
Scaling machine learning at the edge-cloud: a
distributed computing perspective

Fabrizio Marozzo, Alessio Orsino, Domenico Talia, Paolo Trunfio
DIMES

University of Calabria
Rende, Italy

{fmarozzo, aorsino, talia, trunfio}@dimes.unical.it

Abstract—The widespread diffusion of Internet of Things (IoT)
devices has led to an exponential growth in the volume of
data generated at the edge of the network. With the rapid
spread of machine learning (ML)-based applications, performing
compute and resource-intensive learning tasks at the edge has
become a critical issue, resulting in the need for scalable and
efficient solutions that can overcome the resource constraints
of edge devices. This paper analyzes the problem of scaling
ML applications and algorithms at the edge-cloud continuum
from a distributed computing perspective. In particular, we first
highlight the limitations of traditional distributed architectures
(e.g., clusters, clouds, and HPC systems) when running ML
applications that use data generated at the edge. Next, we
discuss how to enable traditional ML algorithms combining the
benefits of edge computing, such as low-latency processing and
privacy preservation of personal user data, with those of cloud
computing, such as virtually unlimited computational and storage
capabilities. Our analysis provides insights into how properly
separated parts of a ML application can be deployed across
edge-cloud architectures in order to optimize its execution. More-
over, examples of ML applications and algorithms appropriately
adapted for the edge-cloud continuum are shown.

Index Terms—Machine learning, distributed machine learning,
Internet of Things, edge computing, cloud computing, edge-cloud
continuum

I. INTRODUCTION

Artificial intelligence (AI), especially machine and deep
learning, has become a widely adopted solution for various
everyday tasks such as speech recognition, email spam fil-
tering, and fraud prevention [1]. The availability of massive
amounts of data, the so-called big data, has played a crucial
role in the advancement of machine learning (ML) solutions.
By leveraging large datasets and increased computational
capabilities of modern hardware, machine learning can extract
valuable insights from data to aid decision-making [2]. While
conventional distributed systems have proven effective for
performing complex learning tasks [3], they may not be
suitable to meet the low-latency requirements of ML-based
real-time applications. As a result, novel approaches such as
edge computing, in which data is processed closer to the
source, have emerged as promising solutions to address this
challenge. In fact, the proliferation of Internet of Things (IoT)
devices, such as smart cameras, wearables, and smartphones,
has led to a significant increase in data generation at the
network edge, which refers to the point of connection between
a device and the Internet. Transmitting this data from edge

devices to a centralized server for collection, processing, and
analysis incurs high communication costs and can impact
latency, which is critical for applications like health monitoring
and autonomous vehicle steering.

However, IoT devices at the network edge face limitations in
computational power, energy, storage capacity, and bandwidth.
These devices are considered resource-constrained, making
them impractical to run resource-intensive machine learning
tasks. The resource-constraint nature of edge devices requires
integration with cloud computing platforms, which allow for
persistent aggregation of big data and compute-intensive anal-
yses using large computing resources. This approach leads
to the concept of the edge-cloud compute continuum. Conse-
quently, recent efforts have focused on adapting machine learn-
ing algorithms to enable cooperative training between edge
and cloud or among edge devices themselves [4]. This turns
out to be quite a challenge due to the limited capabilities of
edge devices, the different hardware and technologies that edge
and cloud employ, and the absence of standardized software
stacks for efficient management. Moreover, ensuring security
and privacy becomes crucial when transferring data to other
devices or remote servers for parallel model training. There
are also important technical challenges to be addressed in
communication, as the bandwidth between edge devices can be
significantly slower than local computation time, necessitating
the development of communication-efficient methods for the
training process.

In this paper we analyze how distributed machine learning
applications and algorithms can be efficiently executed at the
edge-cloud continuum. In particular, a machine learning appli-
cation can be seen as a flow of steps, such as data collection,
compression, preparation, and local learning. Some of these
steps that require low response times and real-time analytics
can be performed on the edge, while steps that require large
amounts of computational resources, access to large datasets,
and data aggregation, need to be performed on the cloud.
Machine learning applications can also be broken down to an
even lower level, as a flow of data transformation tasks such as
map, filter, and reduce tasks that can be performed on the data.
In an edge-cloud continuum architecture, transformation tasks
that perform local processing are better suited for the device
or edge layers, while tasks that involve data shuffling across
partitions are more suitable for the fog or cloud layers. To



show our approach applied to practical examples, the task flow
diagrams of two machine learning algorithms (k-means and
Random Forest) are described, and for each task is indicated
which levels of an edge-cloud architecture are best suited to
execute it.

The structure of the paper is as follows. Section II analyzes
the related machine learning techniques and solutions in three
specific domains of distributed computing: (i) distributed
machine learning on High Performance Computing systems;
(ii) machine learning on resource-constrained edge devices;
and (iii) federated learning. Section III discusses how a
machine learning application can be performed on an edge-
cloud continuum architecture. Section IV describes how the
tasks of two machine learning algorithms can be distributed on
the different layers of an edge-cloud continuum architecture.
Finally, Section V concludes the paper.

II. RELATED WORK

While previous studies have focused heavily on distributed
deep learning models for edge environments, there is a need
for further exploration and adaptation of traditional machine
learning algorithms, which are commonly used in AI-based
applications [5]. Solutions and technologies for deep neural
network model training and inference, as well as learning in
resource-constrained edge computing environments, have been
investigated in different survey works [6], [7]. However, while
deep learning was extensively covered, the other machine
learning algorithms were only briefly mentioned. Imteaj et
al. [8] explored the federated learning paradigm and the
challenges of training distributed machine learning models for
resource-constrained IoT devices. Rosendo et al. [9] analyzed
machine learning, data analytics, and frameworks for big data
processing in edge, cloud, and edge-cloud architectures. Since
the goal of this paper is to describe how traditional machine
learning algorithms can be effectively deployed on edge-cloud
continuum architectures, below we describe the main machine
learning techniques and solutions in three specific domains
of distributed computing: (i) distributed machine learning
on HPC; (ii) machine learning on resource-constrained edge
devices; and (iii) federated learning.

a) Distributed machine learning on HPC: Machine
learning algorithms are typically designed to run on high-
performance machines, as training data and machine learning
models grow in size, learning on a single machine is unsuit-
able [10]. This problem can be solved by using distributed
computing, where multiple computing nodes collaborate to
train a model in parallel. There are two ways to achieve
this: distributing the data on worker nodes, which execute the
same algorithm on different data partitions, or distributing the
model, in such a way that nodes process the same data but
execute different sections of the model, and local results are
then aggregated. In both strategies, worker nodes can be orga-
nized in either a centralized architecture, where the learning
process is performed iteratively by updating and synchronizing
model parameters on a central server, or in a decentralized
one, where each worker node communicates with others and

the model is aggregated without involving a central node. In
all approaches and architectures, distributed learning avoids
the need to collect large volumes of data on a single machine
[11]. Different approaches have been suggested to accelerate
traditional machine learning algorithms on distributed HPC
infrastructures using big data analysis frameworks like Apache
Hadoop and Spark [2]. For instance, parallelized versions
of SVM [12] and k-means [13] have been proposed using
MapReduce, whereas Spark has been leveraged for parallelized
versions of Random Forest [14] and DBSCAN [15]. Over
the years, libraries have been developed with the main im-
plementations of distributed machine learning algorithms. For
instance, Apache Mahout [16] is an open-source library for
developing scalable machine learning algorithms in Hadoop,
including recommendation mining, clustering, classification,
and frequent itemset mining. On the other hand, MLlib [17],
Apache Spark’s machine learning library, provides parallel
machine learning algorithms such as classification, regression,
clustering, and collaborative filtering. Although these libraries
provide the main implementations of machine learning algo-
rithms, they have been designed to run on uniform distributed
computing environments such as those provided by clusters
or HPC systems. To be efficiently exploited in heterogeneous
distributed computing environments (i.e., computation/storage
capacity, hardware, software stacks) such as that of the edge-
cloud continuum, they must be appropriately adapted other-
wise they are unusable.

b) Machine learning on resource-constrained edge de-
vices: The deployment of machine learning applications at
the edge presents a significant opportunity for several real-
world scenarios, benefiting from the low latency associated
with performing on-device training and inference close to the
data sources. However, the limited computational, memory,
and energy resources, hardware heterogeneity, and security
and communication concerns of IoT devices pose a significant
challenge to performing heavy learning tasks on them. Most
techniques for edge training focus on deep learning, primarily
using the gradient-descent technique. For example, Wang et al.
[18] proposed a technique that trains deep learning models at
the edge by performing local gradient descent on multiple edge
devices and sending local models to an aggregator that com-
putes a weighted average, which is sent back to all edge de-
vices for the next iterations. Another approach is to train large
and accurate models on high-performance machines and then
use compression techniques, such as low-rank approximation,
knowledge distillation, pruning, and parameter quantization,
to reduce model size. However, smaller models often result in
lower accuracy, thus the trade-off between accuracy and costs
must be carefully considered. To address these challenges, the
EdgeML [19] library provides a set of open-source algorithms
for building machine learning models that can run directly
on edge devices, with much lower memory requirements than
traditional ML algorithms. The trained models, which include
tree-based classifiers [20], k-nearest neighbors (kNN) classi-
fiers [21], and recursive neural networks (RNNs) [22], can be
loaded onto edge devices, such as IoT devices and sensors, to



make fast and accurate predictions. The TinyML project [23]
and Tensorflow Lite Micro [24] are dedicated to optimizing
deep learning inference for edge devices with limited memory,
such as microcontrollers, enabling the efficient deployment
of AI applications in the context of edge. However, these
solutions are primarily designed to perform learning directly
on the end devices with pruned models and do not allow the
use of global and complex models distributed across devices,
edges and clouds.

c) Federated learning: Traditional approaches to dis-
tributed machine learning often neglect privacy and security
concerns during training and inference, relying on centralized
data management. However, this becomes a problem when
edge devices with limited defense capabilities are involved or
sensitive data need to be sent to remote servers. To address
this issue, federated learning has emerged as a paradigm for
training centralized models while keeping data distributed
across devices, allowing to never send data produced at the
edge devices to a centralized node, thus preserving privacy and
also reducing latency. For instance, Kumar et al. [25] proposed
applying the Federated Averaging technique to the distributed
k-means algorithm, ensuring privacy preservation and latency
reduction. Other efforts have been devoted to applying the fed-
erated learning paradigm to ensemble techniques, especially
Random Forest [26], [27], without the need for exchanging
raw data. Among libraries implementing federated learning,
FedML [28] is an open research library designed to facilitate
the development of federated learning algorithms on top
of three computing paradigms: on-device training for edge
devices, distributed computing, and single-machine simulation.
Although the solutions discussed here allow for the distribution
of training and inference operations across edge and cloud
levels, they cannot be applied to all classes of machine learning
algorithms. Indeed, some algorithms need to be properly
optimized to run in a combined and efficient way on all levels
of edge-cloud continuum architectures (i.e., device, edge, fog,
and cloud).

III. DISTRIBUTED MACHINE LEARNING AT THE
EDGE-CLOUD CONTINUUM

In this section we discuss how to effectively deploy machine
learning applications across different layers of an edge-cloud
continuum architecture. In particular, a machine learning appli-
cation can be broken down with different levels of granularity.
It can be seen either as a flow of steps, such as data collection,
compression, preparation, and local learning, or as a flow of
data transformation tasks, such as map, filter, and reduce that
can be performed on the data.

A. ML applications as a flow of steps

The deployment process of a machine learning application
begins with data selection, where relevant datasets are chosen
from various sources based on the goals of the analysis.
Subsequently, data preprocessing is conducted to ensure data
quality, integration, transformation, and reduction. After data

preprocessing, the transformed data is subjected to ML tech-
niques, applying algorithms such as clustering, classification,
or association rule mining to extract meaningful patterns.
Learning can occur in a variety of ways, such as local
by enabling partial learning on device data, aggregated by
merging and analyzing data from multiple sources, or global
by leveraging large-scale datasets for comprehensive analysis
and modeling.

Table I describes which layers of an edge-cloud architecture
are most appropriate for executing the steps of a machine
learning application:

• At the device layer, data can be collected, filtered on
the basis of application requirements, and compressed in
order to improve storage efficiency, conserve bandwidth,
and enhance data transfer speed. Pre-processed data can
be used to train local learning models that can later
be employed in federated learning tasks. This layer is
critical for preserving data privacy, reducing latency, and
conserving network bandwidth.

• At the edge layer, local models from IoT devices can
be aggregated to facilitate collaborative learning and
enhance predictive capabilities. By aggregating the local
models, valuable insights and knowledge can be derived
from larger and more diversified datasets, leading to more
accurate and robust predictions. Additionally, at the edge
layer, data can potentially be cached, allowing for quicker
access and reducing the need for frequent data transfers
to the cloud or fog servers.

• At the fog layer, data and models from multiple edge
devices can be aggregated, consolidating information to
gain collective intelligence. Aggregation allows for col-
laborative learning and the extraction of comprehensive
insights. Moreover, meta-learning can be leveraged to
improve the learning capabilities of the architecture.

• At the cloud layer, thanks to the capabilities that are not
available in other layers, large-scale training, advanced
analytics, and data storage can be performed. It can be
leveraged for global learning by aggregating data and
models from multiple sources, allowing for a broader
understanding of global trends and patterns.

As a specific example of a machine learning application that
can run on the edge-cloud continuum, let’s consider an object
detection and tracking application. Edge devices equipped
with cameras capture real-time video or image data from the
environment. These devices perform initial processing tasks
locally, such as object detection algorithms, to identify and
track objects of interest within their immediate vicinity. The
edge servers can train and update local models using the
data acquired, properly compressed, from the devices they
are connected to. These models typically include machine
learning algorithms designed for object detection and track-
ing. Training can be performed using locally collected data,
enabling real-time responsiveness and reducing the need for
frequent communication with the cloud. Once trained, the
local models on edge devices can perform real-time infer-



Layer Steps Example (Object detection and tracking)

Device layer Data collection, filtering and
compressing, local learning

Devices capture camera data, which can be stored,
compressed and processed

Edge layer Data aggregation, caching and
model aggregation

Train and update local models, enabling real-time inference,
detecting and tracking objects

Fog layer Data aggregation, collective
learning, meta learning Hierarchically aggregation of local models

Cloud layer
Large-scale training, advanced
analytics, persistent storage,
global learning

Global models, long-term analysis, archiving of historical data
and coordination of activities

TABLE I: ML applications as a flow of steps distributed on the layers of an edge-cloud architecture.

ence, detecting and tracking objects in the captured video
or images, enabling fast and localized decision-making based
on the detected objects. The edge devices can periodically
transmit relevant information, such as object detections, to
cloud (or fog) servers. This information can be aggregated
with data from other edge servers to gain a comprehensive
understanding of the overall environment and improve the
accuracy of the whole process. The cloud layer can provide
additional computational resources and advanced algorithms
for further processing, handling resource-intensive tasks, such
as complex object recognition, advanced tracking algorithms,
or long-term analysis of object behavior. The cloud layer can
also store historical data for retraining models, as well as
provide centralized coordination and management of the entire
system.

B. ML applications as a flow of data transformation tasks

Machine learning applications can also be defined as a
flow of data transformation tasks. For example, following
a functional programming approach, an application could
be defined as a stream of mapping, filtering, and reducing
functions. As an example, a map function can be applied to a
set of data to transform each element of that set. After the map
function, a filter function can be used to selectively keep only
certain elements from the transformed set. Finally, a reduce
function can be exploited to aggregate the filtered elements in
order to generate the final result.

Before describing which layer of an edge-cloud architecture
is most appropriate for performing certain types of tasks, we
describe some factors that we believe should be taken into
account. First of all, heterogeneous technologies, hardware,
and software stacks are important factors to consider to try
to take full advantage of the real-time processing capabilities
of edge devices with the advanced computing power and
centralized resources of the cloud. Data location is another key
factor, aiming to minimize data movement by performing com-
putation as close to the data as possible. If a given node lacks
the required computing capabilities, support can be requested
from higher-layer nodes. The geographical distribution of
hardware components needs also to be taken into account, as
the physical location of devices can impact communication
overhead and algorithm performance. For these reasons, it
is crucial to minimize data movement whenever possible

and, in cases where data transfer is necessary, prioritize the
transfer of compact and summarized information. Moving
large volumes of data across the network can introduce latency,
consume bandwidth, and increase the overall overhead of
the system. By minimizing data movement, the system can
operate more efficiently and reduce the risk of performance
bottlenecks. Additionally, when data transfer is unavoidable,
transmitting compact and summary information rather than
the complete dataset can significantly reduce communication
overhead. Finally, task scheduling and data persistence are
needed to execute tasks in distributed learning algorithms,
ensuring load balancing, prioritizing critical tasks, and poten-
tially replicating tasks for improved execution time and fault
tolerance. The storage of temporary data on non-persistent
components should be considered as it may lead to data loss.

Figure 1 shows the main data transformation tasks of a
distributed algorithm and the corresponding layer of an edge-
cloud architecture is the most appropriate for performing them.
According to the Spark distributed computing framework,
tasks that perform transformation operations on data can
be divided into two types: narrow transformation and wide
transformation. The main difference between these two types
lies in the data shuffling behavior and the level of parallelism
during execution. Specifically, narrow transformation tasks
do not involve data shuffling or movement across partitions,
as they operate on a single partition at a time, performing
operations such as filtering, mapping, and aggregating within
the partition. These tasks can be executed in parallel across
partitions without requiring communication or coordination
between them. On the other hand, wide transformation tasks
require data shuffling or movement across partitions. They
depend on data from multiple partitions and often involve
operations like joining, grouping, and sorting, thus requiring
coordination and communication between partitions to ex-
change and reorganize the data, which can result in reduced
parallelism and increased overhead.

Considering an edge-cloud architecture, narrow transforma-
tion tasks are better suited to be performed on the device
or edge layers. Narrow tasks operate on a single partition at
a time and focus on local data processing within a specific
partition. They involve operations like filtering, mapping,
and aggregating, which can be executed in parallel across
partitions without the need for extensive communication or



Narrow trasformation - 
Map, FlatMap, MapPartition, 
Filter, Sample, Union, ...

Wide trasformation - 
Intersection, Distinct, 
ReduceByKey, GroupByKey, 
Join, ...

Device 
layer

Edge 
layer

Fog 
layer

Cloud 
layer

Fig. 1: Tasks of a machine learning algorithm distributed on the layers of an edge-cloud architecture.

coordination between them. Since the data is mainly generated
by the devices, it is already naturally partitioned and can
be analyzed where it was generated (or combined at the
edge level), reducing latency and network congestion and
enabling faster response times and enhanced privacy. On the
other hand, wide transformation tasks, which involve data
shuffling and movement across partitions, are more suitable
to be performed at the fog or cloud layers. Wide tasks often
include operations like joining, grouping, or sorting, which
require coordination and communication between partitions
to exchange and reorganize data. In this way, by exploiting
the increased computational/storage capabilities and higher
scalability, it is possible to handle complex data-intensive
operations, facilitate inter-partition communication and enable
efficient data exchange and coordination required for this kind
of task.

IV. EXAMPLES OF MACHINE LEARNING ALGORITHMS
DISTRIBUTED ACROSS THE EDGE-CLOUD CONTINUUM

This section describes how two machine learning algo-
rithms, namely k-means and Random Forest, can be suitably
adapted to run on the edge-cloud continuum. The task flow
of the algorithms is described and, for each task, the most
suitable layers of an edge-cloud architecture are identified in
which to execute it.

A. K-means

The k-means algorithm [29] is widely recognized as one
of the most popular and effective clustering algorithms. It is
an unsupervised learning technique known for its simplicity of
implementation and usage. The algorithm operates by defining
centroids, which are points in the feature space representing
the average distance of data points within a cluster. Initially,
the algorithm randomly selects centroids and then iteratively
refines their positions to optimize the clustering. The process
continues until the centroids stabilize, indicating successful
clustering, or the specified number of iterations is reached.

The implementation discussed here is Parallel k-means
(PKMeans) [13], a parallel version based on the MapReduce
paradigm. This version can be implemented as a flow of three
main data transformation tasks.

1) The first task of the algorithm is the map. Each worker
node receives a partition of input data and the initial
K centroids. Each node locally calculates the distance
between the data point and all centroids, assigning the
point to the closest centroid.

2) After the map task, the algorithm proceeds with the
local combine. In this task, for each centroid, each node
calculates the partial sum of all the data points assigned
to that centroid. The local combine stage helps reduce
the amount of data shuffled between worker nodes, as
each node can independently compute the partial sums.

3) Next, the reduce task combines the partial sums calcu-
lated by different nodes. For each centroid, the algorithm
computes the global sum of all the partial sums received
from different nodes. Using the global sum and the
total count of data points assigned to that centroid, the
algorithm calculates the new centroid.

4) The algorithm then enters a repetition phase, iterating
the map, local combine, and reduce operations until
convergence is achieved.

For efficient execution of this algorithm in edge-cloud
continuum architecture, we can follow the approach shown in
Figure 2. The map and combine tasks can be executed between
the device and edge layers. If the computation of these tasks
is done only at the device layer (if the computational and
storage power allows it) we can perform direct analysis on
the portions of data generated by the devices. If, on the other
hand, we move to the edge layer, we are able to carry out
analyses on sets of devices that belong to the same edge.
The results from these devices/edges can be then combined
at fog/cloud layers to calculate the new cluster centroids. This
approach can minimize communication between the edge and
the cloud and removes the need for direct communication
between the devices themselves. The communication flow in
this distributed setting involves the transmission of cluster sum
vectors from each device/edge to the fog/cloud, and then the
transmission of the new centroids back to each device/edge.

While the discussed approach assumes a dataset distributed
across multiple devices, it can also be adapted for scenarios
where data continuously flows from the devices. In such cases,



Device/edge 
layer

Fog/cloud
layer

Map Combine

Reduce
Map Combine

Map Combine

Fig. 2: K-means tasks distributed on the layers of an edge-cloud architecture.

each device can store the data until a sufficient amount is ac-
cumulated for training the algorithm. Once the training phase
is completed, the returned centroids can be exploited for clus-
tering the newly produced data. By adopting this cloud-edge
continuum architecture and leveraging parallel processing, the
communication overhead can be minimized, enabling efficient
and scalable k-means clustering in distributed environments.

B. Random Forest

Random Forest [30] is a popular ensemble learning al-
gorithm that combines multiple decision trees to make pre-
dictions. Each decision tree is built on a random subset of
the training data and random subsets of features. The final
prediction is made by aggregating the predictions of all the
individual trees. To handle large-scale datasets, Random Forest
can be distributed across multiple computing nodes in an HPC
system. Data is partitioned across the nodes, where a subset of
decision trees is built using local data. The predictions from
the individual trees are then combined to produce the final
prediction. This approach allows for scalable processing and
efficient training on large datasets and helps to overcome the
memory and processing limitations of worker nodes.

In an edge-cloud continuum architecture, the distributed
version of Random Forest can take full advantage of edge-
cloud architectures. In fact, by distributing the workload
between edge devices and the cloud, it allows to take full
advantage of local storage and edge processing capabilities
along with the compute power and persistent storage capacity
of the cloud. Each edge device can independently train a subset
of decision trees using its local data, taking advantage of
parallel model training. In this case, if data is not generated
uniformly across devices (some devices generate fewer data
than others), it could lead to unbalanced training sets and
hence decision trees of the forest that are not well trained.
For this reason, it is better to combine the trained decision
trees from different devices in order to enhance the diversity
and robustness of the Random Forest model. This combination

can be performed at the edge layer, using data from different
devices and exploiting horizontal and vertical randomization
techniques to enhance performance and robustness. The dy-
namic load balancing capability of the edge-cloud continuum
architecture can also ensure efficient utilization of resources by
offloading computation from overloaded edge devices to the
cloud. Additionally, the cloud resources can be exploited for
model updates, maintenance, and management tasks, including
retraining the model with new data and deploying updated
models to edge devices.

This solution can also be adapted for real scenarios where
data continuously flows from the devices. In such cases,
the model can be updated incrementally as new data arrive,
without requiring the entire dataset to be processed again.
Instead of training decision trees from scratch, the algorithm
can update the existing ensemble by adding new decision trees
to the ensemble. This approach allows the Random Forest
to adapt to changes in the data distribution over time and
incorporate the knowledge gained from new observations.

V. CONCLUSION

In this paper, we addressed the challenge of efficiently
executing distributed machine learning applications and algo-
rithms on an edge-cloud continuum architecture. The main
problem lies in the resource constraints of edge devices, the
need for real-time analytics, and the requirement for access
to large datasets and computational resources for accurate
model training. Traditional approaches that rely solely on
edge or cloud computing have proven limited in effectively
addressing these requirements. To overcome these challenges,
we discussed an approach that leverages the strengths of both
edge and cloud layers.

Our approach involves breaking down machine learning
applications into different levels of granularity. We demon-
strated how certain tasks requiring low response times and
real-time analytics can be performed at the edge, while
resource-intensive tasks, data aggregation, and access to large



datasets are better suited for the cloud. Through the task
flow of two machine learning algorithms, namely k-means
and Random Forest, we identified which levels of the edge-
cloud architecture are best suited for executing each task. In
particular, narrow transformation tasks, focused on local data
processing, are more suitable for the device or edge layers.
In contrast, wide transformation tasks involving data shuffling
and coordination across partitions are better suited for the fog
or cloud layers.

Future research in this area will further refine and expand
upon the capabilities of the edge-cloud continuum architecture,
fully unlocking its potential for distributed machine learning.
New libraries specifically tailored for machine learning algo-
rithms, by incorporating optimized algorithms and protocols,
could further improve performance, scalability, and resource
utilization of machine learning applications across the edge-
cloud continuum.

ACKNOWLEDGEMENTS

We acknowledge financial support from “National Centre
for HPC, Big Data and Quantum Computing”, CN00000013
- CUP H23C22000360005, and from “PNRR MUR project
PE0000013-FAIR” - CUP H23C22000860006. This work
was also supported by the European Union under the
Italian National Recovery and Resilience Plan (NRRP) of
NextGenerationEU, partnership on “Telecommunications of
the Future” (PE00000001 - program “RESTART”) - CUP
C37G22000480001.

REFERENCES

[1] I. H. Sarker, “Machine learning: Algorithms, real-world applications and
research directions,” SN computer science, vol. 2, no. 3, p. 160, 2021.

[2] L. Belcastro, R. Cantini, F. Marozzo, A. Orsino, D. Talia, and P. Trunfio,
“Programming big data analysis: Principles and solutions,” Journal of
Big Data, vol. 9, no. 4, 2022.

[3] D. Talia, P. Trunfio, and F. Marozzo, Data Analysis in the Cloud: Models,
Techniques and Applications. Elsevier, October 2015, iSBN 978-0-12-
802881-0.

[4] F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Edge computing
solutions for distributed machine learning,” in 2022 IEEE Intl Conf
on Dependable, Autonomic and Secure Computing, Intl Conf on Per-
vasive Intelligence and Computing, Intl Conf on Cloud and Big Data
Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), 2022, pp. 1–8.

[5] L. Belcastro, F. Marozzo, A. Orsino, D. Talia, and P. Trunfio, “Edge-
cloud continuum solutions for urban mobility prediction and planning,”
IEEE Access, vol. 11, pp. 38 864–38 874, 2023.

[6] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[7] M. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine learning at the network edge: A survey,” ACM
Computing Surveys (CSUR), vol. 54, no. 8, pp. 1–37, 2021.

[8] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A survey on
federated learning for resource-constrained iot devices,” IEEE Internet
of Things Journal, vol. 9, no. 1, pp. 1–24, 2021.

[9] D. Rosendo, A. Costan, P. Valduriez, and G. Antoniu, “Distributed
intelligence on the edge-to-cloud continuum: A systematic literature
review,” Journal of Parallel and Distributed Computing, 2022.

[10] C. Savaglio, P. Gerace, G. Di Fatta, and G. Fortino, “Data mining
at the iot edge,” in 2019 28th International Conference on Computer
Communication and Networks (ICCCN). IEEE, 2019, pp. 1–6.

[11] J. Qiu, Q. Wu, G. Ding, Y. Xu, and S. Feng, “A survey of machine
learning for big data processing,” EURASIP Journal on Advances in
Signal Processing, vol. 2016, no. 1, pp. 1–16, 2016.

[12] N. K. Alham, M. Li, Y. Liu, and M. Qi, “A mapreduce-based distributed
svm ensemble for scalable image classification and annotation,” Com-
puters & Math with Applications, vol. 66, no. 10, pp. 1920–1934, 2013.

[13] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering based on
mapreduce,” in IEEE international conference on cloud computing.
Springer, 2009, pp. 674–679.

[14] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, “A
parallel random forest algorithm for big data in a spark cloud computing
environment,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 919–933, 2016.

[15] G. Luo, X. Luo, T. F. Gooch, L. Tian, and K. Qin, “A parallel dbscan
algorithm based on spark,” in 2016 IEEE International Conferences on
Big Data and Cloud Computing (BDCloud). IEEE, 2016, pp. 548–553.

[16] “Apache Mahout,” https://mahout.apache.org//, accessed May 2023.
[17] “Apache Spark’s MLlib,” https://spark.apache.org/mllib/, accessed May

2023.
[18] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and

K. Chan, “When edge meets learning: Adaptive control for resource-
constrained distributed machine learning,” in IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, 2018, pp. 63–71.

[19] Dennis, Don Kurian and Gaurkar, Yash and Gopinath, Sridhar and
Goyal, Sachin and Gupta, Chirag and Jain, Moksh and Jaiswal, Shikhar
and Kumar, Ashish and Kusupati, Aditya and Lovett, Chris and Patil,
Shishir G and Saha, Oindrila and Simhadri, Harsha Vardhan, “EdgeML:
Machine Learning for resource-constrained edge devices.” [Online].
Available: https://github.com/Microsoft/EdgeML

[20] A. Kumar, S. Goyal, and M. Varma, “Resource-efficient machine learn-
ing in 2 kb ram for the internet of things,” in International Conference
on Machine Learning. PMLR, 2017, pp. 1935–1944.

[21] C. Gupta, A. S. Suggala, A. Goyal, H. V. Simhadri, B. Paranjape,
A. Kumar, S. Goyal, R. Udupa, M. Varma, and P. Jain, “Protonn: Com-
pressed and accurate knn for resource-scarce devices,” in International
Conference on Machine Learning. PMLR, 2017, pp. 1331–1340.

[22] A. Kusupati, M. Singh, K. Bhatia, A. Kumar, P. Jain, and M. Varma,
“Fastgrnn: A fast, accurate, stable and tiny kilobyte sized gated recurrent
neural network,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

[23] “MIT Tiny ML project,” https://hanlab.mit.edu/, accessed May 2023.
[24] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li, N. Kreeger,

I. Nappier, M. Natraj, T. Wang et al., “Tensorflow lite micro: Embedded
machine learning for tinyml systems,” Proceedings of Machine Learning
and Systems, vol. 3, pp. 800–811, 2021.

[25] H. H. Kumar, V. Karthik, and M. K. Nair, “Federated k-means clustering:
A novel edge ai based approach for privacy preservation,” in 2020 IEEE
International Conference on Cloud Computing in Emerging Markets
(CCEM). IEEE, 2020, pp. 52–56.

[26] H. Yao, J. Wang, P. Dai, L. Bo, and Y. Chen, “An efficient and
robust system for vertically federated random forest,” arXiv preprint
arXiv:2201.10761, 2022.

[27] Y. Liu, Y. Liu, Z. Liu, Y. Liang, C. Meng, J. Zhang, and Y. Zheng,
“Federated forest,” IEEE Transactions on Big Data, 2020.

[28] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu et al., “Fedml: A research li-
brary and benchmark for federated machine learning,” arXiv preprint
arXiv:2007.13518, 2020.

[29] J. A. Hartigan, M. A. Wong et al., “A k-means clustering algorithm,”
Applied statistics, vol. 28, no. 1, pp. 100–108, 1979.

[30] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE transactions on pattern analysis and machine intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

https://github.com/Microsoft/EdgeML

	Introduction
	Related work
	Distributed machine learning at the edge-cloud continuum
	ML applications as a flow of steps
	ML applications as a flow of data transformation tasks

	Examples of machine learning algorithms distributed across the edge-cloud continuum
	K-means
	Random Forest

	Conclusion
	References

