See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/319629998

A Parallel Library for Social Media Analytics

Conference Paper - July 2017

DOI: 10.1109/HPCS.2017.105

CITATIONS
5

4 authors:

L. Belcastro
/" Universita della Calabria

18 PUBLICATIONS 56 CITATIONS

SEE PROFILE

Domenico Talia
B Universita della Calabria
407 PUBLICATIONS 5,113 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Adaptive High-Performance 1/0 Systems View project

roect Social data analysis View project

All content following this page was uploaded by Domenico Talia on 25 March 2019.

The user has requested enhancement of the downloaded file.

READS
66

‘ Q‘ Fabrizio Marozzo
-t Universita della Calabria
60 PUBLICATIONS 483 CITATIONS

SEE PROFILE

Paolo Trunfio
‘ Universita della Calabria
139 PUBLICATIONS 1,941 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/319629998_A_Parallel_Library_for_Social_Media_Analytics?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/319629998_A_Parallel_Library_for_Social_Media_Analytics?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Adaptive-High-Performance-I-O-Systems?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-data-analysis?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/L_Belcastro?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/L_Belcastro?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_della_Calabria?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/L_Belcastro?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio_Marozzo?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio_Marozzo?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_della_Calabria?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio_Marozzo?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_della_Calabria?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paolo_Trunfio?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paolo_Trunfio?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_della_Calabria?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Paolo_Trunfio?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-93e1d502100030a094642102260dbf25-XXX&enrichSource=Y292ZXJQYWdlOzMxOTYyOTk5ODtBUzo3NDAyNTc3ODgwODQyMjZAMTU1MzUwMjYxODkxMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

A Parallel Library for Social Media Analytics

Loris Belcastro, Fabrizio Marozzo, Domenico Talia, Paolo Trunfio
DIMES Department, University of Calabria,
Rende, Italy
Email: [Ibelcastro, fmarozzo, talia, trunfio] @dimes.unical.it

Abstract—Social media analysis is a fast growing research area
aimed at extracting useful information from huge amounts of
data generated by social media users. This work presents a Java
library, called ParSoDA (Parallel Social Data Analytics), which
can be used for developing parallel data analysis applications
based on the extraction of useful knowledge from large dataset
gathered from social networks. The library aims at reducing
the programming skills necessary to implement scalable social
data analysis applications. To reach this goal, ParSoDA defines
a general structure for a social data analysis application that in-
cludes a number of configurable steps, and provides a predefined
(but extensible) set of functions that can be used for each step.
The paper describes the ParSoDA library and presents two case
studies to assess its usability and scalability.

Index Terms—Social Data analysis, Scalability, MapReduce,
Cloud computing, Parallel library, Big Data

I. INTRODUCTION

The large volumes of data generated in social networks, such
as Facebook, Twitter, Foursquare and Flickr, can be exploited
to extract valuable information about human dynamics and
behaviors. Social media analysis is a fast growing research area
aimed at extracting useful information from this big amount of
data [1]]. It is used for the analysis of collective sentiments [2],
for understanding the behavior of groups of people [3]][4] or
the dynamics of public opinion [5]. To cope with the size
and complexity of social media data, the use of parallel and
distributed data analysis techniques is essential. Despite the
wide availability of powerful parallel frameworks [6], first and
foremost MapReduce [7], it is still hard for many users to
use such frameworks, mainly due to the programming skills
necessary to implement the desired data analysis methods on
top of them.

To address this problem, we created ParSoDA (Parallel
Social Data Analytics), a Java library that can be used for
building parallel data analysis applications that extract useful
knowledge from social media data. ParSoDA was designed
with the primary goal of reducing the programming skills
necessary to implement the desired data analysis application.
To this end, ParSoDA includes functions that are widely used
to process and analyze data gathered from social media for
finding different types of information (e.g., user mobility, user
sentiments, topics trends). The project pays particular attention
to providing functions dealing with Big Data. For this reason,
most algorithms are based on the MapReduce model and can
be executed in parallel on distributed systems, such as the
Cloud.

ParSoDA defines a general structure for a social data
analysis application that includes a number of steps (data
acquisition, filtering, mapping, partitioning, reduction, analysis,
and visualization), and provides a predefined (but extensible)
set of functions for each step. Thus, an application developed
with ParSoDA is expressed by a concise code that specifies
the functions invoked at each step. In this way, data analysts
having limited programming skills, especially with regards
to parallel programming, can efficiently design and execute
data analysis applications dealing with big amounts of social
media data. The library includes algorithms that are widely
used on social media data for extracting different kinds of
information. To deal with social media items gathered from
different social networks, ParSoDA defines a metadata model
that represents the different types of social media items (tweets,
Flickr posts, etc.). The model can be easily extended to match
most application requirements.

In this paper, we present the main features of ParSoDA and
describe how it can be used to create data analytics applications
dealing with Big Data collected from social networks. To
assess the usability and scalability of ParSoDA, we present
two case study applications that make use of the library to
extract sequential patterns and frequent itemsets from social
media data published in Flickr and Twitter. The first application
aims at discovering sequential patterns from user movements,
so as to find the common routes followed by users. The goal
of the second application is to discover the frequent sets of
places visited by users. The scalability was evaluated carrying
out the data analysis applications on a Cloud platform. Using a
Hadoop cluster with 2 head and 12 worker nodes, we obtained
an almost linear speedup.

The remainder of the paper is organized as follows. Section [[I|
discusses related work. Section describes the ParSoDA
library. Section [IV] presents two cases of study and the results
obtained. Finally, Section |V|concludes the paper.

II. RELATED WORK

Several research projects have been carried out to develop
applications and algorithms for extracting useful information
from data extracted out of social networks (e.g., Flickr,
Foursquare, Twitter, Facebook). In most cases the amount of
data to be analyzed is so big that high performance computers,
such as many and multi-core systems, Clouds, and multi-
clusters, paired with parallel and distributed algorithms, are
used by data analysts to reduce response time to a reasonable
value [8]].

Several research activities focused not only on data analysis,
but also on providing solutions for building social data
applications, with the aim of helping scientists to develop the
different steps that compose social data mining applications
without the need to implement common operations from
scratch.

Perisikan [9] is a framework designed for social network
analysis over Facebook that is composed by several components
for data acquisition through API, filtering, cleaning, parsing
and stemming. The system has also a data analysis and pattern
matching engine that performs data modeling and indexing,
using machine learning, text and image processing algorithms.
The framework has been tested with a limited amount of data,
so no tests about the performance and usability in presence of
huge amounts of data have been performed.

SOCLE [10]] is a framework for expressing and optimizing
data preparation in social applications. It is composed by a
general-purpose three-layers architecture, an algebra, and a
language to define operations for data preparation in social
applications. As an example, SOCLE provides operators to
remove all unnecessary information from data (data pruning),
to add information by using external sources (data enrichment),
to transform data values (data normalization). The authors
examined the use of SOCLE for manipulating social data
in two families of social applications, recommendation and
analytics, but no studies have been performed to assess its
scalability, and no details about framework requirements have
been provided.

Cuesta et al. [L1] proposed a framework for easing Twitter
data extraction and analysis. In the proposed architecture the
tweets, mined by the application through the Twitter APIs,
are cleaned and then stored in a MongoDB database [12]. In
addition to basic database operations (i.e. selection, projection,
insertion, updating and deletion), the framework can be
extended creating more complex aggregation MapReduce tasks
in Python. By default, the framework provides researchers
modules for executing sentiment analysis and generating
reports.

SODATO (SOcial Data Analytics Tool) [13] is an on-line
tool for helping researches on social data. It utilizes the APIs
provided by social networks (i.e., currently, it supports only
Facebook and Twitter) for collecting data; then, it provides a
combination of web as well as console applications that run in
batches for preprocessing and aggregating data for analysis. At
the end of the analytics process, the results can be displayed
using the integrated visualization module. SODATO provides
methods for several kinds of analysis, such as sentiments
analysis, keyword analysis, content performance analysis, social
influencer analysis, etc.

Stieglitz and Dang-Xuan [14]] proposed a framework that
provides appropriate methods and techniques required for
tracking, monitoring and analyzing content from social media
in political context. It works with three type of social media:
microblogging, social network, and weblogs. To prepare textual
data for further analysis, the framework provides a set of
preprocessing functions, such as stop words filtering, stemming,

and lemmatization. Regarding data analytics, the framework
provides a set of methods for sentiment/option, trend, and
content analysis. As application cases, the framework can be
used to execute analysis for detecting: the most emerging
political topics that are relevant for own reputation, political
relevant communities or leaders, prevalent sentiment or option
related to a specific topic, etc.

You et al. [[15] presented a framework, running on Clouds, for
developing social data analysis applications for smarter cities,
especially designed to support smart mobility. In particular,
the framework is composed by five components (i.e., data
collector, data preprocessor, data analyzer, data presenter, and
data storage) that cover the whole data analysis lifecycle. The
framework supports data collection from social networks (e.g.,
Twitter, Foursquare), by exploiting their public APIs, and from
other Internet sources (e.g. website, blog, files). A component
devoted to data preprocessing provides functions for data
cleansing, filtering and normalization. Afterwards, the data
analyzer component provides needed analysis methods (e.g.
K-means, DBScan, and Self-organizing Map) to make some
data analysis.

The main differences between ParSoDA and the systems
described above (but the one by You et al. [15]), is that
our system was specifically designed to build Cloud-based
data analytics applications. To this end, it provides scalability
mechanisms based on the MapReduce model, which are
fundamental to provide satisfactory services as the amount
of data to be managed grows. However, differently from [15],
ParSoDA is available as an open-source library, which allows
programmers developing their own applications with a high
degree of flexibility.

III. THE PARSODA LIBRARY

As mentioned before, ParSoDA (Parallel Social Data Ana-
lytics) is a Java library that includes algorithms that are widely
used to process and analyze data gathered from social networks
for extracting different kinds of information (e.g., user mobility,
user sentiments, topic trends).

ParSoDA defines a general structure for a social data analysis
application that is formed by following steps:

e Data acquisition: during this step, it is possible to run
multiple crawlers in parallel; the collected social media
items are stored on a distributed file system (HDFS [16]).

e Data filtering: this step filters the social media items
according to a set of filtering functions.

e Data mapping: this step transforms the information
contained in each social media item by applying a set of
map functions.

e Data partitioning: during this step, data is partitioned into
shards by a primary key and then sorted by a secondary
key.

o Data reduction: this step aggregates all the data contained
in a shard according to the provided reduce function.

e Data analysis: this step analyzes data using a given data
analysis function to extract the knowledge of interest.

e Data visualization: at this final step, a visualization
function is applied on the data analysis results to present
them in the desired format.

For each of these steps ParSoDA provides a predefined set
of functions. The users are free to extend these functions with
their own. For example, for the data acquisition step, ParSoDA
provides crawling functions for gathering data from some of
the most popular social networks (Twitter and Flickr), while for
the data filtering step, ParSoDA provides functions for filtering
geotagged items based on their position, time of publication,
and contained keywords.

A. Reference architecture and execution flow

Figure [I] presents a reference architecture that describes how
user applications based on the ParSoDA library are executed on
the popular Hadoop MapReduce framework [17], which allows
implementing parallel and distributed applications with high
level of scalability for several data mining tasks [18]. As shown
in the figure, user applications can make use of ParSoDA and
other MapReduce libraries (e.g., Mahou Stor Girap.
Applications are executed on a Hadoop cluster, using YARN
as resource manager and HDFS as distributed file system.

Fig. 1. Reference architecture

Figure [2] provides details on how applications are executed
on a Hadoop Cluster. The cluster is formed by one or more
master nodes, and multiple slave nodes. Once a user application
is submitted to the cluster, its steps are executed according to
their order (i.e., data acquisition, data filtering, etc.).

Some steps are inherently MapReduce-based, namely: data
filtering, data mapping, data partitioning and data reduction.
This means that all the functions used to perform these steps
are executed within a MapReduce job that runs on a set of slave
nodes. Specifically: the data filtering and data mapping steps
are wrapped within Hadoop Map tasks; the data partitioning
step corresponds to Hadoop Split and Sort tasks; the data
reduction step is executed as a Hadoop Reduce task.

Thttp://mahout.apache.org/
Zhttp://storm.apache.org/
3http://giraph.apache.org/

The remaining steps (data acquisition, data analysis, and
data visualization) are not necessarily MapReduce-based. This
means that the functions associated to these steps could be
executed in parallel on multiple slave nodes, or alternatively
they could be executed locally by the master node(s). The latter
case does not imply that execution is sequential, because a
master node could make use of some other parallel runtime
(e.g., MPI).

Hadoop cluster

Client Master nodes Slave nodes
application
submit
>| Data acquisition
Data filtering
Hadoop
Map tasks I
Data mapping
PE— —
Hadoop Data
Split/Sort tasks partitioning
Hadoop Bata
Reduce tasks reduction

Data analysis
v i v

Data visualization

Fig. 2. Execution flow.

B. Metadata model for social media data

To deal with social media items gathered from different social
networks, ParSoDA defines a metadata model for representing
the different types of social media items (tweets, Flickr posts,
etc.). According to this model, each social media item is
represented by a metadata document composed of two parts: a
basic section that includes fields common to all social networks
(source, item id, date and time, location coordinates, user info);
an extra section that contains fields specific to the source. As
an example, Listing [I] shows a metadata element describing a
tweet. The source field indicates that it is a social media item
gathered from Twitter, and therefore the extra section contains
fields specific to the tweets (whether it is a retweet or not, the
retweet count, and so on).

{

"BASIC":{
"SOURCE":"Twitter",
"ID":"111222333444555",
"DATETIME":"2015-12-20T23:20:34.000",
"LOCATION":{"LNG":-0.1262,"LAT":51.5011},
"USER":{ "USERID":"12345", "USERNAME":"
joedoe"}

H

"EXTRA": {
"inReplyToScreenName":"billsmith",
"inReplyToUserId":123456789,
"hashtags":["#code", "#mapreduce"],
"inReplyToStatusId":678712345678962848,
"text":"@billsmith that sounds great!",
"retweets":0,
"isRetweet":false

¥

}

Listing 1. Metadata of a tweet serialized in JSON format.

ParSoDA defines an abstract class named Socialltem that
defines the basic fields, and a set of classes (TwitterSocialltem,
FlickrSocialltem, etc.) that extend Socialltem by defining the
extra fields specific to different social networks. Each social
media item is represented in memory by an instance of one such
classes (e.g., a tweet will be an instance of TwitterSocialltem).
When the metadata of a social media item must be saved to
persistent storage or sent through the network, the object is
serialized in JSON format, a widely-used text notation [19].

C. Structure of a ParSoDA application

As mentioned earlier, ParSoDA defines a general structure for
a social data analysis application that includes a number of steps
(data acquisition, filtering, mapping, partitioning, reduction,
analysis, and visualization), and provides a predefined (but
extensible) set of functions for each step. Thus, an application
developed with ParSoDA is expressed by a concise code that
specifies the functions invoked at each step. More specifically, a
ParSoDA application can be developed by creating an instance
of a class named SocialDataApplication, which defines a set
of methods that allow the programmer specifying the functions
to be used at each step.

Table [I] lists the main methods of the SocialDataApplication
class. For each method, the table specifies the step it refers to,
and a short description.

For the Data acquisition step, the SocialDataApplication
class provides the setCrawlers method that can be used to
specify which crawling functions will be used to collect data
from social networks. The method receives two arrays of strings
as parameters: functions and params. Array functions contains
the fully-qualified names of the crawling classes that will be
instantiated to perform data collection. The Java reflection
mechanism is used to create instances of a class from its
fully-qualified name. Array params contains the parameters
that are necessary to configure the instances of the crawling
classes specified in functions; specifically, params[i] contains
the configuration string of functions[i]. In ParSoDA, a set of
crawling classes are available. For example, a FlickrCrawler
class can be instantiated to collect data from the Flickr social
network. If functions specifies multiple crawling classes, they
will be instantiated and run in parallel.

Data filtering can be configured with the setFilters method.
It works similarly to the setCrawlers method. In fact, its first
parameter can be used to specify the names of the classes that
will be instantiated to perform data filtering, while the second
one contains the parameters used to configure the instances of
the filtering classes. ParSoDa implements a simple but effective
mechanism for filtering social media items according to a
set of conditions. Each filtering class implements a predicate
function that verifies if a social media item meets or not a
particular condition. In ParSoDA, a filtering class is defined
by implementing the interface Predicate, which is included in
Java since version 1.8. After executing the data filtering step,
only social media items that match all conditions provided will
be passed to the data mapping step.

For configuring the Data mapping step, the developer has
to use the setMapFunctions method. Similarly to methods

TABLE I
MAIN METHODS OF THE SocialDataApplication CLASS.

Step Function Description
Data Specifies the crawling functions to be used for data acquisition. The
acquisition setCrawlers(String[] functions, String[] params) functions array contains the fully-qualified name of the crawling
q classes; params[i] contains the configuration string of functions/[i].
Data Specifies the functions and associated parameters to be used to
filtering setFilters(String[] functions, String[] params) perform data filtering.
]rizt;ping setMapFunctions(String[] functions, String[] params) tSh[::e(r:;f;;; it:; gtiler;)ctlons and associated parameters to be applied at
Data Specifies the keys used by the secondary sort design pattern, which
artitionin setPartitioningKeys(String groupKey, String sortKey) partitions data into shards by a primary key (groupKey) and
P g then sorts all data in a shard by a secondary key (sortKey).
rzztjction setReduceFunction(String function, String params) fguc;gz; t;zpfunctlon and associated parameters to be used at the
Data) setAnalysisFunction(String function, String params) Specifies the funcuqn and associated parameters to be used to
analysis perform data analysis.
Data Specifies the function and associated parameters to be used for

visualization setVisualizationFunction(String function, String params)

data visualization.

described above, it receives two arrays of strings as parameters,
which specify, respectively, the names of the classes that will
be instantiated to perform data mapping and the parameters
used to configure them. In ParSoDa a mapping class defines a
function that transforms a social media item given in input. In
such way, developers are able to transform social media items
by applying a sequence of map functions. A map function can
be defined by extending the abstract class MapFunction. Also
in this case, the Java reflection mechanism is used to create
instances of a class from its fully-qualified name.

Data partitioning can be configured with the setPartition-
ingKeys method, which receives two strings as parameters:
groupKey and sortKey. The method partitions data in shards
by groupKey and then sorts all data in a shard by sortKey.
The keys used to configure this step must be present in the
metadata model used to represent the social media items under
processing. ParSoDA implements the Secondary Sort design
pattern [20], which allows configuring a primary key (groupKey)
for partitioning data into shards, and a secondary key (sortKey)
for sorting all data in a shard. As an example, this mechanism
can be used to partition data by user ids and then to sort it by
timestamps, which is a very common task in sequential pattern
mining.

Data reduction can be configured with the setReduceFunc-
tion method, which receives as parameters the name of the
class that will be instantiated to perform data reduction and
the parameters used to configure it. The reduce function
aggregates all the data contained in a shard. As an example,
to analyze movements of social media users, one might use a
reduce function for aggregating all the data of a single user
according to given criteria. In ParSoDA, a reduce function can
be defined by creating a class that implements the interface
ReduceFunction.

Data analysis is configured with the setAnalysisFunction
method, which receives as parameters the name of the class
that will be instantiated to perform the data analysis task
and the associated parameters. A data analysis function can
be defined by extending the abstract class AnalysisFunction,
which requires the implementation of two abstract methods:
formatData, for formatting the input data in the format required
by the analysis function, and analyzeData that implements the
data analysis algorithm.

Finally, Data visualization can be configured with the
setVisualizationFunction method that, similarly to the previous
methods, receives the name of the data visualization class
and the parameters required to create an instance. To create a
custom data visualization function, the programmer must define
a class that implements the interface VisualizationFunction.

IV. STUDY CASES

To evaluate the usability and scalability of ParSoDA, we
used it to develop two social data analysis applications that
extract sequential patterns and frequent itemsets. The first
application aims at discovering sequential patterns from user
movements, so as to find the common routes followed by users.
The second one aims at discovering the frequent sets of places

visited by users. The analysis was carried out by analyzing
325 GB of social media data published in Flickr and Twitter
from November 2014 to July 2016 that refer to the center of
Rome.

A. Application code

Listing [2] shows the code of the application for executing
the sequential pattern mining. First, an instance of the Social-
DataApp class must be created (line I). Then a file containing
the boundaries of the regions of interest (RomeRols.kml) is
distributed to the processing nodes (lines 2-3). Afterwards, the
different steps of the application are configured as described
here:

1) Data collection. The names of two crawling classes
(FlickrCrawler and TwitterCrawler) are defined in the
cFunctions array (line 4). The parameters used to configure
the instances of the two crawling classes are defined in the
cParames array (line 5). The two arrays are then passed
to the setCrawlers method (line 6).
Data filtering. Two filtering classes are specified: IsGeo-
tagged and IsInPlace (line 7). The former filters data
by keeping only geotagged items. The latter filters out
data that are not in the center of Rome, which is defined
by its geographical coordinates. The parameters of the
two filtering functions are specified in the fParams array
(line 8). The names of the filtering classes and associated
parameters are then passed to the setFilters method (line
9).
Data mapping. The map class FindPol (line 10), which
does not require parameters to be instantiated (line 11),
is specified. The mapping function defined in FindPol
assigns to each social media item the name of the place it
refers to. To do this, it refers to the boundaries specified
in the file defined at /ine 2. The name of the map class is
then passed to the setMapFunctions method (line 12).
4) Data partitioning. The id of the user who posted a social
media item is used as the groupKey (line 13), while the
date and time when the social media item was posted
is used as the sortKey (line 14). The two keys are then
passed to the setPartitioningKeys method (line 15).
5) Data reduction. A reduce class, named ReduceByTra-
jectories (line 16), is specified to aggregate all the
social media items posted by a single user, into a list
of individual trajectories across places. The parameters
of the reduce class are specified in the rParams string
(line 17). In particular, it receives only a parameter ¢,
which is the maximum time gap in hours that can be
taken for consecutive places in the same trajectory. The
output of the reduce function will be a list of trajectories
{Tl,TQ, ...,Tn}, where T; = {Pil — Di2... — pm}, and
pi; is the name of the j-th place visited by the user in
the i-th trajectory. The name of the reduce class and
its parameters are then passed to the setReduceFunction
method (line 18).
Data analysis. A data analysis class, named MGFSM, is
specified (line 19). The class implements MG-FSM [21],

2

~

3

~

6

=~

a scalable frequent sequence mining algorithm built for
MapReduce that takes as input a collection of sequences
and mines frequent sequences. The parameters of data
analysis class are specified in the aParams string (line 20).
The name of the data analysis class and its parameters
are then passed to the setAnalysisFunction method (line
21).

7) Data visualization. The SortResults class is specified
to perform the data visualization function (line 22). A
configuration string vParams, containing the parameters
of the data visualization class, is specified at line 23. The
class receives two parameters: the key used to sort results
(the sequence support) and the sort direction (descending
order). The name of the data visualization class and its
parameters are then passed to the setVisualizationFunction
method (line 24).

Finally, the execution of the application is obtained by
invoking the execute method (line 25).

1 SocialDataApp app = new SocialDataApp ("SPM - City
of Rome");

cFiles =

[S)

Stringl[] {"RomeRoIs.kml"};
app.setDistributedCacheFiles (cacheFiles);

{"FlickrCrawler","

w

4 String[] cFunctions =

TwitterCrawler"};

w

String[] cParams = {"-lat 12.492 -1lng 41.890 -
radius 10 -startDate 2016-07-31 -endDate
2014-11-01","-1lat 12.492 -1ng 41.890 -radius 10
—-startDate 2016-07-31 -endDate 2014-11-01"};

app.setCrawlers (cFunctions, cParams) ;

o

7 String[] fFunctions = {"IsGeotagged","IsInPlace"};

8 String[] fParams = {"true","-lat 12.492 -1ng
41.890 -radius 10"};

9 app.setFilters (fFunctions, fParams);

10 String[] mFunctions = {"FindPol"};

11 String[] mParams = null;

12 app.setMapFunctions (mFunctions, mParams);
"USER.USERID";

"DATETIME";

15 app.setPartitioningKeys (groupKey, sortKey) ;

13 String groupKey =
14 String sortKey =

16 String rFunction = "ReduceByTrajectories";
17 String rParams = "-t 5";

18 app.setReduceFunction (rFunction, rParams) ;
19 String aFunction = "MGFSM";

20 String aParams = "-m d -g 3 -1 5 -s 50";

21 app.setAnalysisFunction (aFunction, aParams) ;
2 String vFunction = "SortBy";

"-k support -d DESC";

24 app.setVisualizationFunction (vFunction, vParams) ;

23 String vParams =

25 app.execute () ;

Listing 2. An example of sequential pattern mining (SPM) application on
Flickr and Twitter data from the City of Rome, written using the ParSoDA
library.

The code for executing the frequent itemset analysis differs
from that described above only for the used data analysis
algorithm (lines 19-21). In particular, to extract frequent sets
of places from social media data, a parallel implementation of

the FP-Growth algorithm [22], called PFP [23]], has been used.

B. Analysis results

Figure [3(a)] shows 24 popular places in the center of Rome
that have been considered to run the sequential pattern mining
task and the frequent itemset discovery task, both implemented
as ParSoDA applications. In the following, we discuss some of
the most interesting results that have been obtained. Table [I]
shows the top 5 places visited in Rome, with the corresponding
support in the data. The Colosseum is the most visited place,
followed by the St. Peter’s Basilica.

TABLE 11
ToP 5 PLACES VISITED IN ROME

Place Support
Colosseum 21.7%
St Peter’s Basilica 13.9%
Trastevere 8.7%
Pantheon 6.5%
Trevi Fountain 5.3%

Table |III] shows the most frequent itemsets of length 3 that
have been discovered by the PFP algorithm. Set {Pantheon,
St. Peter’s Basilica, Colosseum} is the most frequent set of
places visited by social users in Rome, with a support of
5.3%. Combining the information contained in Tables [lI| and
III} an interesting result is that Trastevere, a popular district
of Rome, is the third most visited place, but it is not present
in any frequent itemset. This could happen because Trastevere
is visited by people during the evening, for having a dinner
in one of its many restaurants or pubs, but it is not part of
common tourist routes during the daylight.

TABLE III
TOP 5 FREQUENT SETS OF PLACES VISITED IN ROME

Set of places Support
Pantheon, St. Peter’s Basilica, Colosseum 5.3%
Trevi Fountain, St. Peter’s Basilica, Colosseum 4.5%
Roman Forum, St. Peter’s Basilica, Colosseum 4.4%
Vatican Museums, St. Peter’s Basilica, Colosseum 4.4%
Trevi Fountain, Pantheon, Colosseum 4.0%

The sequential pattern analysis has been carried out for
discovering the most frequent routes in Rome. In this experi-
ment, it has been set a maximum time duration (gap) to move
from a place to another of 5 hours. This means that if the
time distance between two contiguous places in sequence is
greater than 5 hours, they will belong to different sequences.
Figure [3(b)] and Table [[V] report the top five interesting patterns
of length 3 that have been found by the MG-FSM algorithm.
In particular, the sequence {Colosseum — Roman Forum —
St. Peter’s Basilica} is the most frequent route among places
in Rome, followed by 4.4% of users.

C. Scalability evaluation

The goal of this evaluation is to assess the scalability
of the ParSoDA applications discussed above, by analyzing
their turnaround time by varying the number of computing

VITTORIA

iale Ar

2 Galleria Nazwonalse
> s d'Arte Moderna e..

useo e Galleria
Borghese
Villa Borghese

@ g
Piazza del Popolo

@ E

RIONE
XXII PRATI Villa Medici @

Piazza di Spagn@

FEE Piazza Barberini &

@Caﬂel SantAngelo

to Fonts (=]
nedale Santo Spirto @ onE v ponTE OMANERTTevi @ B
3 Piazza Navonaé]o Palazzo del Quirinale &) @
I

Pantheen
Basilica Papale%
Santa Maria Maggiore

Campode Fiori@ Piazza Veneziad@® @
Altare della Patria &

usei Vaticani Chiesa di Santa 11

Cone SIprang Maria della Vittoria

di Cassazione
B Terme di Dio

RIONE
(4] PARIONE

RIONE I MONTI

Aurelia Antica @ Basilica di San
Villa Doria
Pamphili

L _ Basilicadi San,
Giovanni in Laterano

29y e N 2970

@ 1 210 o
[Mausoleo diAugusto Piezza di Spagna @ §
7, . ChiesadiSantag
 Maria della Vittoria

Corte Suprema,
. o2 Teatro Sistina @

MUNICIPIO
ROMA |

o Teve!

at Ponte SantAngelo@ FIU

Vaticgno
=)
ey L ospedale Santo Spirito®

@Palazzo delle E:

@ Chiesa di Sant

\gnazio di Loyola
o)

@ 0spedale Pediatrico

Ba
Bambino Gesy Santah

> / Chiesa del Ge™Q %
Campo de'Fiori® O Pz Ngeria

% Largo di Torre Argentin]
< Cagi g = S Altare della Patri
5, & RIONE VII Basilica di Sano
% € REGOLA Pigtro in Vincoli
E Campidoglio €&
Orto Botanico Romus Aurea €
0o 8t Ponte Sisto@) -

Foro Romi &
AR v
Tempio Maggiore

ama

“
7€ 1,

Basilica di Santa gy Arco Ur&astantin € @

Mania n Trastevere
o Detentr Basiicac

(b) Top 5 sequential patterns of lenght 3 in Rome.

Fig. 3. Sequential pattern mining application.

TABLE IV
TOP 5 SEQUENTIAL PATTERNS OF LENGTH 3 ACROSS PLACES IN ROME

Sequential pattern Support
Colosseum — Roman Forum — St. Peter’s Basilica 4.4%
Vatican Museums — St. Peter’s Basilica — Colosseum 3.9%
Colosseum — Trevi Fountain — St. Peter’s Basilica 3.7%
Colosseum — Roman Forum — Pantheon 3.6%
Colosseum — Pantheon — St. Peter’s Basilica 3.6%

nodes involved in the parallel execution. Here we present the
scalability results obtained with the sequential pattern mining
application. The performance obtained with the frequent itemset
applications are almost identical.

The scalability was evaluated running the data analysis
applications on a Cloud platform. Specifically, we used
HDInsight, a service that deploys an Apache Hadoop
cluster on Microsoft Azureﬂ Our cluster was equipped with
2 head nodes having four 2.2 GHz CPU cores and 14 GB of
memory, and 12 worker nodes having four 2.2 GHz CPU cores

“http://azure.microsoft.com/en-us/services/hdinsight

and 14 GB of memory.

As shown in Figure E[), the turnaround time decreases from
about 54 minutes using two workers, to 10 minutes using
12 workers. Thus, increasing the workers from 2 to 4 (2x),
the obtained speedup is 1.98, and it is equal to 5.37 using
12 (6x) workers, with a speedup that is very close to linear
values (see Figure [3)). This behavior shows that the scalability
of the ParSoDA applications was able to exploit the high-
performance features of the Cloud platform and obtain a high
level of scalability.

01:00 T T T T
00:55 [o 3
\
00:50 [v 3
1
E 00:45 [v 3
£ 0040 | !]
£ 0035 | ! E
T 00130 | 5 ;
> Q,
© 0025 | .
g
S 00:20 F .
=
00:15 | ‘o 3
00:10 | TTeg
00:05 ' ' ' '
1x 2x 4x 6x
Workers

Fig. 4. Turnaround time of the sequential pattern mining application.

T T T T
6 Ideal 1
Speedup --6- o
5 !,-' i
4 /"f .
% /‘p
° &
] 4
o 3r + il
wn ,f’
2t 'l .
X
/"
i — .
0 1 1 1 1
1x 2x 4x 6X
Workers

Fig. 5. Relative speedup of the sequential pattern mining application.

V. CONCLUSIONS

Social media analysis is an important research area aimed
at extracting useful information from the big amount of data

gathered from social networks. To cope with the size and
complexity of social media data, the use of parallel and
distributed data analysis techniques is fundamental. In this
paper we presented ParSoDA, a Java library that can be
used for building parallel social data analysis applications.
ParSoDA was designed with the primary goal of reducing the
programming skills necessary to implement the desired data
analysis application.

ParSoDA defines a general structure for a social data
analysis application that includes a number of steps (data
acquisition, filtering, mapping, partitioning, reduction, analysis,
and visualization), and provides a predefined (but extensible)
set of functions for each step. Thus, an application developed
with ParSoDA is expressed by a concise code that specifies the
functions invoked at each step. In this way, even data analysts
having limited programming skills, especially with regard to
parallel programming, can efficiently design and execute data
analysis applications dealing with big amounts of social media
data.

To assess the scalability and the usability of ParSoDA,
we developed two social data analysis applications to extract
frequent itemsets and sequential patterns from social media
data gathered from Flickr and Twitter that refers to the city
of Rome. The experimental performance results presented in
the paper showed that the scalability of the application using
ParSoDA is able to exploit the high-performance features of
the Cloud platform and obtain high level of scalability, with a
global speedup that is very close to linear values.

REFERENCES

[1] Domenico Talia, Paolo Trunfio, and Fabrizio Marozzo. Data Analysis in
the Cloud. Elsevier, October 2015.

[2] Bo Pang and Lillian Lee. Opinion mining and sentiment analysis.
Foundations and Trends in Information Retrieval, 2(12):1-135, 2008.

[3] Eugenio Cesario, Andrea Raffaele lannazzo, Fabrizio Marozzo, Fabrizio
Morello, Gianni Riotta, Alessandra Spada, Domenico Talia, and Paolo
Trunfio. Analyzing social media data to discover mobility patterns at expo
2015: Methodology and results. In The 2016 International Conference on
High Performance Computing and Simulation (HPCS 2016), Innsbruck,
Austria, 18-22 July 2016. To appear.

[4] Eugenio Cesario, Chiara Congedo, Fabrizio Marozzo, Gianni Riotta,
Alessandra Spada, Domenico Talia, Paolo Trunfio, and Carlo Turri.
Following soccer fans from geotagged tweets at fifa world cup 2014.
In Proc. of the 2nd IEEE Conference on Spatial Data Mining and
Geographical Knowledge Services, pages 33—38, Fuzhou, China, July
2015. ISBN 978-1- 4799-7748-2.

[5] Nick Anstead and Ben O’Loughlin. Social media analysis and public
opinion: The 2010 uk general election. Journal of Computer-Mediated
Communication, 20(2):204-220, 2015.

[6] Abdul Ghaffar Shoro and Tarig Rahim Soomro. Big data analysis:
Apache spark perspective. Global Journal of Computer Science and
Technology, 15(1), 2015.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In Proceedings of the 6th Conference
on Symposium on Opearting Systems Design & Implementation - Volume
6, OSDI'04, pages 10-10, Berkeley, USA, 2004.

[8] F. Marozzo, D. Talia, and P. Trunfio. A cloud framework for big data
analytics workflows on azure. Advances in Parallel Computing, 23:182—
191, 2013.

[9] J. Parthasarathi, K. Sundararaman, and G. S. V. Rao. Perisikan: An intel-
ligent framework for social network data analysis. In 2012 International
Conference on Communications and Information Technology (ICCIT),
pages 13-16, June 2012.

[10]

(11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

Sihem Amer-Yahia, Noha Ibrahim, Christiane Kamdem Kengne, Federico
Ulliana, and Marie-Christine Rousset. Socle: Towards a framework
for data preparation in social applications. Ingénierie des Systemes
d’Information, 19(3):49-72, 2014.

Alvaro Cuesta, David F. Barrero, and Maria D. R-Moreno. A framework
for massive twitter data extraction and analysis. Malaysian Journal of
Computer Science, 27:1, 2014.

Kristina Chodorow. MongoDB: the definitive guide. ” O’Reilly Media,
Inc.”, 2013.

Abid Hussain and Ravi Vatrapu. Social Data Analytics Tool (SODATO),
pages 368-372. Springer International Publishing, Cham, 2014.

Stefan Stieglitz and Linh Dang-Xuan. Social media and political
communication: a social media analytics framework. Social Network
Analysis and Mining, 3(4):1277-1291, 2013.

L. You, G. Motta, D. Sacco, and T. Ma. Social data analysis framework
in cloud and mobility analyzer for smarter cities. In Proceedings of 2014
IEEE International Conference on Service Operations and Logistics, and
Informatics, pages 96-101, Oct 2014.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler.
The hadoop distributed file system. In Mass storage systems and
technologies (MSST), 2010 IEEE 26th symposium on, pages 1-10. IEEE,
2010.

Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st
edition, 2009.

Cheng Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski,
Andrew Y Ng, and Kunle Olukotun. Map-reduce for machine learning on
multicore. Advances in neural information processing systems, 19:281,
2007.

ECMA. Ecma-262: ECMAscript Language Specification. Fifth edition.
ECMA (European Association for Standardizing Information and Com-
munication Systems), 2009.

Tom White. Hadoop: The definitive guide. ~ O’Reilly Media, Inc.”,
2012.

Iris Miliaraki, Klaus Berberich, Rainer Gemulla, and Spyros Zoupanos.
Mind the gap: Large-scale frequent sequence mining. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of
Data, pages 797-808. ACM, 2013.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree approach.
Data mining and knowledge discovery, 8(1):53-87, 2004.

Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang.
Pfp: Parallel fp-growth for query recommendation. In Proceedings of
the 2008 ACM Conference on Recommender Systems, RecSys *08, pages
107-114, New York, NY, USA, 2008. ACM.

https://www.researchgate.net/publication/319629998

	Introduction
	Related work
	The ParSoDA library
	Reference architecture and execution flow
	Metadata model for social media data
	Structure of a ParSoDA application

	Study cases
	Application code
	Analysis results
	Scalability evaluation

	Conclusions
	References

