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Summary
Geotagged data gathered from social media can be used to discover Places-of-Interest (PoIs) that

have attracted many visitors. Since a PoI is generally identified by geographical coordinates of a

single point, it is hard to match it with people trajectories. Therefore, we define an area, called

Region-of-Interest (RoI), represented by the boundaries of a PoI. The main goal of this study is

to discover Regions-of-Interest from PoIs using spatial data mining techniques. In this paper we

propose a new parallel method for extracting RoIs from social media datasets. It consists of two

main steps: i) automatic keywords extraction and data grouping, and ii) parallel RoIs extraction. The

first step extracts keywords identifying the Places-of-Interests; these keywords are used to group

social media items according to the places they refer to. The second step uses a Parallel Cluster-

ing Approach (ParCA) of spatial dataset to identify RoIs. ParCA exploits a parallel execution of

DBSCAN on sub-sets of data to generate sub-clusters on each processing node, and then merge

overlapping sub-clusters to form global clusters. ParCA was implemented using the MapReduce

model. Experiments performed over a set of PoIs in the city of Rome using social media data show

that our approach is highly scalable and reaches an accuracy of 79% in detecting RoIs. On a par-

allel computer with 50 cores, we obtained a speedup of 52 by processing large datasets divided

into 32 splits, compared to the execution time registered when each dataset is not partitioned.
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1 INTRODUCTION

The huge volumes of digital data produced by social media users can be effectively exploited to extract valuable information concerning human
dynamics and behaviors. Extracting useful information from this large amount of data is the main aim of social media analysis. It is used for
understanding collective sentiments, the behavior of groups of people and the dynamics of public opinion. Social media posts are often tagged
with geographical coordinates or other information (e.g., text, photos) that allows identifying users’ positions. Therefore, social media users moving
through a set of locations produce a huge amount of geo-referenced data that embed extensive knowledge about human dynamics and mobility
behaviors 1.

The analysis of geotagged data permits to determine if users visited or not interesting locations (e.g., touristic attractions, shopping malls,
squares, parks), often called Places-of-Interest (PoIs). Since a PoI is generally identified by the geographical coordinates of a single point, it is hard
to match it with user trajectories. For this reason, it is useful to define the so-called Region-of-Interest (RoI) representing the boundaries of the PoI’s
area 2. The analysis of user trajectories through RoIs is highly valuable in many scenarios, e.g.: tourism agencies and municipalities can discover the
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most visited touristic attractions and tours 3; transport operators can discover the places and routes where is it more likely to serve passengers 4

and crowed areas where more transport facilities need to be allocated 5.
RoI mining techniques are aimed at discovering Regions-of-Interest from PoIs and other data 6. The main contribution of this paper is a new

methodology based on parallel computations for extracting RoIs from social media data, which is composed of twomain steps: i)Automatic keywords
extraction and data grouping, for finding keywords that identify the places of interests; these keywords will be used to group social media items
according to the places they refer to; ii) RoIs extraction using a parallel clustering approach, which exploits a parallel DBSCAN 7 implementation on
grouped social media items to identify RoIs efficiently. The parallel clustering is based on ParCA 8, a parallel approach for clustering spatial datasets.
ParCA proved its efficiency using syntactic and benchmark datasets only. As ParCA is based on the DBSCAN (Density-Based Spatial Clustering
of Applications with Noise) algorithm, it also suffers for the problem of setting input parameters; it needs to tune the input parameters for the
DBSCAN algorithm running locally in order to guarantee accurate final results. However, tuning the parameters needs a ground truth dataset to
compare to, which is not given when dealing with real dataset. Therefore, to insure an efficient extraction of the RoIs, in this work we extended
and optimized ParCA to deal with real world datasets, and also to choose the appropriate input parameters for the DBSCAN clustering algorithm
used. To ensure scalability, the methodology has been implemented using the MapReduce programming model.

Experiments performed over a set of PoIs in Rome using social media data show that our methodology reaches an accuracy of 79% in detecting
RoIs by using 1 split only. Using multiple splits, the accuracy slightly decreases (e.g., 77% using 2 data splits for each ParCA task, 74% with 4 data
splits, 72% with 8 splits), but scalability significantly increases. For instance, on a parallel machine with 50 cores, we obtained a speedup of 52 by
processing large datasets divided into 32 splits, compared to the execution time registered when each dataset is not partitioned.

The remainder of the paper is organized as follows. Section 2 introduces the main concepts and the problem statement. Section 3 describes
the proposed methodology. Section 4 presents the experimental evaluation of the methodology on a case study. Section 5 discusses related work.
Finally, Section 6 concludes the paper.

2 PROBLEM DEFINITION

A Place-of-Interest (PoI) is a specific location that someone finds useful or interesting. Generally, PoIs refer to business locations (e.g., shopping
malls) or tourist attractions (e.g., squares, museums, theaters, bridges). In this study the terms Place-of-Interest and Point-of-Interest are considered
similar thus they are used interchangeably through the paper.

To analyze users’ behavior, it is useful to understand whether a user visited a PoI or not. Since information on a PoI is generally limited to an
address or to GPS coordinates, it is hard to match trajectories with PoIs. For this reason, it is useful to define Region-of-Interest (RoI) representing
the boundaries of the PoI’s area 2. RoIs can be defined as “spatial extents in geographical space where at least a certain number of user trajectories
pass through” 9. Thus, RoIs represent an useful abstraction for partitioning the space into meaningful areas and, correspondingly, to associate a
label to a place. In literature, RoIs are also named as regions of attraction or frequent (dense) regions.

A geotagged item is a piece of information (e.g., tweet, post, photograph or video) to which geospatial information were added. Specifically, a
geotagged item g includes the following features:

- text, containing a textual description of g.

- tags, containing the tags associated to g.

- coordinates consists of latitude and longitude of the place from where g was created.

- userId, identifying the user who created g.

- timestamp, indicating date and time when g was created.

A geotagged item can be associated to a PoI P if its text or tags refer to P . For example, Figure 1(a) shows some geotagged items (red points
on the map) that refer to the Colosseum in Rome since their text contain keywords such as “Colosseum”, “Coliseum” and “Coliseo”. By grouping all
the items that refer to a PoI and applying a clustering algorithm, a suitable RoI can be obtained. For example, Figure 1(b) shows how the geotagged
items that refer to the Colosseum can be grouped so as to define a RoI for the Colosseum (i.e., the boundaries of the PoI’s area).

3 METHODOLOGY

This paper proposes a newmethodology based on a parallel computations for extracting RoIs from social media data. The methodology is designed
to ensure system’s scalability, so as to obtain RoIs within a reasonable response time even in presence of Big Data. In addition, it addresses some
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(a) Geotagged items (red points on the map) and the
content of some of them.

(b) Colosseum RoI.

FIGURE1Use of the geotagged items, from different social media that refers to the Colosseum in Rome, for extracting a suitable Region-of-Interest.

issues of existing techniques by providing automatic keyword extraction, identification of arbitrary shapes, and easy parameter configuration.
Figure 2 depicts the entire workflow of the proposed methodology, which consists of four steps:

• Crawling: data are gathered from social media, e.g., by using multiple crawlers that run in parallel. Collected data can be stored on
parallel/distributed file systems (e.g., HDFS) for concurrent processing.

• Data preparation: a set of functions are used to make data suitable for the subsequent analysis, such as removing all unnecessary informa-
tion from data (data pruning), adding information coming from external sources (data enrichment), or transforming data values (e.g., data
normalization).

• Automatic keywords extraction and data grouping: during this step, the keywords identifying the PoIs are extracted; these keywords are then
used for grouping social media items according to the places they refer to. Each group of social media items are then processed in parallel
during the next step. The keywords extraction step can be possibly skipped if the keywords are provided manually (e.g., by using a PoI
database).

• RoIs extraction: a data parallel clustering is exploited for extracting RoIs from social media data grouped by keywords. During this step,
multiple instances of ParCA run in parallel over the different groups of social media items that have been found at the previous step. Each
ParCA instance can work sequentially on one single split, or in parallel on multiple splits. We discuss the performance of the sequential and
parallel approaches in Section 4.

Social media

items
Configuration
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Keywords extr.

& data grouping
Grouped social

media items

Data

preparation
Filtered social

media items

RoIs

extraction
RoIs

FIGURE 2Main steps of the proposed methodology.

For a sake of clarity and for Reader’s convenience, before going into algorithmic details, we explain, through an example, how our methodology
works (see Figure3). Starting from a small sample of geotagged social media items referring to the center of Rome (Figure 3(a)), we divided the area
under examination into squared cells of equal size (Figure 3(b)). All the geotagged items in our sample contain at least one keyword that identifies
a PoI. The automatic keyword extraction algorithm (more details are provided in Section 3.2) is able to extract the most representative keywords
in the area. In the example, the extracted keywords are: “Piazza Venezia”, “Capitoline Hill”, “Roman forum”, “Colosseum”. Figure 3(c) shows, starting
from the extracted keywords, how the geotagged items are divided into groups (data grouping): the pink items refer to Piazza Venezia, the orange
to the Capitoline Hill, the green to the Roman Forum, and the blue to the Colosseum. Finally, Figure 3(d) shows how each group of geotagged items
is analyzed and clustered for extracting the Region-of-Interest (RoI extraction).
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(a) Data preparation.
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FIGURE 3 An example of the methodology applied to an area in the city of Rome.

3.1 Input data format
The input is a set of files containing geotagged items that can be gathered from different sources (Twitter, Flickr, etc.). Each social media item is
represented by a metadata document composed of common fields to all social media platforms (source, item id, date and time, location coordinates,
user info) and specific fields of the given source. For example, Listing 1 shows some metadata of a Flickr post that contains specific fields, including
the date on which the photo was taken and posted, the format of the photo (e.g., JPEG), a flag indicating that the photo has been posted by a
professional photographer, and so on. On the other hand, Listing 2 contains the metadata of a tweet, including also some specific fields of the
social media platform (whether it is a retweet or not, the retweet count, the reply details, and so on).

{ " ID " : "43012793876" ,
"Owner" : { " ID":"111222333@N00" , "USERNAME" : " fm84 " }
" T i t l e " : " St Peter " ,
" Descr ip t ion " : " St Peter ’ s church in Rome" ,
" DateTaken " : "2016−11−20T20 :00 :01 .000" ,
" DatePosted " : "2016−11−21T22 :12 :36 .000" ,
"Comments" : 25 , " Views " :2354 , "PRO" : true ,
" Geodata " : { "LNG":12.456661 ,"LAT" :41.90245 ,

" Accuracy " : 16} ,
" Tags " : [ " ho l iday " , " va t i can " ] ,
" Format " : " jpg "

}

Listing 1: Metadata of a Flickr post serialized in JSON format.

{ " Source " : " Twi t ter " , " ID":"111222333444555" ,
"DateTime " : "2015−12−20T23 :20 :34 .000" ,
" Locat ion " : { "LNG":−0.1262 ,"LAT" :51 .5011 } ,
" User " : { " UserID " : "12345" , "Username " : " joe " } ,
" InReplyToScreenName " : " b i l l " ,
" InReplyToUserId " : 123456789,
" InRep lyToStatus Id " : 678712345678962848,
" Text " : " @b i l l That sounds great ! " ,
" Hashtags " : [ "#code " , "#mapreduce " ] ,
" Retweets " : 0 , " IsRetweet " : f a l s e

}

Listing 2: Metadata of a tweet serialized in JSON format.

3.2 Automatic keywords extraction and data grouping
The keyword extraction and data grouping algorithm has been implemented as a MapReduce program, so that, as the dataset size increases, it can
be executed in parallel on a Cloud or a HPC infrastructure. The algorithm extracts the most relevant keywords used by social users to tag places-
of-interest in a given area. Once extracted, the keywords are grouped by similarity measure to produce the list of keywords that identify each PoI
in the area.

The algorithm is composed of three steps:
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1. Keyword discovery. The area of interest is divided into squared cells of equal size. As shown in Figure 4(a), for each cell, we extract the
keywords (and their frequency) contained in the geotagged items posted from that cell. The keywords are then sorted by frequency. A high
frequency does not necessarily denote a high quality representative keywords, but it is a useful starting point. As an example, in Figure 4(a),
the keywords “italy” and “rome” have higher frequency than “colosseum”, although “colosseum” is evidently more representative of the PoI
contained in the cell. Noisy keywords, such as “italy” or “rome”, are then removed in the next step.

2. Keyword selection. Amethod based on a discrete L-curve 10 is exploited for distinguishing between high and low-frequency keywords. Finding
the elbow point of the curve permits to distinguish between high and low-frequency keywords. The algorithm takes into account both global
high-frequency keywords (i.e., calculated on the whole area) and local high-frequency keywords (i.e., calculated on each cell). Starting from
high-frequency keywords in a cell, it discards high-frequency global keywords to produce a list of the most representative keywords for
each cell. As shown in Figure 4(b), the algorithm removes all the keywords that do not identify a PoI in the cell (i.e., “italy”, “rome”, “lazio”).

3. Keyword grouping. The most representative keywords are grouped according to their textual similarity. In particular, the concept of similarity
is based on the Levenshtein distance 11, a commonly-used metric for measuring the distance between two strings. The algorithm outputs a
number of sets containing keywords that are similar to each other (see Figure 4(c)) where each key set contains the keywords identifying a
PoI. During the clustering step, each key set is used to find the associated RoI.

(a) Keyword discovering. (b) Keywords extraction. (c) Keywords grouping.

FIGURE 4 Automatic keyword extraction per cell.

3.3 Parallel Clustering Approach (ParCA)
Clustering is one of the fundamental tasks in data mining and machine learning. While the concept of clustering is very simple, i.e., assigning similar
data objects to the same cluster and dissimilar data objects to different clusters, most existing clustering techniques have high computational
complexity and they do not scale well. Oneway of dealing with this issue is to develop distributed clustering wheremany processing nodes combine
their effort to solve very large problems. Moreover, in many cases the datasets are already distributed, and therefore, it is more efficient to analyze
them at their location and communicate only the analysis results. In this case, not only we save the time of communicating all the datasets to a
central computing node, but also we avoid data loss and breaches during its transit, mainly for sensitive data.

We developed a Parallel Clustering Approach (ParCA) for spacial datasets 8, which is composed by two main phases: local clustering phase and
global clustering phase. Assume that the dataset is already distributed among the system nodes, during the first phase each processing node executes
a clustering algorithm on its local dataset to produce local clusters. The second phase consists of merging local clusters to generate global clusters.
The first phase takes advantage of full parallelism, as each processing node clusters only its own sub-dataset. Moreover, one can execute different
clustering algorithms on different sub-datasets, as the data collected in each nodemay be different (heterogeneous). The second phase requires the
full cooperation and collaboration of the processing nodes to generate the global clusters (see Figure 5). Therefore, the data exchanged between
the nodes has direct effect on the system’s performance. Communicating local clusters among the nodes is a very complex task and for very large
datasets this may not be feasible. Our parallel clustering approach does not exchange the local clusters entirely. Instead, it exchanges only the
local cluster representatives (e.g., cluster contour), which is a very low percentage of the data, and therefore, reduces significantly the network
load. There are different approaches of how to extract clusters’ representatives. These usually depend on either the nature of the datasets or the
clustering techniques. In this paper, we are interested in the cluster contour; the data points that constitute the contour are the representatives of
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Representatives

Local clusters

FIGURE 5 Parallel Clustering Approach (ParCA).

the cluster. The contours of the local clusters are extracted during the first phase. There are many efficient algorithms in the literature for contour
extraction, with a reasonable complexity of O(n log n), where n is the size of the cluster 12,13,14.

The ParCA is implemented using theMapReduce programmingmodel. This model is well suited for this approach. The first phase is implemented
by the mappers. In other words, each mapper implements the local clustering and contours generation of the local clusters. The second phase is
implemented by the reducers, by taking the outputs of the mappers, execute the merging algorithm, and generate the global clusters. As the second
phase is executed in a hierarchical way to optimize the level of parallelism, we have many reducers that cooperate to produce the final results.

3.4 RoIs extraction using a parallel clustering approach
Figure 6 describes the parallel clustering approach that has been implemented for extraction RoIs. The input of this step is represented by N

datasets, each one containing the points associated with the key set of a given PoI. Each dataset can be divided into M splits, with M ≥ 1. Thus,
two levels of parallelisms can be exploited:

• N ParCA instances run concurrently, with each instance working exclusively on a single key set.

• Each ParCA instance processes in parallel the M splits of its key set, by producing one local cluster per split; the M local clusters are then
merged into a single global cluster which represents the RoI associated with the key set.

The above process is implemented in MapReduce programming framework. In particular, the mappers task is to produce the local clusters,
whereas reducers task is to derive the global clusters.

As ParCA is based on theDBSCAN algorithm 7, it also suffers for the problem of setting input parameters; one needs to tune the input parameters
for the DBSCAN algorithm running locally in order to guarantee accurate final results. However, tuning the parameters needs a ground truth
dataset to compare to, which is not given when dealing with real dataset. In the next section we discuss how we extended ParCA to choose the
appropriate input parameters for the DBSCAN algorithm.

3.4.1 Heuristic for choosing DBSCAN parameters
TheDBSCAN algorithm needs two key parameters: eps, the radius of a neighborhoodwith respect to some point; andminPts, theminimum number
of points required to form a cluster. These two parameters can be calculated using the following procedure as defined in 7:

1. Calculate the sorted k-dist plot, which is a plot of the k-nearest-neighbor distances (k-dist), computed for each point, and sorted in
descending order 15. As suggested in 7, for bi-dimensional data, k can be set to 4.

2. Choosing a threshold point on k-dist permits to separate noise points from points that are assigned to some clusters. Specifically, all points
with a higher k-dist value than threshold are considered noise; otherwise, all points with an equal or smaller k-dist value are assigned to
some clusters.

3. The threshold point can be calculated by estimating the noise percentage in the data (noisePerc). The k-dist value of the threshold point is
used as eps value. Concerning minPts, it can be set as k+ 1 15. Figure 7(a) shows an example of sorted k-distance plot.
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FIGURE 6 RoIs extraction exploiting the ParCA algorithm.

Thus, with fixed the minimum number of points (minPts) and established the noise percentage (noisePerc), we calculate eps and then run
DBSCAN on the points collected for a Point-of-Interest. Since DBSCAN calculates one or more clusters on a set of points, we select the points
that belong to the largest cluster, and starting from them we return the convex polygon that encloses these points (Region-of-Interest).

As an example, starting from the Colosseum points (i.e., geotagged items that refer to the Colosseum) we plot the sorted k-dist graph, with
k=4 (see Figure 7(b)). On the graph we represented various percentages of noise (from 5% to 30%). In Figure 7(c)) we show how noise affects the
definition of the Colosseum RoI. With a low noise (e.g., 5% for the yellow polygon) we obtain a large Region-of-interest, as the noise increases the
RoI becomes smaller (e.g., 20% for the purple polygon). Figure 7(d) and 7(e) show how the noise affects the definition of Piazza Navona’s and St.
Peter Basilica’s RoIs. In Section 4.2 we describe how to find a good trade-off between precision and recall by analyzing a test set consisting by 20
case studies.

4 PERFORMANCE EVALUATION

The evaluation was carried out by analyzing a dataset containing about 9millions of social media items published by Flickr users from 2007 to 2017
referring to the center of Rome. Such data has been collected though public Flickr APIs1. During the keyword extraction phase, our methodology
was able to find about 210 keywords representing points-of-interest in the area under examination.We used 20 places with known RoIs to facilitate
the parameters setting of the clustering algorithm. In particular, Section 4.1 presents the metrics used to measure the accuracy of RoI algorithms.
Section 4.2 and Section 4.3 discuss the experiments carried out for evaluating the accuracy and the execution time of the proposed methodology.

4.1 Performance metrics
To measure the accuracy of the algorithms for detecting RoIs, we use precision and recall metrics. As in 2,6, let roireal be the real RoI for a PoI
(taken from online services like OpenStreetMap), and let roifound be the RoI found by an algorithm. Let us define the true positive area roiTP as the
intersection of roifound and roireal. Precision Prec and recall Rec are defined as:

Prec =
Area(roiTP )

Area(roifound)
Rec =

Area(roiTP )

Area(roireal)
(1)

1https://www.flickr.com/services/developer/api/
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(b) Sorted k-distance plot (k=4) for the geotagged items related
to the Colosseum.

(c) Colosseum’s RoIs for different values of
noisePerc.

(d) Piazza Navona’s RoIs for different values
of noisePerc.

(e) St. Peter Basilica’s RoIs for different val-
ues of noisePerc.

FIGURE 7 How the percentage of noise (noisePerc) affects the definition of RoIs.

A roifound larger than roireal produces a high recall and a low precision, whereas roifound smaller than roireal produces a low recall and a high
precision. If roireal ⊆ roifound then roiTP = roireal and therefore the recall is 1 but the precision is lower than 1. On the other hand, if roifound ⊆ roireal

the precision is 1 but the recall is lower than 1. To rank the results, we combine precision and recall using the F1 score:

F1 =
2 · Prec ·Rec

Prec+Rec
(2)

4.2 Accuracy evaluation
Table 1 illustrates the clustering performance (Precision, Recall, and F1 score) for different values of the noise in the data (10%, 20%, and 30%).
The last row of the table reports mean values computed over the 20 PoIs that have been considered. When precision is higher than recall, the RoI
identified by the algorithm is smaller than the real one. On the contrary, when precision is lower than recall, it means that the RoI identified is larger
than the real one. To choose the optimal value for the noise percentage (noisePerc) in the data, we used the F1 score, which is the harmonic mean
of the precision and recall. The results reported in the table show that considering a noise percentage of 20% we obtained more accurate results.
In fact, using noisePerc = 20% produces the highest mean F1 score of 79%.

Table 2 illustrates the performance (Precision, Recall, F1 score) of our parallel clustering approach taking into account a variable number of splits
for the data associated to each PoI. In particular, we have considered six scenarios to compare, from sequential (i.e., 1 split) to parallel approach
with an increasing number of splits (from 2 to 32). Both approaches have been tested using all the 20 PoIs that have been considered. The results
show that the average F1 score, calculated on the RoIs identified by ParCA, slightly decreases as the number of splits increases. In fact, as the
number of split increases, each parallel instance of DBSCAN works on less and less data, which leads to a lower accuracy. In particular, comparing
the parallel clustering approach with the sequential one, the F1 score decreases from 79% to 77% using two splits, and up to 69% using 32 splits.
In the area under analysis, the proposed algorithm identifies the 20 RoIs shown in Figure 8.



Loris Belcastro et al 9

PoI noisePerc=10% noisePerc=20% noisePerc=30%
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Campo de’ Fiori 0.10 1.00 0.19 0.49 1.00 0.65 0.94 0.76 0.84
Capitoline Hill 0.17 1.00 0.29 0.48 1.00 0.65 0.81 0.86 0.84
Circus Maximus 0.31 1.00 0.48 0.77 0.95 0.85 0.82 0.63 0.71
Colosseum 0.27 1.00 0.43 0.77 0.90 0.83 0.96 0.62 0.75
Mausoleum of Hadrian 0.22 0.99 0.36 0.50 0.85 0.63 0.80 0.62 0.70
Our Lady in Trastev. 0.10 1.00 0.18 0.44 0.98 0.61 0.85 0.88 0.86
Palazzo Montecitorio 0.23 1.00 0.37 0.66 0.94 0.78 0.93 0.59 0.72
Pantheon 0.40 1.00 0.57 0.98 0.70 0.81 1.00 0.36 0.53
Piazza Colonna 0.21 1.00 0.34 0.56 0.99 0.72 0.88 0.89 0.89
Piazza del Popolo 0.54 0.98 0.70 0.86 0.91 0.88 0.99 0.46 0.63
Piazza di Spagna 0.23 1.00 0.38 0.52 1.00 0.68 0.90 0.82 0.86
Piazza Navona 0.46 1.00 0.63 0.84 0.86 0.85 1.00 0.52 0.69
Piazza Venezia 0.19 1.00 0.33 0.46 1.00 0.63 0.61 0.72 0.66
Roman Forum 0.56 1.00 0.72 0.83 0.84 0.83 0.96 0.50 0.66
St. Mary Major 0.72 0.97 0.83 0.97 0.55 0.70 1.00 0.22 0.37
St. Peter’s Basilica 0.65 1.00 0.79 0.96 0.89 0.92 0.99 0.65 0.79
Trastevere 0.51 0.95 0.67 0.85 0.76 0.80 0.81 0.43 0.56
Trevi Fountain 0.08 1.00 0.15 0.71 1.00 0.83 1.00 0.61 0.76
Vatican Museums 0.57 0.97 0.72 0.79 0.76 0.78 0.85 0.27 0.41
Villa Borghese 0.84 0.87 0.85 0.91 0.55 0.68 1.00 0.07 0.13
Mean Values 0.37 0.99 0.54 0.72 0.87 0.79 0.91 0.58 0.70

TABLE 1 Precision, recall, and F1 score of our clustering approach over 20 PoIs in Rome on 1
data split.

N. of split Precision Recall F1
1 0.72 0.87 0.79
2 0.68 0.89 0.77
4 0.62 0.92 0.74
8 0.59 0.94 0.72
16 0.57 0.95 0.71
32 0.54 0.97 0.69

TABLE 2 Precision, recall, and F1 score
of our clustering approach by varying
the number of splits over 20 PoIs in
Rome.

FIGURE 8 City of Rome: 20 RoIs identified by our methodology.

4.3 Execution time evaluation
We experimentally evaluated the proposed methodology by running the analysis on a private cloud infrastructure. Specifically, we used a cluster
equipped with 50 CPU cores and 100 GB of memory. The goal of the evaluation is to assess the scalability of the methodology by varying the
number of data splits. The following performance parameters have been considered:

• Turnaround time: the amount of time elapsed from the submission of an application to its completion;

• Data-splitting speedup: the ratio of the turnaround time using 1 split per ParCA instance, by the turnaround time obtained using n splits per
ParCA instance.
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Both turnaround time and speedup have been evaluated by considering a variable number of CPU cores (from a minimum of 5 to a maximum
of 50). As mentioned before, the evaluation was carried out by analyzing a dataset containing about 9 millions of social media items published by
Flickr users from 2007 to 2017 referring to the center of Rome. In order to perform a more complete scalability analysis, we randomly sampled
the original dataset to generate four datasets D1, D2, D4, D8 that contain 1.5GB, 3GB, 6GB and 12GB of data, respectively.

Figure 9 shows the turnaround time obtained using ParCA on a single data split, using from 5 to 50 CPU cores. In particular, Figure 9(a) shows
the turnaround times of the application for the four datasets. For the smallest dataset (D1) the turnaround time decreases from 27 minutes using
5 cores to 14 minutes using 50 cores. For D2, the turnaround time decreases from 74 to 39 minutes. For D4, the turnaround time decreases from
4.1 to 2.5 hours. Finally, for the largest dataset (D8), the turnaround time ranges from 14.7 to 9.5 hours. From the figure it can be noticed that
when more than 20 cores are used the decrease of the turnaround time is negligible. Figure 9(b) illustrates the breakdown of the turnaround time
for dataset D1. The RoIs extraction (i.e., the execution of ParCA) is the dominant step that most influences the overall turnaround time, which
does not significantly decreases passing from 20 to 50 cores. This is mainly due to the RoI mining step that is not able to exploit a large number of
cores, because the clustering tasks are very heterogeneous in terms of execution times. This heterogeneity is due to imbalance in processing the
geotagged points associated to each PoI. For example, the number of geotagged items associated to popular places like “Colosseum” or “St. Peter’s
Basilica” is much higher than the number of items associated to other PoIs. For this reason, the turnaround time is bound to the execution time of
the slowest task instances.
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FIGURE 9 Turnaround using ParCA.

Dividing data to be clustered into splits allows ParCA to reduce the RoI mining step execution time significantly. Figure 10 shows the turnaround
time with different combinations of the dataset sizes and the number of splits by using 50 cores. For instance, notation D2/S8 in the x-axis means
dataset D2 with 8 splits. In all configurations, only the RoI extraction step is affected by the number of splits used. This is because parallelism on
the key sets is exploited by the ParCA algorithm. For example, for the smallest dataset (D1) the ParCA execution time decreases from 14 minutes
using 1 split (about 840 secs in Figure 9(b)) to 6 minutes using 32 split (360 secs). For the largest dataset (D8), the ParCA execution time passes
from 9.8 hours (35280 secs) to 11 minutes (660 secs).

The scalability can be evaluated through the graphs in Figure 11, which illustrate the data splitting speedup obtained by ParCA using from 1
to 32 data splits, for each of the four datasets considered. The maximum number of splits was chosen as a good compromise between scalability
and accuracy of the results. In fact, using a higher number of splits, each clustering algorithm works on less and less data, thus leading to a lower
accuracy. Each graph presents the speedup obtained with a different number of cores. By analyzing the four graphs, we can notice that the speedup
depends on the number of splits, the number of cores, and the dataset size. With the smallest datasets (D1), the speedup achieved is never higher
than 3, even using a large number of splits and cores. In this case, using as low as 4 splits and 5 cores is enough to achieve the maximum speedup
(see Figure 11(a)). On the other hand, the highest speedup (about 52) is obtained when processing the largest dataset (D8) using 32 splits and 50

cores (see Figure 11(d)). From Figure 11(c), we observe that even if we reduce the number of cores to 20, the speedup remains very good (about
41) using 32 splits on the same dataset. This shows the positive impact of increasing the number of splits, even when they exceed the number of
cores available for processing. Overall, the experimental results show that the scalability of the system is a function of both the number of splits
and the number of cores. The former has a greater influence on the latter, in the sense that the use of a higher number of cores is effective in
improving speedup only if the number of splits is also increased.
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We conclude the evaluation by providing some data about the throughput achieved during the experiments. Given a large number of combi-
nations that can be obtained by varying the number of splits and the number of cores used, we provide throughput values for two representative
configurations: i) D1/S1 using 5 cores, and ii) D1/S32 using 50 cores. In the first configuration, the throughput was 0.12 tasks/sec, while in the
second configuration it was 16.69 tasks/sec. This variability in the throughput values is indeed due to the different values of the number of splits
and parallelism level that can be found.
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D1
D2
D4
D8

Sp
ee

du
p

0

10

20

30

40

50

60

Number of splits
1 4 8 16 32

(a) Number of cores=5.

D1
D2
D4
D8

Sp
ee

du
p

0

10

20

30

40

50

60

Number of splits
1 4 8 16 32

(b) Number of cores=10.

D1
D2
D4
D8

Sp
ee

du
p

0

10

20

30

40

50

60

Number of splits
1 4 8 16 32

(c) Number of cores=20.

D1
D2
D4
D8

Sp
ee

du
p

0

10

20

30

40

50

60

Number of splits
1 4 8 16 32

(d) Number of cores=50.

FIGURE 11 Speedup vs number of cores using a ParCA with splits.
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5 RELATEDWORK

Existing techniques for finding RoIs are based on three main approaches: predefined shapes, density-based clustering and grid-based aggregation.
Predefined shapes. According to this approach predefined shapes (circles, rectangles, etc.) are used to represent RoIs. For example, Kisilevich et

al. 16 defined RoIs as circles of fixed radius centered on a set of PoIs whose center coordinates are known. Spyrou and Mylonas 17 used circular RoIs
to extract popular touristic routes from Flickr. Specifically, circular shapes are used to translate a trajectory of geospatial points into a sequence
of RoIs. Cesario et al. 18 used rectangles to define RoIs representing stadiums for a trajectory mining study. In particular, the RoI of a stadium is
the smallest rectangle enclosing the stadium’s area. De Graaff et al. 2 use Voronoi tessellations to define RoIs starting from a set of geographical
coordinates representing PoIs.

Density-based clustering. With this approach, RoIs are obtained by clustering a set of geographical locations. For instance, Zheng et al. 19 used
DBSCAN 7 to discover tourist attraction areas from a set of Flickr photos. DBSCAN was adopted for three main reasons: i) it tends to identify
regions of dense data points as clusters; ii) it supports clusters with arbitrary shape; iii) it has a good efficiency on large-scale data. DBSCAN
was also used by Altomare et al. 5, with the goal of detecting the regions that are more densely visited based on data from GPS-equipped taxis.
Kisilevich et al. 20 used a variant of DBSCAN, named P-DBSCAN, to cluster photos taking into account the neighborhood density (i.e., the number
of distinct photo owners in the neighborhood) and exploiting the notion of adaptive density for fast convergence towards high density regions.
Density-based approaches need a method to assign a meaning to each RoI found. There are different ways to perform this task. Zheng et al. 19 and
Yin et al. 21 assign a name to each cluster by taking the most frequent keyword in the geotagged items. Ferrari et al. 22 automatically associate to
each RoI the zip code of the data points in the cluster center. Järv et al. 23 used a hierarchical clustering algorithm, named HDBSCAN, for producing
a dendrogram of clusters. Each place is represented as a natural hierarchy of other regions (e.g., a museummay belong to a particular district). Then,
using both a PoI database from Foursquare and metadata contained in geotagged items, the authors assigned a semantic mean to each region.

Grid-based aggregation. This approach discretizes the area under analysis in a regular grid and extracts RoIs by aggregating the grid cells. For
example, Giannotti et al. 9 divide an area into grid cells and count the trajectories passing through each cell. Grid cells whose counters are above
a certain threshold are expanded to form rectangular shaped RoIs. Cai et al. 24 argued that rectangular expansion produces RoIs that may contain
uninteresting low-density cells. For this reason, they proposed a hybrid grid-based algorithm, called Slope RoI, to mine arbitrary RoI shapes from
trajectory data. Cesario et al. 25 split the EXPO 2015 area in a grid and associated grid cells to PoIs representing pavilions, in order to discover the
behavior and mobility patterns of users inside the exhibition. Shi et al. 26 map geotagged data into grid cells, and then group the cells taking into
account spatial proximity and social relationship between places. Spyrou et al. 27 proposed an algorithm that divides a geographical area into cells
and then exploits an iterative merging procedure for finding RoIs. In particular, the merging procedure exploits a similarity metric based on the
metadata contained in social media items. The authors have conducted an experimental evaluation on a dataset of Flickr photos referring to the
center of Athens. For a qualitative evaluation of the proposed algorithm, the authors conducted a survey for assessing the satisfaction of real-life
users.

Hybrid approaches. Other approaches combine some aspects of the techniques mentioned above. As an example, G-RoI 6 exploits the indications
contained in social media items (e.g. tweets, posts, photos or videos with geospatial information) to discover the RoI of a PoI with a high accuracy.
Starting from a set of manually defined keywords identifying a PoI (which permits to group data for each PoI), G-RoI iteratively calculates the
associated RoI using a density-based criterion. The experimental results show that G-RoI is more accurate in identifying RoIs than main techniques
based on predefined shapes, density clustering, and grid-based aggregation.

The techniques discussed previously present some issues. For example, predefined shapes represent a naïve solution to the RoI mining problem,
because they are not able to handle PoIs having RoIswith different sizes and shapes.Density-based techniquesmay fail to distinguish regions that are
very close to each other or that have different densities. Grid-based aggregation techniques discretize the area in a regular grid and then aggregate
the grid cells using different aggregation policies. Thus, it may be hard to find a setting for identifying multiple RoIs with different characteristics
in the same area. Hybrid techniques, like G-RoI, lead to better results. However, G-RoI does not addresses some issues: i) automatic keyword
extraction, since in G-RoI the list of keywords is an input parameter of the algorithm; and ii) data clustering in parallel, since G-RoI iteratively runs
a sequential algorithm until a RoI is found, which leads to scalability problems as input data grows.

Themethodology proposed in this paper addresses all the issues discussed above: i) it is able to identify RoIs of arbitrary shapes regardless of the
proximity and density of the different regions; ii) it requires only one parameter, i.e., the noise percentage (see Section 3.4.1), which configures the
RoI algorithm for finding regions with different densities; and iii) it exploits a parallel clustering approach, based on the MapReduce programming
model, which allows it to identify RoIs by ensuring high scalability.
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6 CONCLUSION

RoI mining techniques are aimed at discovering Regions-of-Interest (RoIs) from Places-of-Interest (PoIs) and other data. Existing RoI mining tech-
niques are based on the use of predefined shapes, density-based clustering or grid-based aggregation. This paper proposes a new parallel methodology
for extracting RoIs from social media data, which is composed by two main steps: i) automatic keywords extraction and data grouping, for finding
keywords that identify the places of interests; these keywords are used to group social media items according to the places they refer to; ii) RoIs
extraction using a parallel clustering approach, which, starting from grouped social media data, exploits a parallel clustering approach (ParCA) to
identify RoIs efficiently, which is based on a parallel implementation of DBSCAN.

To ensure an efficient extraction of the RoIs, ParCA was optimized to deal with real world datasets and also to choose the appropriate input
parameters for the DBSCAN clustering algorithm it is based on. In addition, to ensure scalability, the algorithm has been implemented using the
MapReduce programming model. Experiments performed over a set of PoIs in Rome using social media data show that our methodology reaches
an accuracy of 79% in detecting RoIs. Using multiple splits, the accuracy slightly decreases (e.g., 77% using 2 data splits for each ParCA task, 74%
with 4 data splits, 72% with 8 splits), but scalability significantly increases. For instance, using a parallel machine with 50 cores, we obtained a
speedup of 52 by processing large datasets divided into 32 splits, compared to the execution time registered when each dataset is not partitioned.
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