
Probabilistic Consolidation of Virtual Machines
in Self-Organizing Cloud Data Centers

Carlo Mastroianni, Member, IEEE, Michela Meo, Member, IEEE, and

Giuseppe Papuzzo, Member, IEEE

Abstract—Power efficiency is one of the main issues that will drive the design of data centers, especially of those devoted to provide

Cloud computing services. In virtualized data centers, consolidation of Virtual Machines (VMs) on the minimum number of physical

servers has been recognized as a very efficient approach, as this allows unloaded servers to be switched off or used to accommodate

more load, which is clearly a cheaper alternative to buy more resources. The consolidation problem must be solved on multiple

dimensions, since in modern data centers CPU is not the only critical resource: depending on the characteristics of the workload other

resources, for example, RAM and bandwidth, can become the bottleneck. The problem is so complex that centralized and deterministic

solutions are practically useless in large data centers with hundreds or thousands of servers. This paper presents ecoCloud, a self-

organizing and adaptive approach for the consolidation of VMs on two resources, namely CPU and RAM. Decisions on the assignment

and migration of VMs are driven by probabilistic processes and are based exclusively on local information, which makes the approach

very simple to implement. Both a fluid-like mathematical model and experiments on a real data center show that the approach rapidly

consolidates the workload, and CPU-bound and RAM-bound VMs are balanced, so that both resources are exploited efficiently.

Index Terms—Cloud computing, VM consolidation, data center, energy saving
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1 INTRODUCTION

ALL main trends in information technology, for example,
Cloud Computing and Big Data, are based on large

and powerful computing infrastructures. The ever increas-
ing demand for computing resources has led companies
and resource providers to build large warehouse-sized data
centers, which require a significant amount of power to be
operated and hence consume a lot of energy. In 2006, the
energy consumed by IT infrastructures in the USA was
about 61 billion kWh, corresponding to 1.5 percent of all the
produced electricity, and 2 percent of the global carbon
emissions, which is equal to the aviation industry, and these
figures are expected to double every 5 years [1].

In the past few years important results have been
achieved in terms of energy consumption reduction,
especially by improving the efficiency of cooling and power
supplying facilities in data centers. The Power Usage
Effectiveness (PUE) index, defined as the ratio of the
overall power entering the data center and the power
devoted to computing facilities, had typical values between
2 and 3 only a few years ago, while now big Cloud
companies have reached values lower than 1.1. However,
much space remains for the optimization of the computing
facilities themselves. It has been estimated that most of the

time servers operate at 10-50 percent of their full capacity
[2], [3]. This low utilization is also caused by the intrinsic
variability of VMs’ workload: the data center is planned to
sustain the peaks of load, while for long periods of time (for
example, during nights and weekends), the load is much
lower [4], [5]. Since an active but idle server consumes
between 50 and 70 percent of the power consumed when it
is fully utilized [6], a large amount of energy is used even at
low utilization.

The virtualization paradigm can be exploited to alleviate
the problem, as many Virtual Machine (VM) instances can
be executed on the same physical server. This enables the
consolidation of the workload, which consists in allocating
the maximum number of VMs in the minimum number of
physical machines [7]. Consolidation allows unneeded
servers to be put into a low-power state or switched off
(leading to energy saving and OpEx reduction), or devoted
to the execution of incremental workload (leading to CapEx
savings, thanks to the reduced need for additional servers).
Unfortunately, efficient VM consolidation is hindered by
the inherent complexity of the problem. The optimal
assignment of VMs to the servers of a data center is
analogous to the NP-hard “Bin Packing Problem,” the
problem of assigning a given set of items of variable size to
the minimum number of bins taken from a given set. The
problem is complicated by two circumstances: 1) the
assignment of VMs should take into account multiple
server resources at the same time, for example, CPU and
RAM, therefore it becomes a “multidimensional bin pack-
ing problem,” much more difficult than the single dimen-
sion problem; 2) even when a good assignment has been
achieved, the VMs continuously modify their hardware
requirements, potentially baffling the previous assignment
decisions in a few hours.
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In [8], we presented ecoCloud, an approach for con-
solidating VMs on a single computing resource, i.e., the
CPU. Here, the approach is extended to the multidimension
problem, and is presented for the specific case in which
VMs are consolidated with respect to two resources: CPU
and RAM. With ecoCloud, VMs are consolidated using two
types of probabilistic procedures, for the assignment and the
migration of VMs. Both procedures aim at increasing the
utilization of servers and consolidating the workload
dynamically, with the twofold objective of saving electrical
costs and respecting the Service Level Agreements stipu-
lated with users. All this is done by demanding the key
decisions to single servers, while the data center manager is
only requested to properly combine such local decisions.
The approach is partly inspired by the ant algorithms used
first by Deneubourg et al. [9], and subsequently by a wide
research community, to model the behavior of ant colonies
and solve many complex distributed problems. The char-
acteristics inherited by such algorithms make ecoCloud
novel and different from other solutions. Among such
characteristics: 1) the use of the swarm intelligence para-
digm, which allows a complex problem to be solved by
combining simple operations performed by many autono-
mous actors (the single servers in our case); 2) the use of
probabilistic procedures, inspired by those that model the
operations of real ants; and 3) the self-organizing behavior
of the system, which ensures that the assignment of VMs to
servers dynamically adapts to the varying workload.

To evaluate the performance of ecoCloud we use two
complementary approaches. We first propose a fluid
mathematical model that derives the evolution of the
system with time by assuming that the involved variables
are continuous. The model allows us to test ecoCloud in a
wide range of scenarios by simply changing the value of
some parameters. The second approach consists of experi-
ments performed on real data centers. The two approaches
complement each other: the analytical model introduces
some simplifying assumptions but allows for an easy
exploration of a wide range of scenarios; conversely, the
real experiments do not suffer from assumptions but are,
somehow, less representative. Both the approaches show
that ecoCloud achieves very good consolidation, and
smoothly adapts to possible changes in the system condi-
tions. Finally, to compare the performance of ecoCloud with
those of [1], that is, a reference approach, and to perform a
scalability study, we use an ad hoc simulator.

The remainder of this paper is organized as follows: after
a general description of the scenario and of performance
metrics, given in Section 2, Section 3 defines and illustrates
the assignment and migration procedures, generalized
for the multiresource consolidation problem. Section 4
analyzes the assignment procedure through a mathematical
model based on differential equations and shows that
ecoCloud not only consolidates the load but also efficiently
balances the available resources between compute-intensive
and memory-intensive applications. Section 5 reports the
results of the ecoCloud adoption in a real data center of a
telecommunications company, extending the assessment to
the migration procedure. Section 6 compares ecoCloud to
one of the best deterministic algorithms devised recently,

and Section 7 focuses on the scalability properties of

ecoCloud. Section 8 describes related work and Section 9

concludes the paper.

2 SCENARIO AND PERFORMANCE METRICS

The objective of ecoCloud is to dynamically map VMs to

servers with the twofold objective of saving electrical

costs—through the consolidation of VMs that allows some

servers to enter low consuming sleep modes—and respect-

ing the Service Level Agreements stipulated with users,

especially concerning the expected quality of service. The

scenario is pictured in Fig. 1: an application request is

transmitted from a client to the data center manager, which

selects a VM that is appropriate for the application, on the

basis of application characteristics such as the amount of

required resources (CPU, memory, storage space) and the

type of operating system specified by the client. Then, the

VM is assigned to one of the available servers through

the assignment procedure.
The main idea underlying the whole approach is that it is

up to the single servers to decide whether they should accept

or reject a VM. These decisions are based on information

available locally—for example, information on the local CPU

and RAM utilization—and are founded on Bernoulli trials.

The data center manager has only a coordinating role, and it

does not need to execute any complex centralized algorithm

to optimize the mapping of VMs.
The workload of each application is dynamic, that is, its

demand for computational resources varies with time: for

example, the CPU demand of a web server depends on the

workload generated by web users. Therefore, the assign-

ment of VMs is monitored continuously and is tuned

through the migration procedure. Migrating a VM can be

advantageous either when the resources utilization is too

low, meaning that the server is highly underutilized, or

when it is too high, possibly causing overload situations and

service level agreement violations. The migration procedure

consists of two steps: in the first step, a server requests the

migration of a VM, on the basis of its CPU/RAM utilization.

The purpose of the second step is to choose the server that

will host the migrating VM, with a technique similar to the

one used by the assignment procedure.
The performance of ecoCloud is assessed through the

following metrics:

. Resource utilization. To foster consolidation and save
power, a server should be either highly exploited or
in a sleep mode. Analysis of CPU and RAM
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Fig. 1. Assignment and migration of VMs in a data center.



utilization aims at checking if this objective is
fulfilled.

. Number of active servers. VMs should be clustered into
as few servers as possible. For example, if the overall
load of the data center is equal to 30 percent of the
total available capacity of servers, the number of
active servers should be close to 30 percent of the
overall number of servers.

. Consumed power. The ultimate objective is to save
electrical power, so we compute the power con-
sumed by the whole data center in different load
conditions.

. Frequency of migrations and server switches. Any VM
migration causes a slight performance degradation
of the application hosted by the VM. The time needed
to transfer the VM memory from the source server to
the target server may vary from a few seconds up to
two minutes in the worst cases [10], [11]. In this
interval, the VM is active on the source server. During
the actual handover of the VM, the VM experiences a
downtime in the order of milliseconds. Analogously,
the activation of an off server needs a startup time
and additional power. Therefore, though migrations
and switches are essential for VM consolidation and
power reduction, it is important to limit their
frequency. It is even more important to avoid
massive migrations of VMs: the asynchronous and
gradual migration of a number of VMs is much less
detrimental than the concurrent migration of the
same number of VMs; for example, concurrent
migrations might overload the transmission band-
width and, hence, increase the downtime duration.

. SLA violations. A violation of Service Level Agree-
ments can happen when the workload of some VMs
increases and the physical servers that host them
become overloaded. Such events can be prevented
by timely migrating some VMs to other less loaded
servers. We measure the percentage of time in which
the VMs allocated to a server demand more
resources than what the server can provide. This
metric, in accordance with recent studies [1], is used
to assess the QoS level offered to users.

Several studies and experiments (e.g., [6] [12]) have
found that an active server with very low CPU utilization
consumes between 50 and 70 percent of the power that it
consumes when fully utilized. Moreover, as the CPU
utilization increases, the consumed power can be assumed,
with the error below 10 percent, to increase linearly from
the power corresponding to the idle state to the power
corresponding to full utilization [13], [14]. Though some
studies have derived more accurate nonlinear relations [15],
such refinements have little practical utility to our purposes.
Therefore, in analytical and simulation experiments pre-
sented in this study, the power consumed by a single server
is expressed as

P ðuÞ ¼ Pidle þ ðPmax � PidleÞu; ð1Þ

where Pmax is the power consumed at maximum CPU
utilization (u ¼ 1) and Pidle is the power consumed when
the server is active but idle (u ¼ 0). In experiments on real
data centers, the consumed power is directly monitored and
measured.

3 ASSIGNMENT AND MIGRATION PROCEDURES

In this section, we describe the two main probabilistic
procedures that are at the basis of ecoCloud: the assignment
and migration procedures. The allocation of VMs is driven
by the availability of CPU and RAM on the different
servers.

The assignment procedure is performed when a client asks
the data center to execute a new application. Once the
application is associated to a compatible VM, the data
center manager must assign the VM to one of the servers for
execution. Instead of taking the decision on its own, which
would require the execution of a complex optimization
algorithm, the manager delegates a main part of the
procedure to single servers. Specifically, it sends an
invitation to all the active servers, or to a subset of them,
depending on the data center size and architecture,1 to
check if they are available to accept the new VM. Each
server takes its decision whether or not to accept the
invitation, trying to contribute to the consolidation of the
workload on as few servers as possible. The invitation
should be rejected if the server is overutilized or under-
utilized on either of the two considered resources, CPU and
RAM. In the case of overutilization, the rationale is to avoid
overload situations that can penalize the quality of service
perceived by users, while in the case of underutilization the
objective is to put the server in a sleep mode and save
energy, so the server should refuse new VMs and try to get
rid of those that are currently running. Conversely, a server
with intermediate utilization should accept new VMs to
foster consolidation.

The server decision is taken performing a Bernoulli trial.
The success probability for this trial is equal to the value of
the overall assignment function that, in turn, is defined by
evaluating the assignment function on each resource of
interest. If x (valued between 0 and 1) is the relative
utilization of a resource, CPU or RAM, and T is the
maximum allowed utilization (e.g., T ¼ 0:8 means that the
resource utilization cannot exceed 80 percent of the server
capacity), the assignment function is equal to zero when
x > T , otherwise it is defined as

fðx; p; T Þ ¼ 1

Mp
xpðT � xÞ 0 � x � T; ð2Þ

where p is a shape parameter, and the factor Mp is used to
normalize the maximum value to 1 and is defined as

Mp ¼
pp

ðpþ 1Þðpþ1Þ T
ðpþ1Þ: ð3Þ

Fig. 2 shows the graph of the single-resource assignment
function (2) for some values of the parameter p, and T ¼ 0:9.
The value of p can be used to modulate the shape of the
function. Indeed, the value of x at which the function
reaches its maximum—that is, the value at which assign-
ment attempts succeed with the highest probability—is
p=ðpþ 1ÞT , which increases and approaches T as the value

MASTROIANNI ET AL.: PROBABILISTIC CONSOLIDATION OF VIRTUAL MACHINES IN SELF-ORGANIZING CLOUD DATA CENTERS 217

1. Data centers are equipped with high-bandwidth networks that
naturally support broadcast messaging. In very large data centers, the
servers may be distributed among several groups of servers: in this case, the
invitation message may be broadcast to one of such groups only.



of p increases. The value of the function is zero or very low
when the resource is overutilized or underutilized.

If us and ms are, respectively, the current CPU and RAM
utilization at server s, the overall assignment function is
obtained by the product of two assignment functions as in
(2), where x ¼ us and x ¼ ms are used for CPU and RAM,
respectively. Let pu and pm be the shape parameters defined
for the two resources, and Tu and Tm the respective
maximum utilizations. The overall assignment function
for the server s is denoted as fs and defined as

fsðus;ms; pu; pm; Tu; TmÞ ¼ fðus; pu; TuÞ � fðms; pm; TmÞ: ð4Þ

The shape of the assignment functions, combined with
the definition of function (4), ensures that servers tend to
respond positively when they have intermediate utilization
values for both CPU and RAM: if one of the resources is
under- or overutilized the probability of the Bernoulli trial
is low.

If the Bernoulli trial is successful, the server commu-
nicates its availability to the data center manager. Then, the
manager selects one of the available servers, and assigns the
new VM to it. If none of the contacted servers is
available—i.e., all the Bernoulli trials are unsuccessful—it
is very likely that in all the servers one of the two resources
(CPU or RAM) is close to the utilization threshold.2 This
usually happens when the overall workload is increasing,
so that the current number of active servers is not sufficient
to sustain the load. In such a case, the manager wakes up an
inactive server and requests it to run the new VM. The case
in which there is no server to wake up, because all the
servers are already active, is a sign that altogether the
servers are unable to sustain the load even when con-
solidating the workload: when this situation occurs, the
company should consider the acquisition of new servers.

The assignment process efficiently consolidates the VMs,
as shown later in Section 4, but application workload
changes with time. When some VMs terminate or reduce
their demand for server resources, it may happen that the
server becomes underutilized leading to lower energy
efficiency. On the other hand, when the VMs increase their
requirements, a server may be overloaded, possibly causing
SLA violation events and affecting the dependability of the
data center. In both these situations, underutilization and

overutilization of servers, some VMs can be profitably

migrated to other servers, either to switch off a server, or to

alleviate its load.
The migration procedure is defined as follows: each server

monitors its CPU and RAM utilization using the libraries

provided by the virtualization infrastructure (e.g., VMWare

or Hyper-V) and checks if it is between two specified

thresholds, the lower threshold Tl and the upper threshold

Th. When this condition is violated,3 the server evaluates the

corresponding probability function, flmigrate or fhmigrate, and

performs a Bernoulli trial whose success probability is set to

the value of the function. If the trial is successful the server

requests the migration of one of the local VMs. Denoting by

x the utilization of a given resource, CPU or RAM, the

migration probability functions are defined as follows:

flmigrate ¼ 1� x=Tlð Þ� ð5Þ

fhmigrate ¼ 1þ x� 1

1� Th

� ��
: ð6Þ

The functions, whose graphs are shown in Fig. 3, are

defined so as to trigger the migration of VMs when the

utilization is below the threshold Tl or above the threshold

Th, respectively. These two kinds of migrations are also

referred to as “low migrations” and “high migrations” in

the following. The shape of the functions can be modulated

by tuning the parameters � and �, which can therefore be

used to foster or hinder migrations. The same function is

applied to CPU and RAM, but the parameters, Tl, Th, �, and

� can have different values for the two resources.
Whenever a Bernoulli trial is performed with success, the

server must choose the VM to consider for migration. In the

case of high migration, the server focuses on the over-

utilized resource (CPU or RAM) and considers the VMs for

which the utilization of that resource is larger than the

difference between the current server utilization and the

threshold Th. Then one of such VMs is randomly selected

for migration, as this will allow the utilization to go below
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Fig. 2. Assignment probability function fðx; p; T Þ for three different
values of the parameter p, and T equal to 0.9.

2. The case that all or many servers are not available because
underutilized on both resources is very unlikely because the process tends
to consolidate the workload on highly utilized servers.

3. The overutilization of any resource is sufficient to trigger the migration
procedure, because the overloaded resource becomes a bottleneck for the
server. On the other hand, the under-utilization condition is only checked
for the most utilized resource, which is the one that drives consolidation.
For example, if RAM is the most utilized resource, some servers can have
low values of CPU utilization, but this condition does not trigger
migrations.

Fig. 3. Migration probability functions flmigrate and fhmigrate (labeled as fl

and fh) for two different values of the parameters � and �. In this
example, the threshold Tl is set to 0.3, Th is set to 0.8.



the threshold.4 In the case of low migration the choice of the
VM to migrate is made randomly.

The choice of the new server that will accommodate the
migrating VM is made using a variant of the assignment
procedure described previously, with two main differences.
The first one concerns the migration from an overloaded
server: the threshold T of the assignment function is set to
0.9 times the resource utilization of the server that initiated
the procedure, and this value is sent to servers along with
the invitation. This ensures that the VM will migrate to a
less loaded server, and helps to avoid multiple migrations
of the same VM. The second difference concerns the
migration from a lightly loaded server. When no server is
available to run a migrating VM, it would not be acceptable
to switch on a new server to accommodate the VM: one
server would be activated to let another one be hibernated.
Therefore, when no server is available, the VM is not
migrated at all.

It is worth noting that our approach ensures a gradual
and continuous migration process, while most other
techniques recently proposed for VM migration (some are
discussed in the related work section) require the simulta-
neous migration of many VMs.

Finally, the threshold values are generally given as an
input by the data center administrator, possibly on the
basis of a previous analysis on the variance of VMs
workload. Shape parameters offer the data center admin-
istrator the chance to choose among different consolidation
strategies (e.g., conservative, intermediate, aggressive): a
more aggressive strategy allows more servers to be
hibernated, but at the expense of more migrations. The
choice of the desired strategy is made by tuning the values
of the shape parameters. Since this analysis is out of
the scope of the paper, in what follows the parameter
values set in the experiments are those corresponding to
the intermediate strategy.

4 MATHEMATICAL ANALYSIS

This section is devoted to a mathematical analysis of the
ecoCloud assignment procedure. The mathematical model is
based on a set of differential equations inspired by fluid
dynamics problems. Let Ns be the number of servers in a
data center, Nc the number of cores in each server and Nv

the number of VMs that can be executed in each core. The
equations model the evolution with time of the CPU and
RAM utilization of the servers, respectively denoted by
usðtÞ and msðtÞ for server s, with s ¼ 0; . . . ; Ns � 1. The
utilization of both resources is a real number that changes
by infinitesimal increments/decrements over the interval
½0; 1�. A straightforward extension allows to model the
evolution of a larger number of resources.

It is assumed that two types of VMs are executed on the
data center: CPU-bound and RAM-bound VMs, respec-
tively indicated as C-type and M-type. C-type VMs need an
amount of CPU that is larger than the amount needed by M-
type VMs of a factor �C > 1; conversely, the amount of
RAM required by M-type VMs is larger than the one

needed by C-type VMs by a factor �M > 1. Given the fluid
model assumption described above, the VM arrival process
is a continuous process that makes it arrive, in a time period
�t, an amount of VMs that is �ðCÞðtÞ�t for C-type VMs and
�ðMÞðtÞ�t for M-type VMs. The rate at which services are
completed is denoted by �.

To analyze the two classes of VMs separately, we also
define the following state variables: uðCÞs ðtÞ and uðMÞs ðtÞ are
the amount of CPU that in a server s is occupied by C-type
and M-type VMs, respectively; while mðCÞs ðtÞ and mðMÞs ðtÞ
are the amounts of RAM occupied by the two types of VMs.
The total utilization of CPU and RAM in server s is given by
the sum of the utilization of the two classes of VMs,

usðtÞ ¼ uðCÞs ðtÞ þ uðMÞs ðtÞ;
msðtÞ ¼ mðCÞs ðtÞ þmðMÞs ðtÞ:

Since the probability of assigning a VM to a server
increases with the value of the assignment function, in the
model the fraction of workload assigned to a server s is
proportional to the acceptance probability fsðusðtÞ,
msðtÞ; pu; pm; Tu; TmÞ, as defined in (4). In the following,
the acceptance probability is simply denoted as fsðtÞ.

The set of differential equations (with server index
s ¼ 0; . . . ; Ns � 1) is the following:

@uðCÞs ðtÞ
@t

¼ �Nc Nv � u
ðCÞ
s ðtÞ þK �C �

ðCÞðtÞ fsðtÞ; ð7Þ

@uðMÞs ðtÞ
@t

¼ �Nc Nv � u
ðMÞ
s ðtÞ þK �ðMÞðtÞ fsðtÞ;

@mðCÞs ðtÞ
@t

¼ �Nc Nv � m
ðCÞ
s ðtÞ þK �ðCÞðtÞ fsðtÞ;

@mðMÞs ðtÞ
@t

¼ �Nc Nv � m
ðMÞ
s ðtÞ þK �M �ðMÞðtÞ fsðtÞ:

K is a normalization factor K, defined as

K ¼ 1PNs�1
i¼0 fsðtÞ

:

The equations can be solved with the initial conditions
that define the state of the system at the time that ecoCloud
is executed:

uðCÞs ð0Þ; uðMÞs ð0Þ;mðCÞs ð0Þ;mðMÞs ð0Þ s ¼ 0; . . . ; Ns � 1: ð8Þ

To analyze the behavior of the system, we performed
an experiment for a data center with Ns ¼ 100 servers,
each having Nc ¼ 6 cores with CPU frequency of 2 GHz and
4-GB RAM. The power consumed at maximum utilization
Pmax is set to 250 W, a typical value for the servers of a data
center, while Pidle is set to 70 percent of Pmax, i.e., 175 W. In
the experiment, the VMs have nominal CPU frequency of
500 MHz. The average time the VM spends in service, 1=�,
is set to 100 minutes. The average CPU (memory) load of
the data center is defined as the ratio between the total
amount of CPU (RAM) required by VMs and the
corresponding CPU (RAM) capacity of the data center, is
denoted as �C (�M ), and is computed as �ðCÞ=�T (�ðMÞ=�T ).
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4. If no VM matches the condition, the largest VM will be chosen and a
new Bernoulli trial will be executed to trigger another migration.



Here, �T is the overall service rate of the data center,
obtained as �T ¼ �NsNcNv, where Nv is the number of VMs
that can be executed on a single 2-GHz core, in this case 4.
To analyze the system with a specified overall CPU or
memory load, the arrival rates �ðCÞ and �ðMÞ must be set
accordingly. In the first set of experiments, values of �ðCÞ

and �ðMÞ are set to 9.6. With these values the overall load of
the data center, is equal to 0.40 for both CPU and RAM:
�C ¼ �M ¼ 0:4.

The experiment started from a nonconsolidated scenario:
for each server, initial CPU and RAM utilizations are set
using a Gamma probabilistic function having average equal
to 40 percent of the server capacity. The parameters of the
assignment function were set as follows: maximum utiliza-
tion threshold T ¼ 0:9, and p ¼ 3. Under normal operation,
without using ecoCloud, the data center would tend to a
steady condition in which all the servers remain active with
CPU and RAM utilization around 40 percent. With
ecoCloud, the workload consolidates to only 45 servers,
while 55 are switched off. This allows the data center to
nearly halve the consumed power, from more than 20 kW to
about 11 kW.

It was assumed that VMs are equally shared between
compute-intensive (C-type) and memory-intensive applica-
tions (M-type). We considered the values of �C and �M , i.e.,
the ratios between the CPU and RAM demanded by the two
types of VMs. The values of the two parameters were kept
equal to one another, and in different tests were set to: 1.0
(the two kinds of applications coincide), 1.5 (C-type
applications need 50 percent more CPU than M-type ones,
and M-type applications need 50 percent more RAM than
C-type ones), 2.0, and 4.0 as the most extreme case. At the
end of the consolidation process, i.e., after about two hours
of the modeled time, the 45 active servers show nearly the
same distribution of their hardware resources between the
two types of applications. This distribution is shown in
Fig. 4 for one of the active servers and for the above-
mentioned values of �C and �M . The most interesting
outcome of this experiment is that the probabilistic assign-
ment process balances the two kinds of VMs so that neither
the CPU nor the RAM becomes a bottleneck. For example,
in the most imbalanced scenario (�C and �M equal to 4.0),
about 71 percent of the CPU is assigned to C-type VMs

while about 18 percent is given to M-type VMs, and the
opposite occurs for memory. Both CPU and RAM are
utilized up to the permitted threshold (90 percent) and
the workload is consolidated efficiently, which allows
55 servers to be hibernated and the consumed power to
be almost halved.

Of course, such an efficient consolidation is possible
when the relative overall loads of CPU and RAM are
comparable (both equal to 40 percent in this case). If one of
the two resources undergoes a heavier demand, that
resource inevitably limits the consolidation degree. For
such a case, it is still interesting to assess the behavior of the
assignment algorithm. To this purpose, we run experiments
in which the overall CPU load, �C , is set to 40 percent of the
total CPU capacity of the servers, while the overall RAM
load, �M , is varied between 20 percent and 60 percent. This
is accomplished by appropriately varying the value of �ðMÞ,
the arrival frequency of M-type VMs. For this set of
experiments, the values of �C and �M are set to 4.0. The
CPU and RAM utilizations observed for each server after
the consolidation phase are shown in Fig. 5. Correspond-
ingly, Figs. 6 and 7 report the number of active servers and
the average value of consumed power.

When the overall memory load is lower than 0.4 (cases
�M ¼ 0:2 and �M ¼ 0:3), the CPU is the critical resource and
is the one that drives the consolidation process. The number
of active servers (45), and the consumed power (about
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Fig. 4. CPU and RAM utilization of active servers, with �C ¼ 0:4,
�M ¼ 0:4, and different values of �C and �M .

Fig. 5. CPU and RAM utilization of active servers, with different values of
�M , and �C ¼ 0:4.

Fig. 6. Number of active servers with different values of �M and �C ¼ 0:4.



11 kW) are the same as in the case where CPU and RAM
overall loads are comparable. On the other hand, when the
most critical resource is the memory, as happens in the
cases �M ¼ 0:5 and �M ¼ 0:6, the consolidation process is
driven by the allocation of RAM to the VMs. More active
servers and more power are needed to satisfy the increased
demand for memory: in the cases that the memory load is
equal to 50 and 60 percent of the data center capacity, 56
and 67 servers are kept active, respectively, and corre-
sponding values of consumed power are equal to about
13 kW and about 15 kW. Overall, it may be concluded that
the approach is always able to consolidate the load as much
as is allowed by the most critical hardware resource.

The benefit of consolidation depends on how much
power is wasted due to server underutilization. In that
respect, much research effort is devoted in trying to
decrease the power consumed by idle servers, that is, the
quantity Pidle in (1). This value can be expressed as a
fraction Fidle of the power consumed at maximum utiliza-
tion, Pidle ¼ FidlePmax. To analyze this aspect, we performed
tests with different values of Fidle in a scenario with
�C ¼ 0:4, �M ¼ 0:4, and a 80-20 imbalance between CPU-
bound and RAM-bound VMs (�C ¼ �M ¼ 4:0). Fig. 8 reports
the overall amount of power consumed in the data center
before and after applying the ecoCloud algorithm. The
advantage of consolidation decreases as servers become
more power efficient. Nevertheless, the consumed power is
reduced by about 30 percent even with servers that
consume only 40 percent of the power when idle.

5 EXPERIMENTS ON A REAL DATA CENTER

In the previous section, we have shown through an
analytical model, the effectiveness of ecoCloud in consoli-
dating the load under various scenarios. However, the
model relies on some necessary assumptions. To validate
the model and prove that ecoCloud is effective in real
scenarios, we report in this section the results of the
experiments performed in May 2013 on a live data center
owned by a major telecommunications operator. The
experiment was run on 28 servers virtualized with the
platform VMWare vSphere 4.0. Among the servers, 2 are
equipped with processor Xeon 32 cores and 256-GB RAM, 8
with processor Xeon 24 cores and 100-GB RAM, 11 with

processor Xeon 16 cores and 64-GB RAM and 7 with
processor Xeon 8 cores and 32-GB RAM. All the servers
have network adapters with bandwidth of 10 Gbps. The
servers hosted 447 VMs which were assigned a number of
virtual cores varying between 1 and 4 and an amount of
RAM varying between 1 GB and 16 GB.

The VMs were categorized into CPU-bound (C-type) and
memory-bound (M-type) depending on their usage of the
two resources. We took as a reference the overall CPU and
memory capacity of the data center that were equal,
respectively, to 1,171 GHz and 2,334 GBytes. A VM was
classified as CPU-bound if, at the end of the analyzed
period, the average ratio between its CPU and memory
utilization was higher than the ratio between the CPU and
memory capacity of the data center. In the opposite case, it
was classified as memory-bound. In this data center,
80 percent of the VMs, 358, were memory-bound, with an
average usage of CPU and RAM of 0.345 GHz and 3.571 GB,
respectively. The remaining 88 CPU-bound VMs
had average values of CPU and RAM of 1.971 GHz and
1.633 GB, respectively. The M-type VMs contributed for
the 49.44 percent of the overall CPU load and for the
92.15 percent of the overall memory load.

While the analytical study presented in Section 4 focuses
on the assignment procedure, during the real experiments
both the assignment and the migration were activated. VMs
are migrated either when the CPU or memory load exceeds
the high threshold Th, set to 0.95, or when the most utilized
resource - the RAM in this case—goes below the low
threshold Tl, set to 0.5. Values of � and �, in (5) and (6),
were set to 0.25. The parameters of the assignment function
were set as follows: T ¼ 0:8 (this value was imposed by the
data center administrator), p ¼ 3.

Fig. 9 shows the number of active servers starting from
the time at which ecoCloud is activated and for the
following 7 days. Within the first day 11 servers, out of
28, are hibernated thanks to the workload consolidation. In
the following days, the number of active servers is
stabilized, but daily workload variations allow one or two
servers to be hibernated during the night. Fig. 10 shows that
the consumed power reduces thanks to consolidation,
following the trend of the previous figure. Fig. 11 reports
the number of high and low migrations performed during
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Fig. 7. Consumed power with different values of �M and �C ¼ 0:4. Fig. 8. Consumed power with different values of Fidle, before and after
applying ecoCloud.



each hour of the analyzed period on the whole data center.
In the first day, migrations are mostly from low utilized
servers, which are first unloaded and then hibernated. As
the consolidation process proceeds, active servers tend to be
well utilized and some high migrations are needed to
prevent overload events, while low migrations allow to
improve consolidation during the night. The number of
migrations is definitely acceptable: after the first day, only a
few migrations per day are performed.

The overhead induced by migrations was very low and
did not cause a significant impact on the performance of
running applications. None of the physical resources (CPU,
memory, bandwidth) underwent an overload event, and the
responsiveness of virtual machines was never deteriorated.
More in detail, the typical effects on the source and target
hosts, measured during the time needed to migrate the VM
memory (from 30 to 90 seconds in our test) were the
following: 1) an increase of CPU utilization up to 2 percent,
never sufficient to saturate the CPU; 2) an extra bandwidth
utilization equal to no more than 500 Mbps, i.e., only a
fraction of the network adapter capacity (equal to 10 Gbps
in our case), so that the available bandwidth was never
saturated. As for the impact on the migrating VM, the
downtime experienced in the final phase of the migration
was always between 100 and 300 milliseconds, adding only
a small delay to the normal response time of the application.
These values are fully compatible with those recently

published in a VMWare technical report [16]. It is useful
to recall here that ecoCloud does not impact directly on the
migration overhead, as migrations are executed by the
virtualization platform, VMWare in this case. However,
ecoCloud limits the number of migrations and, even more
importantly, migrates the VMs gradually and asynchro-
nously, in this way preventing the occurrence of bandwidth
saturation and reducing the migration duration.

Figs. 12 and 13 offer a snapshot of the data center at the
end of the seventh day of ecoCloud operation, when only 17
of 28 servers are active. The first figure reports, for each
of the 28 servers, the amount of CPU and RAM utilized by
C-type and M-type VMs. Since in this scenario most VMs
are memory-bound, the consolidation is driven by RAM: in
all active servers the RAM utilization is about 70 percent.
The consolidation is made possible by the fact that VMs of
the two types are distributed among the servers in a
proportion that never diverts too much from the overall
proportion observed in the whole data center. This is clear
from Fig. 13, which reports the numbers of VMs of the two
types that run on each server. With the exceptions of servers
2 and 3, in which no C-type VM is running, the proportion
between the two types of VMs is comparable to the 80-20
proportion observed in the data center. The absolute
numbers are different because server capacities are not
homogeneous, as detailed at the beginning of this section.
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Fig. 10. Consumed power after activation of ecoCloud.

Fig. 11. Number of VM migrations after activation of ecoCloud.

Fig. 12. RAM and CPU utilization on the 28 servers, separated for the
C-type and M-type VMs. Values are taken at the end of the seventh
day of operation.

Fig. 9. Number of active servers after activation of ecoCloud.



6 COMPARISON BETWEEN ecoCloud AND BFD

The problem of optimally mapping VMs to servers can be
reduced to the bin packing problem. The analogy is indeed
exploited in recent research [1], [17]. The problem is very
complex - it was proved to be NP-hard—and currently
adopted optimization algorithms are time consuming
when applied to large data centers. A significant drawback
of deterministic algorithms is that any efficient mapping
may be valid only for a short period of time, due to the
arrival/termination of VMs and to the dynamic nature of
the workload. As a consequence, many simultaneous
migrations of VMs may be needed to adapt the mapping
to these variations.

A set of experiments were performed to compare
ecoCloud to one of these algorithms. In particular, we
implemented a variant of the classical Best Fit Decreasing
algorithm described and analyzed in [1], referred to as BFD
in the following. This choice was made because it was
proved in [18] that the Best Fit Decreasing algorithm is the
polynomial algorithm that gives the best results in terms of
effectiveness. Its consolidation ratio is 11/9, which means
that at most (11/9)MINþ1 servers are used, where MIN is
the minimum theoretical number of servers. At each
execution of BFD, VMs of overutilized and underutilized
servers are collected, and then they are sorted in decreasing
order of CPU utilization. Respecting this order, each VM is
allocated to the server that provides the smallest increase of
the power consumption caused by the allocation. A key
parameter of BFD is the interval of time between two
successive executions of the algorithm; therefore, we
performed experiments with four different values of the
interval: 1, 5, 15, and 60 minutes.

So far, we could not install ecoCloud in real data centers
having more than 100 servers; thus, we used a home-made
Java simulator fed with the logs of real VMs to compare
ecoCloud and BFD in a data center with 400 servers. We
used workload traces retrieved by the data of the CoMon
project, a monitoring infrastructure for PlanetLab [19]. The
traces represent the CPU utilization of 6,000 VMs, mon-
itored in March/April 2012 and updated every 5 minutes.
Since the CPU is the only resource considered in [1], we
also consider this resource only for the experiments
reported below.

A graphical characterization of the traces is provided in
the following. Fig. 14 reports the distribution of the average
CPU utilization of the VMs, measured as a percentage of
the total CPU capacity of the hosting physical machine. The
graph shows that the average CPU utilization is under
20 percent for most VMs, even though there are a few VMs
with very high CPU requirements. It is clear that this kind
of distribution leaves much room for clever consolidation
algorithms, since in many cases tens of VMs can be
executed on the same physical machine. We then collected,
for all the VMs and for all the values of the CPU utilization,
the difference—or deviation—between the punctual value
and the average value of the same VM. The distribution of
the deviations obtained in this way is reported in Fig. 15.
Most values are close to zero, meaning that for most
VMs CPU deviations are very small. Specifically, about
94 percent of the deviations are lower than 10, which means
that if the average CPU utilization of a VM can be
estimated—in most cases this is possible using historical
data—and each VM is allocated as much CPU as this
average value, only for 6 percent of the times the VM will
exceed the allocated CPU by more than one tenth of the
CPU capacity. Nevertheless, such deviations can still cause
QoS violations, especially when multiple VMs increase
their CPU demand at the same time.

The VM traces are picked randomly during the tests, in a
number that depends on the desired overall load. We
assigned the VMs to 400 servers, using the ecoCloud and
BFD algorithms for assignment and migration of VMs.
These servers are all equipped with 2-GHz cores. One third
of the servers have four cores, one third have six cores and
the remaining third have eight cores. The parameters of the
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Fig. 14. Distribution of the average CPU utilization of the VMs.

Fig. 13. Number of C-type and M-type VMs running on the 28 servers.
Values are taken at the end of the seventh day of operation.

Fig. 15. Distribution of the deviation between the punctual CPU
utilization and the average CPU utilization of the same VM.



assignment and migration functions were set as follows:
Ta ¼ 0:90, Tl ¼ 0:50, Th ¼ 0:95, � ¼ 0:25, and � ¼ 0:25.

Fig. 16 reports the average number of active servers
versus the overall load in ecoCloud and BFD. The curves are
close to each other, and also close to the optimal value of the
associated bin packing problem. ecoCloud requires a
slightly larger number of active servers, mostly because of
its behavior in descending load phases, during which the
CPU utilization of servers is allowed to decrease by a
certain amount before low migrations are triggered, to
avoid migrations that are not strictly necessary. Similar
observations can be done by analyzing the average
consumed power of the two algorithms, shown in Fig. 17.

The slightly better consolidation degree of BFD, how-
ever, comes at a considerable cost in terms of the number of
migrations and the probability of overload events. Fig. 18
shows that the number of migrations is much higher in BFD
than in ecoCloud. For example, with load equal to 0.3, less
than 400 migrations per hour are needed by ecoCloud, while
about 10,000 migrations per hour are needed by BFD in the
case that the time interval between two successive execu-
tions is set to 1 minute, as in [1]. This corresponds to more
than 150 simultaneous migrations to be performed at each
algorithm execution. If the BFD time interval is enlarged
the frequency of migrations can be reduced, but the number
of required simultaneous migrations increases: for example,
about 750 simultaneous migrations are needed when the
time interval is set to 60 minutes. Conversely, migrations
are executed asynchronously with ecoCloud. Fig. 19 reports

the percentage of time of CPU overload. The value of this
index is remarkably lower in ecoCloud, due to its capacity of
immediately reacting with high migrations each time the
CPU utilization exceeds the upper threshold. The prob-
ability of overload in BFD comes as the combination of
two contrasting phenomena: if the algorithm is executed
frequently, the consolidation effort is stressed (cfr. Fig. 16),
which brings the servers closer to their CPU limits and
increases the overload probability. This is particularly
evident when the overall load is high. When the time
interval is larger the consolidation effort is lower, but VM
workload variations are not controlled for a longer time,
which can also be a cause of overload events. Thus,
overload events are present at any load condition. With
ecoCloud the index is hardly affected by the value of the
overall load.

A comparison in terms of complexity in also interesting.
The complexity of BFD [20] is n �m, where n is the number
of hosts andm is the number of VMs that need to be assigned
or migrated. The complexity of ecoCloud is equal to the
number of servers invited during the assignment/migration
of a VM. This number is at most n, but in general it is much
lower, because in large data centers it is sufficient to invite
only a subset of servers, as discussed in the next section.

7 RESULTS WITH DIFFERENT DATA CENTER SIZES

One of the most interesting and peculiar features of
ecoCloud is its scalability, inherited from the probabilistic,
self-organizing and partially distributed nature of the
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Fig. 18. Number of migrations per hour in the data center versus load:
comparison between ecoCloud and BFD.

Fig. 19. Percentage of time of CPU overdemand versus load:
comparison between ecoCloud and BFD.

Fig. 17. Power consumed by the data center versus load: comparison
between ecoCloud and BFD.

Fig. 16. Number of active servers versus load: comparison between
ecoCloud and BFD. For BFD, the legend reports the time interval
between two successive executions.



algorithm. Centralized and deterministic algorithms may be
appropriate in data centers with a limited number of
servers, but may become inefficient in large and very large
data centers, due to the complexity of the problem and the
need for the simultaneous migrations of a large number of
VMs, as discussed in the previous section. Conversely,
ecoCloud is particularly suited for large data centers. To
understand why consolidation improves with the number
of servers, it is useful to remember that a hibernated server
is switched on when a new or migrating VM is rejected by
all the active servers. In small systems, it can happen that all
the servers—after the execution of Bernoulli trials—reject
the VM even when some of them have enough spare CPU to
accommodate the VM. The probability of this event
becomes negligible in large data centers, where the
invitation to accommodate a VM is forwarded to many
servers: as a consequence, a server is activated only when
strictly needed. This argument also motivates the fact that in
large data centers it is not necessary to send invitations to all
the servers, but it is sufficient to invite a subset of them. This
has two beneficial consequences: 1) the traffic overhead can
be limited; and 2) ecoCloud fits well with distributed and
multisite data centers, since each invitation can be for-
warded to the servers of a specific site, chosen randomly or
on the basis of environmental parameters (the cost of energy
in different sites, the external temperature, etc.).

To assess the ecoCloud scalability, we performed simula-
tions with data centers of different size (100, 200, 400, and
3,000 servers), using the VM traces described in the
previous section, and keeping the same proportion between
the number of VMs and the number of physical servers.
Fig. 20 reports the fraction of active servers versus the
overall load and shows that this fraction is nearly
independent on the system size. We also performed tests
for a data center with 3,000 servers in which invitations are
forwarded to varying numbers of servers. These tests
confirm that there is no advantage to send invitations to
more than about 100 servers. The good scalability is
confirmed by the other performance metrics. For example,
the frequency of migrations experienced by a single server
is nearly independent from the system size.

8 RELATED WORK

As the Cloud computing paradigm rapidly emerges, a
notable amount of studies focus on algorithms and

procedures that aim at improving the “green” character-
istics of Cloud data centers. An interesting survey is given
in [21], along with a useful taxonomy of examined methods.
Another recent survey [22] focuses on the categorization of
green computing performance metrics in data centers, such
as power metrics, thermal metrics and extended perfor-
mance metrics, i.e., multiple data center indicators. We are
experiencing a turning point in this area. So far, most efforts
have been devoted to the optimization of the physical
infrastructure, commonly evaluated through the PUE
index, and results have been notable, as this index is now
as low as 1.08 in some modern data centers. Today, focus is
switching to the efficiency of the IT infrastructure itself, and
is testified by the definition of appropriate indices. Two
examples are: 1) eBay has recently defined DSE, the Digital
Service Efficiency index [23], which computes the useful
work (in terms of transactions) performed per kWh; 2) Intel
has proposed two new metrics [24]: IT-power usage
effectiveness (ITUE), similar to PUE but “inside” the IT
and total-power usage effectiveness (TUE), which combines
the two for a total efficiency picture.

Consolidation is a powerful means to improve IT
efficiency and in this way reduce power consumption [7],
[25], [26]. Some approaches—for example, [27] and
[13]—try to forecast the processing load and aim at
determining the minimum number of servers that should
be switched on to satisfy the demand, so as to reduce
energy consumption and maximize data center revenues.
However, even a correct setting of this number is only a
part of the problem: algorithms are needed to decide how
the VMs should be mapped to servers in a dynamic
environment, and how live migration of VMs can be
exploited to unload servers and switch them off when
possible, or to avoid SLA violations.

The problem of optimally mapping VMs to servers can
be reduced to the bin packing problem [17], [1], [28].
Unfortunately, this problem is known to be NP-hard,
therefore heuristic approaches can only lead to suboptimal
solutions. Live migration of VMs between servers is
adopted by the VMWare Distributed Power Management
system, using lower and upper utilization thresholds to
enact migration procedures [29]. The heuristic approaches
presented in [1] and in [28] use techniques derived,
respectively, from the Best Fit Decreasing and the First Fit
Decreasing algorithms. In both cases, the goal is to place
each migrating VM on the server that minimizes the overall
power consumption of the data center. The framework
presented in [30] tackles the consolidation problem by
exploiting the Constraint Programming paradigm. Rule-
based constraints, for example concerning SLA negotiation,
are managed by an optimizer that adopts a branching
approach: the variables are considered in a priority
descending order, and at each step one of the variables is
set to the value that is supposed to guide the solver to a
good solution. All these approaches represent important
steps ahead for the deployment of green-aware data
centers, but still they share a couple of notable drawbacks.

First, they use deterministic and centralized algorithms
whose efficiency deteriorates as the size of the data center
grows. The second drawback is that mapping strategies
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Fig. 20. Scalability test. Fraction of active servers in data centers with
different size.



may require the concurrent migration of many VMs, which
can cause considerable performance degradation during the
reassignment process. Conversely, the approach presented
here adopts a probabilistic approach, naturally scalable, and
uses an asynchronous and smooth migration process, which
ensures that VMs are relocated gradually.

An interesting study is presented in [31]. The paper
confirms that the problem of energy saving in server farms
is almost intractable and proposes the Delayed Off strategy
(the name derives from the fact that a server is turned off
only after a predetermined amount of time in which it has
been idle), which is proved to be asymptotically optimal but
only under some assumptions, for example stationary
Poisson arrival process and homogeneous servers.

Bioinspired algorithms and protocols are emerging as a
useful means to manage distributed systems, and Clouds
are not an exception. Assignment and migration procedures
presented here are partly inspired by the pick and drop
operations performed by some species of ants that cluster
items in their environment [9]. The pick and drop
paradigm, though very simple and easy to implement, has
already proved surprisingly powerful: for example, it is
used to cluster and order resources in P2P networks, to
facilitate their discovery [32]. Another ant-inspired mechan-
ism is proposed in [33]: in this study, the data center is
modeled as a P2P network, and ant-like agents explore the
network to collect information that can later be used to
migrate VMs and reduce power consumption. The V-MAN
system, proposed in [34], is also based on the P2P
paradigm. Here, a gossip protocol is used by servers to
communicate their state to each other, and migrate VMs
from servers with low load to servers with higher load, with
the aim of switching off the former and save energy. The
approach is promising but needs more assessment, as it
makes the unrealistic assumption that all VMs are identical.
In our opinion, the main problem of pure P2P approaches is
that the complete absence of centralized control can be seen
as an obstacle by the data center administrator. With
ecoCloud, despite the fact that servers can autonomously
decide whether or not to migrate or accept a VM, final
decisions are still granted to the central manager of the data
center, which ensures a better control of the operations.

Since the mapping of VMs to servers is essentially an
optimization problem, evolutionary and genetic algorithms
can also represent a valid solution. In [35], a genetic
algorithm is used to optimize the assignment of VMs, and
minimize the number of active servers. The main limita-
tions of this kind of approach are the need of a strong
centralized control and the difficulties in the setting of key
parameters, such as the population size and the crossover
and mutation rates.

In most studies, CPU is the main component on which
energy-efficiency strategies focus to obtain a consistent
reduction of consumed power. The reason is that, among
hardware components, only CPU supports active low-
power modes, whereas other components can only be
completely or partially switched off. Server CPUs can
consume less than 30 percent of their peak power in low-
activity modes, leading to dynamic power range of more
than 70 percent of peak power [2]. Dynamic power ranges

of other components are much narrower, or even negligible.
Nevertheless, important fractions of power are consumed
by memory, disk, and power supplies [36]. Applications
hosted by VMs often present complementary resource
usage, so it may be profitably to let a server execute, for
example, a mix of memory-bound and CPU-bound applica-
tions. In [37], the mapping of VMs to servers was modeled
as a multidimensional bin packing problem, in which
servers are represented by bins, and each resource (CPU,
disk, memory, and network) was considered as a dimension
of the bin. While formally interesting, this problem is even
more difficult than the classical bin packing problem,
therefore it is hardly applicable in large data centers. The
algorithm presented in [38] is based on the first-fit
approximation for the bin packing problem. The algorithm
was devised for the single resource problem, but tips are
given about the extension to multiple resources. In [39] the
multiresource problem is tackled by using an LP formula-
tion that gives higher priority to virtual machines with
more stable workload. ReCon [40] is a tool that analyzes
the resource consumption data of various applications,
discovers applications which can be consolidated, and
subsequently generates static or dynamic consolidation
recommendations. Only CPU utilization is considered, the
complete extension to the multiresources problem is left to
future research. The Entropy resource manager presented
in [41] performs dynamic consolidation based on constraint
programming, where constraints are defined both on CPU
and on RAM utilization. When compared to these interest-
ing approaches, our algorithm differentiates for its ability to
adaptively consolidate the workload without using any
complex centralized algorithm and balance the assignment
of CPU- and RAM-intensive applications on each server,
which helps to optimize the use of resources.

Owing to the increased size of data centers, several big
companies are adopting a multi-data center infrastructure.
This allows companies to balance the load, improve the
quality of service and, when sites are distributed over
multiple regions or States, save energy by exploiting the
different energy costs at different locations and time zones.
Distributed solutions for data centers are analyzed in [42]
and [43]. The solution presented here can be easily tailored
to these environments, by splitting the assignment and
migration processes into two phases. In the first phase, the
system decides on which specific data center an application
should be assigned or migrated, on the basis of manage-
ment, load balancing and energy-efficiency criteria, not
differently from other distributed environments. In the
second phase, the probabilistic approach is used to decide
on which specific server of the selected data center the
application should be executed.

9 CONCLUSION

This paper tackles the issue of energy-related costs in data
centers and Cloud infrastructures, which are the largest
contributor to the overall cost of operating such environ-
ments. The aim is to consolidate the Virtual Machines on as
few physical servers as possible and switch the other
servers off, so as to minimize power consumption and
carbon emissions while ensuring a good level of the QoS
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experienced by users. With ecoCloud, the approach pro-
posed in the paper, the mapping of Virtual Machines is
based on Bernoulli trials through which single servers
decide, on the basis of the local information, whether or not
they are available to execute an application. The self-
organizing and probabilistic nature of the approach makes
ecoCloud particularly efficient in large data centers. This is a
notable advantage with respect to other fully deterministic
algorithms, which inevitably encounter significant difficul-
ties when the size of the data center grows, since the
problem of the optimal assignment of Virtual Machines to
servers is known to be very complex.

Mathematical analysis and experiments performed in a
real data center in operation show that the adopted
techniques succeed in the objectives of reducing power
consumption, avoiding overload events that could cause
SLA violations, limiting the number of VM migrations and
server switches, and balancing CPU-bound and memory-
bound applications. Simulation experiments prove that
these achievements can be obtained for any system load
and system size and that ecoCloud performance is
competitive with other approaches based on more tradi-
tional algorithms.

ACKNOWLEDGMENTS

The research leading to these results has received funding

from the European Union Seventh Framework Programme

(FP7/2007-2013) under grant agreement no. 257740

(Network of Excellence TREND).

REFERENCES

[1] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-Aware
Resource Allocation Heuristics for Efficient Management of Data
Centers for Cloud Computing,” Future Generation Computer
Systems, vol. 28, no. 5, pp. 755-768, 2012.

[2] L.A. Barroso and U. Hölzle, “The Case for Energy-Proportional
Computing,” IEEE Computer, vol. 40, no. 12, pp. 33-37, Dec. 2007.

[3] G. Dasgupta, A. Sharma, A. Verma, A. Neogi, and R. Kothari,
“Workload Management for Power Efficiency in Virtualized Data
Centers,” Comm. ACM, vol. 54, pp. 131-141, July 2011.

[4] L. Hosman and B. Baikie, “Solar-Powered Cloud Computing
Datacenters,” IT Professional, vol. 15, no. 2, pp. 15-21, 2013.

[5] M. Aggar, “Developers, Developers, Developers: Engaging the
Missing Link in It Resource Efficiency,” technical report, The
Green Grid, Mar. 2013.

[6] A. Greenberg, J. Hamilton, D.A. Maltz, and P. Patel, “The
Cost of a Cloud: Research Problems in Data Center Net-
works,” Proc. ACM SIGCOMM Computer Comm. Rev., vol. 39,
no. 1, pp. 68-73, 2009.

[7] M. Cardosa, M.R. Korupolu, and A. Singh, “Shares and Utilities
Based Power Consolidation in Virtualized Server Environments,”
Proc. 11th IFIP/IEEE Integrated Network Management (IM ’09), June
2009.

[8] C. Mastroianni, M. Meo, and G. Papuzzo, “Self-Economy in Cloud
Data Centers: Statistical Assignment and Migration of Virtual
Machines,” Proc. 17th Int’l European Conf. Parallel Processing (Euro-
Par ’11), pp. 407-418, Sept. 2011.

[9] J.L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C.
Detrain, and L. Chrétien, “The Dynamics of Collective Sorting:
Robot-Like Ants and Ant-Like Robots,” Proc. First Int’l Conf.
Simulation of Adaptive Behavior on from Animals to Animats, pp. 356-
363, 1990.

[10] T. Hirofuchi, H. Ogawa, H. Nakada, S. Itoh, and S. Sekiguchi, “A
Live Storage Migration Mechanism over Wan for Relocatable
Virtual Machine Services on Clouds,” Proc. Ninth IEEE/ACM Int’l
Symp. Cluster Computing and the Grid (CCGrid ’09), pp. 460-465,
May 2009.

[11] H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao, “Performance and
Energy Modeling for Live Migration of Virtual Machines,” Proc.
20th Int’l Symp. High Performance Distributed Computing (HPDC ’11),
pp. 171-182, June 2011.

[12] A. Khosravi, S. Garg, and R. Buyya, “Energy and Carbon-Efficient
Placement of Virtual Machines in Distributed Cloud Data Centers,”
Proc. 19th Int’l Conf. Parallel Processing (Euro-Par ’13), 2013.

[13] M. Mazzucco, D. Dyachuk, and R. Deters, “Maximizing Cloud
Providers” Revenues via Energy Aware Allocation Policies,” Proc.
10th IEEE/ACM Int’l Symp. Cluster Computing and the Grid
(CCGrid ’10), pp. 131-138, May 2010.

[14] S. Rivoire, P. Ranganathan, and C. Kozyrakis, “A Comparison of
High-Level Full-System Power Models,” Proc. Conf. Power Aware
Computing and Systems (HotPower ’08), Dec. 2008.

[15] X. Fan, W.-D. Weber, and L.A. Barroso, “Power Provisioning for a
Warehouse-Sized Computer,” Proc. 34th Ann. Int’l Symp. Computer
Architecture (ISCA ’07), pp. 13-23, June 2007.

[16] VMWare, “VMware vSphere 5.1 vMotion Architecture, Perfor-
mance and Best Practices,” technical report, VMWare tech.
papers, http://www.vmware.com/resources/techresources/
10305, Aug. 2012.

[17] A. Verma, P. Ahuja, and A. Neogi, “pMapper: Power and
Migration Cost Aware Application Placement in Virtualized
Systems,” Proc. ACM/IFIP/USENIX Ninth Int’l Middleware Conf.
(Middleware ’08), pp. 243-264, 2008.

[18] M. Yue, “A Simple Proof of the Inequality FFD (L) � 11/9 OPT (L)
+ 1, for All L for the FFD Bin-Packing Algorithm,” Acta
Mathematicae Applicatae Sinica, vol. 7, no. 4, pp. 321-331, 1991.

[19] K. Park and V.S. Pai, “CoMon: A Mostly-Scalable Monitoring
System for Planetlab,” ACM SIGOPS Operating Systems Rev.,
vol. 40, pp. 65-74, Jan. 2006.

[20] A. Beloglazov and R. Buyya, “Energy Efficient Allocation of
Virtual Machines in Cloud Data Centers,” Proc. 10th IEEE/ACM
Int’l Symp. Cluster Computing and the Grid (CCGrid ’10), pp. 577-
578, May 2010.

[21] A. Beloglazov, R. Buyya, Y.C. Lee, and A.Y. Zomaya, “A
Taxonomy and Survey of Energy-Efficient Data Centers and
Cloud Computing Systems,” Proc. Advances in Computers, pp. 47-
111, 2011.

[22] L. Wang and S.U. Khan, “Review of Performance Metrics for
Green Data Centers: A Taxonomy Study,” The J. Supercomputing,
pp. 1-18, Oct. 2011.

[23] N. Greene et al., “White Paper on Digital Service Efficiency,”
technical report, eBay Inc., http://dse.ebay.com/sites/default/
files/eBay-DSE-130305.pdf, Mar. 2013.

[24] M. Patterson, S. Poole, C.-H. Hsu, D. Maxwell, W. Tschudi, H.
Coles, D. Martinez, and N. Bates, “TUE, a New Energy-Efficiency
Metric Applied at ORNL’s Jaguar,” Proc. Int’l Supercomputing
Conf., 2013.

[25] P. Graubner, M. Schmidt, and B. Freisleben, “Energy-Efficient
Virtual Machine Consolidation,” IT Professional, vol. 15, no. 2,
pp. 28-34, 2013.
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