transfer and synchroniza-

tion are handled automatically by the runtime. More-

over, data dependencies between CEs do not need to be

managed manually in the application code, since they

are resolved by the runtime. In Google App Engine the

developer should take care of programming the orches-

tration. Finally, the aforementioned PaaS proposed by

Microsoft and Google restrict the deployment and exe-

cution of their applications to their own infrastructure;

oppositely, ServiceSs applications can run on top of any

supported cloud provider. The CONTRAIL project is

developing ConPaaS [50], a runtime environment for

elastically hosting and deploying applications on sev-

eral clouds as Amazon EC2 and OpenNebula. The ser-
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vices are offered through abstractions that hide the real

implementations and can be instantiated on multiple

clouds. Applications in ConPaaS are composed of any

number of these services programmed through a com-

mon generic Python interface for the service manage-

ment and a Javascript part to extend the front-end GUI

with service-specific information and control. The main

difference with ServiceSs is the existence, in ConPaaS,

of predefined patterns for the implementation of a ser-

vice, thus forcing the users to write new code or to

adapt the existing one to use the currently provided

services. Currently only OpenNebula and Amazon EC2

cloud backends are supported.

In the mOSAIC project [44], a reference API has been

designed which is composed of a set of layered APIs

focusing on achieving interoperability between clouds.

The developer has to provide applications requirements

through the API while the runtime search for cloud

services and offerings matching the requirements. How-

ever, a strong requirement is that end users are forced to

adapt their applications to this newly created API that

is interoperable with Amazon EC2, Eucalyptus [48],

FlexiScale [7], CloudStack [3], and OpenNebula. Aneka

is a .NET-based application development PaaS, which

offers a runtime environment and a set of APIs that

enable developers to build customized applications by

using multiple programming models on public clouds as

Azure, Amazon EC2, and GoGrid [9]. While the most

important feature in Aneka is related to its runtime and

how it manages dynamic provisioning and accounting

of virtual resources, the programming framework it of-

fers do not address the easy development of composite

services and is limited to applications running on Win-

dows machines.

8.2 Environments for computing intensive applications

In the computing intensive group we first consider frame-

works that allow the programming and execution of

high throughput applications; in this area the so called

bag of tasks execution model is used to run applica-

tions composed of independent parallel tasks, often also

referred to as embarrassingly parallel. The Ibis frame-

work [25] implements BaTS [49] for the execution of

bag of tasks loads in the cloud under budget control.

Ibis, similarly to ServiceSs, is based on JavaGAT to ac-

cess different middlewares and provides a range of pro-

gramming models, from low-level message passing to

high-level divide-and-conquer parallelism, using a com-

mon communication and resource management library.

Differently from ServiceSs, the user has to explicitly

implement the API corresponding to the specific pat-

tern to port the application and to compile the code

using specific scripts. The actual support to cloud is

limited to Amazon EC2 through a Java GAT adap-

tor; a more extended interoperability is expected to be

achieved by the adoption of SAGA API, in place of

JavaGAT, in the near future. Swift [56] is a scripting

language oriented to scientific computing which can au-

tomatically parallelize the execution of scripts and dis-

tribute tasks to various resources. The programming

model is based on the specification of functions exe-

cuting external programs and the input/output data

associated with each execution. The data dependencies

are resolved by the engine at execution time exploit-

ing the implicit parallelism of the code in a similar way

than ServiceSs. The execution in cloud is delegated to

the Coaster System [34] that requires a manual provi-

sioning of virtual machines before the execution and no

elasticity features are provided. SAGA BigJob [41] is a

pilot job system implemented as a SAGA adaptor and

on top of SAGA adaptors. The Cloud BigJob attempts

to hide from the user most of the differences between

providers. However, the user is still required to perform

some manual steps, such as setting up the VM image

and keys, prior to using the Cloud BigJob. Currently,

Amazon EC2, Eucalyptus and Nimbus Clouds [28] are

supported but using command line clients and not the

specific provider’s API. ProActive offers a new resource

manager that has been developed in order to mix Cloud

and Grid resources [23], but the programming model

lacks proper service-orientation: although an active ob-

ject can be deployed as a service, there is no special

support for orchestration of several service active ob-

jects. The deployment phase implies the user interven-

tion to configure the resources to be used and the in-

stallation of a scheduler and resource manager on the

hosting provider.

8.3 Workflow Managers

Another kind of approach allows the graphical com-

position of an application workflow whose nodes can

be services. Some vendors have implemented their own

WS-BPEL [15] visual editor to create orchestrations

of services which, at their turn, can also be published

as services; BPEL features control flow statements (if-

then-else, while) and the data flow is defined by linking

services. Taverna [46] is a workflow language and com-

putational model designed to support the automation

of complex, service-based and data-intensive processes.

Taverna supports the detection of tasks free of data-

dependences and is able to execute them in parallel.

A prototype version has been tested on a private re-

search cloud deploying Taverna Servers on a set of vir-

tual machines but neither plugins are offered to execute
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tasks on public clouds nor the possibility exists of elas-

tically modify the pool of resources. Pegasus [26] is a

workflow manager that automatically maps high-level

workflow descriptions, provided as XML files, onto dis-

tributed resources as clouds. The execution in cloud is

not straightforward because forces the user to manually

pre-deploy several nodes configured as Condor workers,

opposite to ServiceSs that automatically deploys the

applications on dynamically created virtual machines.

In contrast to these approaches, the workflow of a Ser-

viceSs application (the CE dependency graph) is not de-

fined graphically, but dynamically created as the main

program runs: each invocation of a method or service is

replaced on-the-fly by the creation of an asynchronous

CE which is added to the graph. ServiceSs only requires

skills in sequential programming; no knowledge in mul-

tithreading, parallel/distributed programming or ser-

vice invocation is necessary. While semantic informa-

tion in CEs is not supported yet, it could be added as

an interface annotation instead of selecting a particu-

lar instance of a service. JOLIE [47] allows to program

textually service compositions, but unlike ServiceSs it

uses a custom syntax and requires the user to deal with

parallelism and synchronization explicitly.

8.4 Environments for data intensive applications

In the last group we consider those programming mod-

els and frameworks related to the processing and gen-

eration of large data sets. In this area MapReduce pro-

gramming model is a widely used and implemented mo-

del that provides good performance on clouds architec-

tures above all on data analytics applications on large

data collections. In particular, we consider two variants

of MapReduce that are relevant in clouds. In one case

there is no real reduce step and instead just the map op-

eration is applied to each input in parallel. This is often

called an embarrassingly parallel computation. At the

other extreme there are computations that use MapRe-

duce inside an iterative loop. Microsoft Daytona [19]

presents an iterative MapReduce runtime for Windows

Azure designed to support a wide class of data analyt-

ics and machine learning algorithms. Twister [33] is an

enhanced MapReduce runtime with an extended pro-

gramming model that supports iterative MapReduce

computations efficiently. A tailored version allows the

programming of MapReduce applications on Azure. In

both cases the implementation forces the user to sub-

mit the code in the Azure cloud and there is no elas-

tic provision of VMs. Hadoop [27] is the most popular

open source implementation of MapReduce on top of

the Hadoop Distributed File System (HDFS) [27]. The

use of Hadoop avoids the lock in to a specific platform

allowing to execute the same MapReduce application

on any Hadoop compliant service, as the Amazon Elas-

tic MapReduce [2], but this still requires manual inter-

vention of the user to configure the resources. In [45] a

framework is presented to run MapReduce applications

on hybrid clouds managed by Aneka. Regarding the

expressiveness of the models, ServiceSs is more flexible

than MapReduce because its applications can generate

any arbitrary CE (task) graph. Such generality is also

pursued by Dryad [36], but in this case the graph has

to be created programmatically by means of C++ li-

braries and overloaded operators.

9 Conclusions and Future Work

This work presented the features of ServiceSs, a frame-

work for the development, deployment and execution of

parallel applications, business and scientific workflows

and compositions of services mixing services and code

on distributed infrastructures. ServiceSs provides users

with a simple sequential programming model that does

not require the use of APIs and enables the execution

of the same code on different cloud providers. The Ser-

viceSs runtime is designed to provide interoperability

with different IaaS and PaaS offerings through the im-

plementation of connectors, enabling the developed ser-

vices to run on hybrid deployments. The existing con-

nectors implement open community specifications such

as OCCI for virtual machine management, or commer-

cial offerings such as EC2 and Azure. These interoper-

ability features have been evaluated through the exe-

cution of several use cases on hybrid testbeds, demon-

strating that the runtime is able to elastically schedule

the tasks of the services dynamically by distributing the

load across resources from multiple providers.

The ServiceSs programming model, runtime and IDE

have been mainly developed during the OPTIMIS [29]

project. Besides, it has been adopted for the porting

of scientific applications in several infrastructures such

as VENUS-C [22] and EUBrazilOpenBio [39], and is

now leveraged in European Grid Infrastructure (EGI)

[6] as enabling technology for the execution of composed

workflows on the federated cloud testbed.

Future work includes the extension of the OCCI

connector to implement the full specification in order

to achieve interoperability with other clouds as Open-

Stack, and the extension of the Azure adaptor to sup-

port the dynamic provisioning of instances.

In terms of the runtime, the final year of the OPTI-

MIS project will evolve it in order to achieve control of

all developed services from the same Service Provider,

enabling to do further research in specifying different

policies at SP level on how resources will be managed
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for running the full set of SP services. We will also fur-

ther investigate to include the support of nested Core

Elements, which allows the main code of the application

to invoke CEs composed by finer grain CEs (achieving

hierarchical compositions of CEs). Other efforts chase

to achieve the auto-scaling of machines to minimize eco-

nomic costs, in order to meet established application

deadlines by forecasting execution times of CEs.

At the light of the evaluation results, in order to

improve the scenario with multiple Clouds, ServiceSs

could link entire composite runs to specific providers.

In a server that receives multiple requests for compos-

ites, this could be done by bursting to a public cloud

the whole execution of a composite, instead of offload-

ing some of the tasks of a composite that is already

being executed in VMs hosted on-premises. This strat-

egy would execute full graphs in the VMs of a single

provider causing data transfers to always happen inside

the boundaries of a single cloud thus avoiding expensive

inter-provider transfers.
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