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Abstract

In recent years, social media has emerged as one of the main platforms for
real-time reporting of issues during disasters and catastrophic events. While
great strides have been made in collecting such information, there remains
an urgent need to improve user reports’ automation, aggregation, and or-
ganization to streamline various tasks, including rescue operations, resource
allocation, and communication with the press. This paper introduces an in-
novative methodology that leverages the power of prompt-based Large Lan-
guage Models (LLMs) to strengthen disaster response and management. By
analyzing large volumes of user-generated content, our methodology identi-
fies issues reported by citizens who have experienced a disastrous event, such
as damaged buildings, broken gas pipelines, and flooding. It also localizes all
posts containing references to geographic information in the text, allowing
for aggregation of posts that occurred nearby. By leveraging these localized
citizen-reported issues, the methodology generates insightful reports full of
essential information for emergency services, news agencies, and other in-
terested parties. Extensive experimentation on large datasets validates the
accuracy and efficiency of our methodology in classifying posts, detecting
sub-events, and producing real-time reports. These findings highlight the
practical value of prompt-based LLMs in disaster response, emphasizing their
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flexibility and adaptability in delivering timely insights that support more
effective interventions.

Keywords: Social media, Events detection, Natural disasters, Catastrophic
events, Crisis computing, Disaster management, Mass emergencies

1. Introduction

Social media platforms have become essential tools for understanding hu-
man dynamics due to their widespread use [1]. Each post contains a large
amount of information encompassing various aspects, including the discussed
topic, the nature of the post (opinion-based or news-based), the sentiment
and opinions conveyed, and more [2, 3]. When this vast amount of infor-
mation is aggregated and analyzed at scale, it can provide valuable insights
into business trends, consumer behaviors, and real-time events, offering a
deeper understanding of emerging patterns and societal dynamics [4]. Con-
sequently, in recent years, researchers and companies have increasingly uti-
lized advanced machine learning techniques to extract knowledge from social
media data, including trends, sentiments, and social behaviors in real-time.

Even within the study of disasters and catastrophic events, social media
remains one of the primary sources of real-time updates on the analysis of
these events [5]. While advanced techniques for classifying and aggregating
social media content have been refined over the years, there is still an ur-
gent need to enhance automation, aggregation, and organization of issues
reported by citizens to streamline various tasks, including rescue operations,
resource allocation, and communication with the press. Large Language
Models (LLMs) can play a fundamental role in these tasks. Not only do
they serve as powerful textual analysis tools for classifying and geolocat-
ing user posts, but they also act as information generators, improving data
presentation and explanation. Their ability to understand linguistic context
aids in fast decision-making without compromising accuracy, crucial for early
detection of sub-events and automatic report generation during crises [6].
However, this approach also faces limitations, such as the challenge of defin-
ing specific filters to prevent irrelevant responses or hallucinations in critical
situations [7].

In this paper, we propose an innovative methodology for gathering and
analyzing citizen-reported issues following a catastrophic event, aiming to
generate a comprehensive summary detailing the main issues reported. Ini-
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tially, we systematically collect relevant posts from social media, focusing on
those originating from the affected area of the disaster. Leveraging prompt-
based LLMs (i.e., ChatGPT from OpenAI, Gemini from Google AI, Llama
from Meta AI, and Command from Cohere), we classify and localize posts to
identify and aggregate geolocated citizen feedback, including sub-events like
water main breaks, structural damage, falling debris, and other issues affect-
ing community life. These models were specifically chosen for their capability
to leverage in-context learning and operate effectively in zero-shot and few-
shot settings [8], where minimal labeled data is available. This feature is cru-
cial for scenarios where rapid analysis is required, and comprehensive training
phases may be infeasible. Compared to traditional models like BERT, which
rely heavily on extensive training datasets, prompt-based models are more
flexible and efficient for timely and adaptable response generation. Subse-
quently, we utilize these LLMs to generate a detailed and advanced sum-
mary. This automated process enables us to produce well-structured reports
encompassing street-level details and broader geographic classifications, in-
corporating factual data sourced from localized citizen feedback, along with
their sentiments and concerns. Comprehensive testing on extensive datasets,
with variations in prompts and the use of zero- and few- shot approaches,
has verified the precision and effectiveness of our approach in classifying and
localizing posts, identifying user feedback, and generating informative re-
ports. Such reports are crucial for facilitating rescue operations, enhancing
situational awareness of damage in the area, and supporting timely and effec-
tive response efforts. Overall, our findings demonstrate the practical value
of prompt-driven LLMs in disaster response, enabling faster and more in-
formed interventions by equipping responders with detailed, automatically
generated reports. This allows for timely action that can effectively mitigate
the impact of disasters.

The structure of this paper is as follows. Section 2 discusses related work
and compares our methodology with existing research. Section 3 describes
the proposed methodology. Section 4 discusses the achieved results. Finally,
Section 5 concludes the paper.

2. Related work

In recent years, social media has assumed an increasingly central role in
rescue operations and disaster management, emerging as an indispensable
tool in the timely resolution of critical situations. Indeed, their ubiquity
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and widespread adoption can facilitate communication by reducing response
times and improving the coordination of rescue operations. Nonetheless,
information gathered from social media may not be easily exploited for pro-
viding immediate assistance to those affected by traumatic events and man-
aging critical situations, posing the need for proper approaches to collect
and organize it effectively. In the following sections, the state-of-the-art re-
lated to disaster management using social media data will be discussed, with
a focus on the use of LLMs for extracting information from textual data.
Furthermore, the main techniques presented in the literature for extract-
ing geographical information from texts will be described, given the crucial
importance of geographic information for aiding rescue activities.

2.1. Disaster management from social media data

Numerous studies have recently focused on leveraging social media to
enhance the efficiency of organizing emergency response operations. These
studies analyze the primary challenges associated with using social media
data in disaster contexts, including the complexity of processing vast amounts
of data promptly, the presence of unwanted or false information, and difficul-
ties in collecting data that document various phases of a disaster. [9, 10, 3, 11].
Further investigations have explored the complexities related to analyzing so-
cial posts during large-scale emergencies, with a focus on various aspects such
as coordinated management of evacuation operations [12], data integration
from diverse sources, including satellite imagery [13], and an in-depth under-
standing of information dissemination dynamics during such events [14]. In
this context, the integration of potential heterogeneous data sources - from
social media to IoT-generated data - as well as the use of powerful big data
analytics tools such as Spark and Kafka, can lead to an improvement in the
efficiency and effectiveness of emergency management processes [15].

Natural disasters such as earthquakes have attracted significant attention
among critical situations addressed by disaster management-related studies
in the literature. For instance, the EARS system [16] analyzes data streams
from Twitter to detect seismic events and assess their impact on people and
infrastructure. Additionally, initiatives like LastQuake [17], developed in col-
laboration with the European Mediterranean Seismological Center (EMSC),
focus on providing visual information about perceived seismic events and
gathering user feedback on the main shocks. Other studies centered on
the prediction and management of urban floods [18, 19], which affect ur-
ban or densely populated areas. These floods can be caused by various fac-
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tors, including heavy rainfall, ineffective stormwater drainage, malfunction-
ing drainage infrastructure, or natural events such as sea level rise. These
events can cause significant property damage, and disruptions in transporta-
tion and daily activities, as well as pose a risk to people’s safety.

A key concept related to disaster management is represented by the sub-
event, i.e., a specific event, related to a broader critical situation such as
an earthquake or a hurricane, which occurs in a specific location. Exam-
ples are building or bridge collapses, gas pipe ruptures, and floods. Several
investigations have explored the discovery of sub-events through social me-
dia data, employing diverse approaches ranging from supervised to unsuper-
vised techniques. Most supervised techniques rely on weighted graphs [20]
and neural networks to identify, classify, and summarize sub-events in so-
cial media data [21, 22, 23]. Although they may yield satisfactory results,
these methods typically require large amounts of labeled data, which is often
costly and time-consuming to produce, involving expert annotation to ensure
quality. This labeling process is particularly challenging in rapidly evolving
environments like social media, where maintaining updated datasets is dif-
ficult, hindering the effectiveness of the obtained results. For this reason,
several studies have turned their attention to unsupervised sub-event detec-
tion approaches. Most approaches in this category use clustering algorithms
applied to social media data, leveraging textual features, extracted from text
and hashtags, and classical measures such as the cosine similarity [23]. These
methods can automatically group similar content without requiring prede-
fined labels, making them particularly useful for discovering emerging or
unforeseen sub-events. However, while unsupervised techniques can reduce
the burden of manual labeling, they often require fine-tuning of parameters
and may still present difficulties in accurately capturing different types of
sub-events, especially when the data is noisy or ambiguous.

A different class of approaches relies on topic modeling, employing classi-
cal algorithms like LDA (Latent Dirichlet Allocation) and HDP (Hierarchi-
cal Dirichlet Processes), which extract underlying events by analyzing the
semantic representations of documents [24]. Another significant contribution
is the SEDOM-DD methodology [25], which focuses on detecting sub-events
as consequences of a disaster, using a spatial clustering algorithm to identify
specific geographic areas involved.

A complementary perspective on leveraging social media data in disaster
management is offered by Lei et al. [26], who examined the potential of On-
line Social Networks (OSNs) for environmental monitoring. Their work high-
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lights how social media posts can serve as a form of human-centric sensing,
offering insights into environmental conditions that complement traditional
sensor data. Although OSNs may sometimes reflect subjective perceptions
rather than objective measurements, they provide valuable information about
public awareness and sensitivity to environmental phenomena, enriching the
understanding of how people experience and respond to such events.

2.2. Using Large Language Models for information extraction

With the advent of AI-powered conversational agents enhanced by the
latest advanced LLMs, the extraction of insights and knowledge from data
has significantly improved in efficiency and usability. Endowed with natural
language processing (NLP) and machine learning capabilities, these agents,
commonly referred to as chatbots, naturally interpret user requests through
prompts, generating textual responses carrying relevant information and in-
sights.

Large Language Models (LLMs) can be broadly categorized into two main
types: decoder-only models, such as ChatGPT, which are primarily genera-
tive and prompt-based, and encoder-only models, like BERT, which are typ-
ically used for tasks such as text classification and information retrieval [27].
Numerous studies have recently leveraged the capabilities and flexibility of
LLMs in various tasks like question-answering and report generation by utiliz-
ing techniques like fine-tuning and in-context learning. Fine-tuning involves
adjusting a model on a smaller, task-specific dataset to improve performance
in a particular domain. In-context learning, on the other hand, enables mod-
els to utilize information directly from prompts, allowing them to adapt to
new tasks without additional training. Prompt-based zero- and few-shot ap-
proaches, which are a form of in-context learning, enable models to perform
tasks with minimal examples or even no examples during training, relying
instead on carefully crafted prompts that guide the model’s output [8]. Addi-
tionally, varying prompt structures and formulations can significantly impact
the model’s effectiveness, allowing for adaptation to different contexts and
task requirements. While fine-tuning provides a compelling alternative to
complex prompt engineering and few-shot learning, by allowing models to
achieve high precision with less reliance on intricate prompting, in-context
learning remains crucial for analyzing continually changing data. A hybrid
approach, where the model is initially fine-tuned on accumulated, domain-
specific data, and then adapted through in-context learning for dynamic,
task-specific data, allows it to effectively handle applications involving both
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stable historical data and evolving information. Furthermore, Retrieval-
Augmented Generation (RAG) has emerged as a powerful technique that
enhances the relevance and accuracy of LLM responses by retrieving per-
tinent information from external knowledge sources, which may be either
static or dynamically updated [28]. This approach enables RAG to gener-
ate responses that are informed by specific sources, extending the model’s
capabilities beyond its predefined training data.

In the literature, Gilson et al. [29] assessed the performance of ChatGPT
in answering questions related to the United States Medical Licensing Ex-
amination (USMLE) Step 1 and 2, finding comparable performance to that
of a third-year medical student. Guo et al. [30] curated the Human Chat-
GPT Comparison Corpus (HC3), intending to compare responses generated
by ChatGPT with those provided by humans in various sectors such as fi-
nance, medicine, and psychology. Bang et al. [31] evaluated the effectiveness
of ChatGPT compared to other large language models, used in a zero-shot
fashion, and fine-tuned models for various NLP tasks, also evaluating rea-
soning abilities and hallucination issues. Authors in [32] highlighted the
importance of few-shot learning in utilizing LLMs, particularly gpt-3.5, to
proactively rephrase potential hate speech.

Focusing more specifically on information extraction from large datasets
for report generation, Messina et al. [33] proposed a deep learning-based
approach for the automatic generation of reports from medical images. The
ability to compose a brief report on an X-ray was examined by combining
deep learning algorithms for image analysis and natural language processing
techniques for report writing. In Wang et al. [34], controlled text generation
from tables is addressed, aiming at creating natural language descriptions
for highlighted sections of a table, being robust to changes in table layout.
Regarding RAG, this approach is particularly valuable in domains where
factual accuracy is crucial, such as disaster response and medical reporting,
where LLMs must produce reliable and contextually accurate outputs. For
example, studies on emergency triage improvement have demonstrated that
RAG-enhanced LLMs can significantly improve the precision and efficiency
of emergency response processes [35].

As LLMs become increasingly used in natural language processing and
understanding tasks, effective metrics are essential for their fair and accurate
evaluation. Recently, the concept of LLM-as-a-Judge has emerged, where
LLMs serve as evaluators to dynamically assess artifacts generated by these
models. Such an approach can better align with human preferences and
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user needs, but also poses challenges related to potential biases and internal
inconsistencies [36, 37, 38]. In this context, traditional metrics such as BLEU
and ROUGE remain valuable, yet these new self-evaluation techniques allow
for a more nuanced assessment of output quality and consistency, enhancing
model effectiveness in complex application scenarios [39, 40].

2.3. Automatic geographic location identification from text

In recent years, the widespread use of social media during disasters has
witnessed requests for help and the sharing of information [41, 42, 43]. A key
aspect in effectively utilizing social media posts for enhancing disaster man-
agement is the extraction of the related location, which allows for precisely
targeted interventions [44, 45]. The extraction of geographical information
from the information present in the text can be accurately carried out by
leveraging current LLMs capabilities, which can address the lack of geotag-
ging and location metadata. Indeed, previous studies have primarily focused
on geotagged locations, i.e., those tagged in tweets [46, 47], overlooking lo-
cations described within the content of tweets. Specifically, social users may
provide descriptions of locations within the content of posts, without neces-
sarily using geotags. Moreover, the current location of a Twitter user may not
necessarily correspond to that of the victim. Therefore, it becomes essential
to extract locations described within the content of social media messages.

Previous studies have tackled the extraction of locations from the con-
tent of social media messages by treating locations as specially named enti-
ties. To identify positions in tweets, researchers have employed pre-trained
Named Entity Recognition (NER) tools, such as Stanford NER and SpaCy
NER [48, 49]. With the advancements in deep learning, the NeuroTPR
model emerged as a refinement of a Bidirectional Long Short-Term Mem-
ory (BiLSTM) architecture for extracting locations from social media mes-
sages [50]. Recently, new approaches leveraging transformers like BERT have
been also introduced [42, 51] further enhancing geolocation performance. Be-
sides NER-based tools and models, other works are present in the literature,
focusing on directly detecting geospatial descriptions in natural language.
As an example, in [52] the authors fused geo-knowledge of location descrip-
tions and a Generative Pre-trained Transformer (GPT), thus obtaining a
geo-knowledge-guided GTP model that can accurately extract location de-
scriptions from disaster-related social media posts. In addition, Suwaileh et
al. proposed a BERT-based model for Location Mention Recognition (LMR)
from social media posts related to a just-occurred disaster, experimenting
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with zero- and few-shot settings, as well as mono-, cross-, and multilingual
scenarios [42].

2.4. Contributions of our work

The proposed methodology employs prompt-based LLMs to enhance dis-
aster response by efficiently identifying user-reported issues via in-context
learning, also enabling precise geolocation. This is crucial for rapid response
and optimal resource allocation during critical situations to prioritize emerg-
ing issues, aiding timely interventions for hazardous conditions and infras-
tructure problems. Additionally, our approach underscores the importance of
data aggregation and synthesis, furnishing stakeholders across various sectors
with comprehensive insights into the nature, magnitude, and spatio-temporal
distribution of critical events. This information equips emergency services
with the necessary insights to devise well-informed response strategies while
aiding news agencies and other stakeholders in effectively addressing social
challenges.

The contributions of this research can be summarized as follows: (i)
we conduct a comprehensive examination of different LLMs utilized in fine-
tuning, zero-shot, and few-shot modes for various tasks such as classification
and geographic information extraction. We compare the transfer learning
abilities of approaches like fine-tuning and in-context learning, discussing
their advantages and disadvantages; (ii) we introduce an approach to geolo-
cating posts that leverages the capabilities of LLMs in the Named Entity
Recognition (NER) task to enhance the localization process conducted in
zero-shot mode; (iii) we produce structured and automated reports that
summarize user reports gathered from social channels regarding problems or
requests for assistance arising during natural disasters.

3. Methodology

The proposed methodology aims to collect issues reported by citizens from
social media platforms for enhancing disaster management and facilitating
targeted intervention. Specifically, user feedback in the aftermath of a catas-
trophic event is utilized to generate a detailed report that summarizes the
main issues and critical situations, thus enabling a user-centric data-driven
approach. The classification of user posts, the identification of user feedback
(sub-events), and the generation of the report are all accomplished by ex-
ploiting prompt-based LLMs, such as ChatGPT from OpenAI, Gemini from
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Google AI, and Llama from Meta AI. The proposed methodology, whose
execution flow is depicted in Figure 1, comprises three distinct phases:

1. Disaster-related posts are gathered from social media.

2. Retrieved posts are classified and geolocated using prompt-based LLMs,
to identify issues reported by citizens.

3. Classified geo-located posts are leveraged to write an information-rich
report through prompt-based LLMs.

Collecting posts
related to a disaster

Classifying and localizing posts to
identify issues reported by citizens

Few-shot classification

GenAI

NER-enhanced geolocation

Generating detailed reports 
from collected user feedback 

++

The ... ...

...We ...
... ... ... ... ...

...I'm ...

Figure 1: Execution flow of the proposed methodology, encompassing three main steps:
(i) disaster-related posts are gathered from social media; (ii) retrieved posts are classified
and geolocated using LLMs; (iii) processed posts are used to write an informative report.

The initial phase of our methodology — collecting posts related to a dis-
aster — involves systematically gathering relevant social media posts related
to a catastrophic event. This process begins by aggregating all posts origi-
nating from the affected area. We initiate this extraction by conducting tar-
geted searches on social media platforms, employing keywords or geographi-
cal metadata associated with the disaster. The significance of collected posts
is further underscored by their connection to users residing in the affected
region. To ensure the dataset’s appropriateness for subsequent phases, we
apply a filtering mechanism to select only relevant posts for the event under
analysis. This preliminary phase facilitates a focused and efficient analysis
in the subsequent stages of classification, localization, and report generation.

In the second phase of our methodology — classifying and localizing posts
to identify issues reported by citizens — we categorize posts to discern the
diverse problems and issues highlighted by users. Leveraging the capabili-
ties of LLMs, posts are classified into various categories including cautionary
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warnings, expressions of sympathy and support, requests for urgent assis-
tance, observations on infrastructure, and utility issues. The classification is
performed by crafting a specific prompt to guide a language model in gener-
ating the desired output. An example prompt is displayed below, which may
come with the sole description of the task (zero-shot) or include examples in
the LLM’s context that can aid classification (few-shot).

“Classify each post into one of the following categories based on their de-
scription: [label1: description1, label2: description2,..., labeln: descriptionn].
For each class, here there are some correct classification examples: + [text1:
class1, text2: class1,..., textk: class1] + ... + [text1: classn, text2: classn,...,
textk: classn]. Provide only the post id and the classification label separated
by a comma without any explanation: [post1, post2,... , postm]”.

In terms of geolocating textual posts lacking explicit geographical meta-
data, we employed a geolocation approach enhanced by Named Entity Recog-
nition (NER). By conducting NER analysis on the textual content of a post,
we can identify a wide array of information, isolating that pertaining to lo-
cations within the text. Geographical-related information is then provided
to a LLM, prompting it to solve the Location Mention Recognition (LMR)
task. This process enables us to reconstruct the location (or locations) with
varying levels of detail, such as street, neighborhood, city, region, and state,
if deductible. The overall goal is to identify and aggregate all geolocated
posts expressing citizen feedback, including sub-events such as water main
breaks, structural damage to bridges, cases of falling debris, and similar issues
impacting the community. An example prompt is displayed below:

“Considering the following tweets, extract the following geographical infor-
mation: state, zip code, city, and other geographical information (e.g., street
and/or district). You have to consider only the text of the tweets, and their as-
sociated location entities, extracted through Named Entity recognition. Pro-
vide only the values of the tweet id and the required information separated
by a comma without any explanation: [tweet1, tweet2, ..., tweetm], [loc1, loc2,
..., locm]”.

In Table 1, four examples of user posts related to Hurricane Harvey, which
made landfall in Texas and Louisiana in August 2017, are presented. Each
post is classified, and the presence of geographic information is indicated.
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These examples are provided as generic illustrations to demonstrate how the
methodology processes and enriches typical disaster-related posts.

ID Post Class Location

1
News Update: Buffalo Bayou water levels rising in
Houston, TX. Please stay informed and safe.

News from
a website

Houston,
Texas (TX)

2
Enormous gratitude to the Red Cross volunteers
and everyone for their incredible support.

Support
message

-

3
Unable to reach our grandmother on Cactus Street
in Fulton. Can anyone local provide information on
the situation there?

Help
request

Cactus St., Fulton,
Texas (TX)

4
Just in: People reportedly trapped inside a collapsed
building in Rockport, TX. Please stay safe.

User-reported
issue

Rockport,
Texas (TX)

Table 1: Examples of four user posts with their classification and identified locations.

The first post features a newspaper story, while the second solicits dona-
tions and support for citizens affected by the disaster. The third post requests
assistance, and the fourth reports a problem. Geographic information is suc-
cessfully extracted from the first, third, and fourth posts. Our methodology
focuses on posts similar to the last one, which both report problems and
provide crucial location details, aggregating them to generate comprehensive
insights about the critical event under consideration.

In the final phase of our methodology - generating detailed reports from
collected user feedback - we streamline the process of creating comprehensive
reports by leveraging prompt-based LLMs through their API interface. This
approach exploits the power of LLMs to automate the generation of struc-
tured reports, enhancing both efficiency and accuracy. Through the API,
programmers can seamlessly interact with these models, providing specific
data and queries to guide the automated production of informative reports.
This process ensures a clear and organized presentation, avoiding the spread
of scattered data that may be difficult to interpret. The resulting detailed
report is marked by its thoroughness, summarizing all user reports while
offering the flexibility to aggregate information at various levels of detail,
from street-level specifics to broader geographic classifications like neighbor-
hoods, cities, regions, and states. In addition to factual data, the report
captures users’ emotions and concerns, providing a nuanced understanding
of the emotional landscape following the disaster. This aggregate analysis
not only provides a comprehensive summary but also extracts higher-level
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insights from a wide range of specific details. By employing generative lan-
guage models in this phase, our methodology ensures the prompt delivery of
easily understandable text, enabling informed decision-making and response
strategies based on a comprehensive understanding of the critical situation
on the ground.

4. Experimental Results

As outlined in Section 3, this work pursues a three-fold objective: (i)
identify all issues reported by citizens on social media concerning a disas-
ter event; (ii) geolocate non-geotagged posts containing in-text geographical
information (e.g. street, and city name); and (iii) generate comprehensive re-
ports detailing spatiotemporal information about the multitude of sub-issues
that have emerged, offering a comprehensive understanding of the impact of
the disaster event.

The experimental evaluation is organized as follows. In Section 4.1, we
elaborate on the dataset used in our experiments and the preprocessing steps
applied to it. Subsequently, in Section 4.2 and 4.3, we detail the performance
of prompt-based LLMs in classifying posts based on a standardized classi-
fication scale encompassing nine classes [53], including caution and advice,
sympathy and support, and others, utilizing different prompts, and employ-
ing both zero-shot and few-shot approaches. Moving forward, Section 4.4 de-
scribes how we binarized classification to discern citizen-reported issues from
other online content related to the event under consideration, while also com-
paring the performance with other types of LLMs, such as BERT models.
Following this, Section 4.5 examines the capability of LLMs in identifying
geolocation information within texts, assessing the benefits of the proposed
integration of NER-based information into the zero-shot geolocation process.
Lastly, in Section 4.6, we show the process of generating information reports,
focusing on the prompts utilized and the resultant outcomes.

4.1. Data Collection and Preprocessing

In the field of disaster research, several datasets containing posts written
by users on social platforms about catastrophic events have been published
over the years. Some of these events, such as hurricanes, are predictable
and can be easily identified and followed on social media platforms using
specific keywords or hashtags. Other events, such as earthquakes, are un-
predictable and are often tracked using systems that continuously monitor
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generic keywords or hashtags (e.g., earthquake or #earthquake). In our
study, we opted to utilize the HumAID (Human-Annotated Disaster In-
cidents Data) dataset [53]. This repository comprises over 77,000 labeled
tweets extracted from a pool of 24 million tweets generated during 19 ma-
jor real-life disasters spanning from 2016 to 2019, encompassing hurricanes,
earthquakes, fires, and floods. The classified tweets were categorized into 11
different labels, that are:

1. caution and advice: notices issued or revoked;

2. sympathy and support : tweets containing prayers, thoughts, and emo-
tional support;

3. requests or urgent needs : reports of urgent needs or supplies such as
food, water, clothing, money, medicine, or blood;

4. infrastructure and utility damage: reports of damage to buildings, roads,
bridges, power lines, communication poles, or vehicles;

5. rescue volunteering or donation effort : reports of any rescue, volun-
teering, or donation efforts, including safe transport, evacuation, med-
ical or food assistance, shelters, monetary or service donations, etc.;

6. not humanitarian: if the tweet does not convey information related to
humanitarian aid;

7. displaced people and evacuations : people who have changed residence
due to the crisis, even temporarily (including evacuations);

8. injured or dead people: reports of people injured or killed as a result of
the disaster;

9. missing or found people: reports of missing or found people after a
catastrophic event.

10. dont know cant judge: where there’s insufficient information to decide.

11. other relevant information: details that do not fit in the other classes,
but are still relevant.

This extensive set of classified data is particularly interesting as it likely
comprises posts authored by users in locations affected during one of the dis-
asters under consideration [53]. This allows the collection of valuable infor-
mation from eyewitnesses or individuals directly involved in critical circum-
stances. In our analysis, we excluded data classified as dont know cant judge
and other relevant information, considered outliers, reducing the classifica-
tion problem from 11 classes to 9. Moreover, since the classified dataset is
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unbalanced, we created a balanced dataset of tweets with 200 instances for
each class (1,800 in total) using random undersampling with deduplication.

As anticipated earlier, besides the multi-class setting, we also considered a
binary version of the classification problem, which is useful for distinguishing
between user-reported issues and other content irrelevant to our analysis. To
this aim, we aggregated posts into two general categories: citizen-reported is-
sues (sub-events) and other content. In the first category we include tweets la-
beled as infrastructure and utility damage, displaced people and evacuations,
injured or dead people, or missing or found people. The remaining five classes
are grouped into the second category. Also in this case, we balanced the
dataset, reaching 1,600 instances (800 instances for the sub-events and 800
for other contents).

It is essential to emphasize that preprocessing data before analysis is
crucial, as highlighted in previous research on social media analysis. These
studies underscore the importance of cleaning and filtering posts, removing
irrelevant or noisy content, and retaining only the most relevant and reliable
information. For example, Belcastro et al. [54] considered only posts with a
clear indication of the user’s residence and statistically validated the collected
sample with official data, while Cantini et al. [55] filtered out posts generated
by bots or automated accounts to improve result quality. In Shu et al. [56],
detecting false information in the dataset was critical to achieving accurate
analysis results, and Aman et al. [57] trained a large language model-based
algorithm to detect disinformation.

In the field of disaster monitoring, handling noisy and ambiguous docu-
ments, integrating information from multiple sources, discarding false infor-
mation, and ensuring accurate geolocation are some of the critical factors to
be addressed for effective disaster management. For example, robust filtering
mechanisms are essential to prevent the inclusion of irrelevant, misleading, or
false information. When dealing with noisy and ambiguous documents, it is
important to employ advanced filtering and text-cleaning techniques to refine
the data before analysis, ensuring that only relevant and clear information
is retained. For integrating information from multiple sources, techniques
such as data fusion and cross-referencing should be employed to combine
data from various inputs, enhancing the reliability and completeness of the
information. When discarding false information, it is necessary to filter out
such data as early as possible, or at least partially if complete filtering is not
feasible, to make LLMs more robust and capable of effectively detecting and
handling misinformation, especially in accuracy-critical scenarios. Ensur-
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ing accurate geolocation involves utilizing named entity recognition (NER)
and spatial analysis techniques to correctly identify locations mentioned in
posts, while filtering out incorrect or ambiguous references that could lead
to misinterpretation of the situation on the ground. However, in the case
study analyzed here, these preprocessing steps, while generally important,
were less critical because the dataset we used is manually classified and thus
results are ready to be analyzed.

4.2. Zero-shot classification using LLMs

In our preliminary experiments, we utilized prompt-based LLMs in zero-
shot mode to classify tweets into the nine different predefined classes out-
lined in the previous section. Prompt-based LLMs offer greater flexibility
and adaptability compared to traditional models like BERT, as they rely
on carefully crafted prompts rather than extensive task-specific training. In
this context, zero-shot mode enables these prompt-based LLMs to effectively
tackle tasks they have not encountered previously, without requiring specific
training for those tasks [58].

We began by utilizing Chat-GPT (OpenAI) in its gpt-3.5-turbo version
via API, while varying both the prompt and the temperature value (ranging
from 0 to 1). Prompt engineering, involving adjustments in both the content
and structure of the prompt, allows us to explore the nuances of language
model responses and optimize performance. The temperature value affects
the randomness and diversity of responses, with higher values resulting in
more varied outputs, while lower values lead to more focused responses. The
initial prompt (Prompt 1) follows a simple structure, serving as our baseline:

Prompt 1: “Classify each tweet as [label1, label2,... , labeln]. Each tweet is
identified by its own tweet id. Provide only the tweet id and the classification
label separated by a comma without any explanation: [tweet1, tweet2,... ,
tweetm]”.

In our definition, the term [label1, label2,..., labeln] denotes the set of
nine labels for annotation by ChatGPT. We explicitly instructed ChatGPT
to refrain from including explanations to expedite label generation without
additional context, thereby reducing both processing time and annotation
costs. To reduce the volume of requests made to ChatGPT, we provided a
set of tweets as input, generating in output a list of tweet ids along with their
labels. It is worth noticing that the number of tweets that can be analyzed
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in each prompt depends on the maximum context length of the model itself,
defining its capacity in terms of words. Typically, ChatGPT models have a
maximum token limit of approximately 4,096 tokens for gpt-3.5 models.

In the second prompt (Prompt 2), our goal was to broaden ChatGPT’s
understanding of the context associated with each label by providing detailed
and clear descriptions for each of them.

Prompt 2: “Classify each tweet into one of the following categories based
on their description: [label1: description1, label2: description2,..., labeln:
descriptionn]. Each tweet is identified by its own tweet id. Provide only
the tweet id and the classification label separated by a comma without any
explanation: [tweet1, tweet2,... , tweetm]”.

In Prompt 3, we assigned a specific role to ChatGPT, directing it to lever-
age its expertise in data annotation and categorization, and then instructing
it about the task to be performed by using Prompt 2. By providing a clear
role-playing context, this approach offers ChatGPT clear direction and pur-
pose in the annotation process, aligning with the decision-making approach
commonly used by human annotators.

Prompt 3: “Act as a data annotator. You will apply your expertise in data
annotation and labeling to analyze and categorize complex datasets, ensuring
accurate and meaningful annotations for training machine learning models.
Your role will involve understanding the specific annotation requirements, uti-
lizing annotation tools and techniques to annotate data points, collaborating
with domain experts to clarify ambiguous cases, and delivering high-quality
annotated datasets. ” + [Prompt 2 ].

In the latest variation of the prompt (Prompt 4), we employ a similar
role description mechanism as in Prompt 3, albeit in a more concise and
straightforward format.

Prompt 4: “Act as a helpful data annotator. As a data annotator, your role
is to provide precise and accurate labels for the given data. ” + [Prompt 2 ].

Figure 2 analyzes the results obtained by applying all the described
prompts, also exploring a range of temperature values from 0 to 1, with in-
crements of 0.25. In particular, Prompt 2 outperformed Prompt 1 by offering
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Figure 2: Impact of different temperature values and prompt templates on zero-shot clas-
sification performance.

detailed and clear descriptions for each label, thus providing valuable con-
text associated with each classification. In addition, Prompt 3 and Prompt 4,
which provide further context to ChatGPT by assigning it a specific role (i.e.,
data annotator) led to increased performance. In particular, between these
two, Prompt 4 emerged as the best option, due to the provision of a more
concise and clear role to ChatGPT, avoiding unnecessary noisy information.

A consistent trend is observed regarding temperature: as the tempera-
ture decreases, there is a corresponding increase in the values for all scores.
Specifically, between 1 and 0.75, there is a relatively flat behavior, whereas all
scores increase as the temperature decreases further in all the prompts ana-
lyzed. This suggests that higher variability (higher temperature) corresponds
to lower scores in such a classification setting, while stronger determinism
(lower temperature) leads to better performance.

After determining the optimal prompt and temperature settings (i.e.,
Prompt 4 and temperature equal to 0), we compared the performance achieved
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Figure 3: Zero-shot classification performance using various prompts and temperatures.

with ChatGPT against three other alternative prompt-based LLMs, specifi-
cally llama-2-13b-chat by Meta AI, command by Cohere, and gemini-pro by
Google AI. The results of this comparison are shown in Figure 3.

Remarkably, the gpt-3.5-turbo model outperforms other models in all ex-
periments. This superiority is due to its advanced capabilities in understand-
ing and processing natural language, as well as differences in inner structure,
and fine-tuning or optimization strategies. However, this performance comes
at the expense of a large number of parameters, leading to significant energy
and resource consumption. Therefore, the choice of the right LLMs depends
on balancing performance needs with resource constraints in the specific ap-
plication scenario, also considering additional aspects such as model openness
and ease of use.

19



4.3. Few-shot classification using LLMs

After the zero-shot phase, following the principles of few-shot prompt-
ing [59], we strengthened LLMs’ input by incorporating annotated examples,
aiming to improve their understanding of the task and generalization abil-
ities. Specifically, we constructed our prompts by including k examples of
tweets for classification. In these experiments, we utilized Prompt 4 as it
yielded the best results in zero-shot mode, also fixing the temperature value
at 0. In our experiments, we kept the number of examples relatively low,
by varying k between 1, 3, 5 and 8, to avoid overly complex requests while
ensuring better model adaptability across diverse context window sizes.

Prompt k-shot: [Prompt 4 ] + “For each class, in the following there are
some correct classification examples:” + [text1: class1, text2: class1,..., textk:
class1] + ... + [text1: classn, text2: classn,..., textk: classn].

The prompt is refined by incorporating a variable number of examples,
contingent on the value of k, which is determined by the number of shots
considered for each class. Following this, the prompt provides the LLM
with k times the number of example classes. Table 2 illustrates the results,
demonstrating the effect of increasing examples on the final classification.
Overall, there’s a consistent rise in all scores as the number of examples
considered for each class increases. However, this increase gradually flattens
until it almost stabilizes when 8 shots are used.

Model Num. of shots Prompt Temp. Accuracy Precision Recall F1

gpt-3.5-turbo 0 Prompt4 0 0.806 0.815 0.806 0.806
gpt-3.5-turbo 1 Prompt4 0 0.809 0.820 0.809 0.811
gpt-3.5-turbo 3 Prompt4 0 0.810 0.819 0.810 0.811
gpt-3.5-turbo 5 Prompt4 0 0.812 0.827 0.812 0.813
gpt-3.5-turbo 8 Prompt4 0 0.814 0.832 0.814 0.814

Table 2: Performance achieved by gpt-3.5-turbo in the k-shot classification task.

Similarly to the approach used for models in zero-shot mode, we compared
the performance achieved by gpt-3.5-turbo with other prompt-based models
such as llama-2-13b-chat, command, and gemini-pro. Notably, as shown in
Table 3, the gpt-3.5-turbo model outperformed all other LLMs across all
considered metrics.
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Model type Model
Number
of shots Accuracy Precision Recall F1

Trainable
parameters

Training
time

Decoder-based

command 8 0.618 0.626 0.618 0.612 - -
llama-2-13b-chat 8 0.750 0.751 0.750 0.749 - -

gemini-pro 8 0.755 0.758 0.755 0.755 - -
gpt-3.5-turbo 8 0.814 0.822 0.814 0.814 - -

Encoder-based

albert - 0.781 0.822 0.781 0.774 11,684,353 871 s
bert - 0.827 0.851 0.827 0.822 109,483,009 994 s

bertweet - 0.848 0.859 0.848 0.848 134,900,737 938 s
distilbert - 0.832 0.849 0.832 0.830 66,363,649 456 s
roberta - 0.855 0.864 0.855 0.853 124,646,401 1025 s

Table 3: Performance comparison between encoder- and decoder-based models in the k-shot classification
task. All encoder-based models are used in their base-uncased version.

In addition to the prompt-based LLMs considered, which are primar-
ily decoder-based models, we also evaluated encoder-based models that do
not accept prompts for direct interaction. This decision was made to ex-
plore the potential benefits and trade-offs associated with different architec-
tural designs and utilization approaches. Both categories derive from the
Transformer architecture [60]: the former comprises GPT-like autoregressive
models optimized for causal language modeling tasks, while the latter en-
compasses BERT-like models that leverage blocks of transformer encoders
to generate semantically rich representations of the input in a latent space.
While decoder-based models, such as those used in our approach, support
k-shot prompting without requiring additional training, encoder-based mod-
els typically need fine-tuning for specific downstream tasks. To effectively
compare these models, we established a training set comprising 20% of the
data to fine-tune the encoder-based models.

This comparative analysis revealed an improvement in model performance
with fine-tuning encoder-based models compared to k-shot prompting with
decoder-based ones. However, it is important to recognize that fine-tuning
involves a more substantial time commitment than the immediate use of
prompt-based models. Additionally, it requires considerable resources and
energy for parameter updates, as well as the collection of a high-quality
representative dataset for model adaptation. Conversely, the immediacy of
in-context learning with prompt-based models make them a good option
for quickly adapting to contextual nuances from a limited set of examples,
allowing for commendable levels of accuracy relevant to our analytical efforts
in a shorter amount of time.
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4.4. Sub-Event classification using LLMs

Here we evaluate the performance of LLMs in distinguishing between user-
reported issues (i.e., sub-events) and other content, in a binary classification
task. As mentioned in Section 4.1, the sub-events class includes tweets la-
beled as infrastructure and utility damage, displaced people and evacuations,
injured or dead people, or missing or found people, while all tweets belonging
to different classes are grouped into the other content category.

The sub-events class therefore encompasses infrastructure and utility dam-
age, including reports of flooded roads, damaged buildings, or disrupted
power lines, signifying the extent of physical destruction and potential haz-
ards within affected areas. Displaced people and evacuations highlight the
urgent need for relocating residents from hazardous zones to safety, often ac-
companied by the establishment of emergency shelters and evacuation orders.
Reports of injured or deceased individuals underscore the human toll of disas-
ters, necessitating prompt medical response and aid distribution. Similarly,
the identification of missing or found individuals, such as those separated
from their families or rescued from dangerous conditions, emphasizes the
importance of search and rescue efforts and community support networks.

In Table 4, the results obtained for the binary classification task are pre-
sented. Even in this case, we compared decoder-based models with encoder-
based ones, fine-tuned on the binary task under consideration. As seen be-
fore, gpt-3.5-turbo turns out to be the best decoder-based model among those
tested, with a fair improvement compared to the results obtained in the nine-
class problem. Encoder-based models were always found to be slightly supe-
rior to decoder-based ones but required specific training data and time. How-
ever, as highlighted previously, it is not always possible to have a sufficient
amount of data and resources to conduct a robust training phase. There-
fore, despite the encoder-based models boasting higher accuracy, it might be
preferable to adopt the best decoder-based model. This choice is driven by
the need for quicker and more timely utilization, especially in scenarios where
the amount of available data may be limited, and the training phase could
be compromised.

4.5. Geographic Location Identification using LLMs

In addition to determining whether a post refers to sub-events that oc-
curred during a disaster event, it is also crucial to geolocate posts that lack
explicit geolocation metadata, based on the information present in the text.
This operation is essential for increasing the number of geolocated posts and,
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Model type Model
Number
of shots Accuracy Precision Recall F1

Trainable
parameters

Training
time

Decoder-based

command 8 0.626 0.635 0.626 0.622 - -
llama-2-13b-chat 8 0.756 0.760 0.756 0.754 - -

gemini-pro 8 0.764 0.768 0.764 0.764 - -
gpt-3.5-turbo 8 0.818 0.824 0.818 0.816 - -

Encoder-based

albert - 0.921 0.922 0.921 0.921 11,684,353 797 s
bert - 0.936 0.936 0.936 0.936 109,483,009 841 s

bertweet - 0.906 0.907 0.906 0.906 134,900,737 871 s
distilbert - 0.933 0.933 0.933 0.933 66,363,649 428 s
roberta - 0.930 0.931 0.930 0.930 124,646,401 854 s

Table 4: Performance comparison between encoder- and decoder-based models in the sub event binary
classification task. All encoder-based models are used in their base-uncased version.

consequently, generating reports focused on date and place (e.g., a specific
city on a given day).

We initially adopted a zero-shot approach using the gpt-3.5-turbo model
for direct geolocation from textual information contained in the text. The
initial prompt, used as our baseline, is reported in the following box.

Prompt geolocation: “Considering the following tweets, extract
the following geographical information: {state, zip code, city, and
other geographical information}. You have to consider only the text
of the tweets. In many cases, the information is not provided in the tweet,
so provide null values. Provide only the values of the tweet id and the
required information separated by a comma without any explanation:
[tweet1, tweet2,... , tweetm]”.

Afterward, we strengthened the geolocation prompt by providing addi-
tional context in the form of geographic-related information. Specifically, we
introduced a NER-enhanced geolocation approach, which consists of a two-
step process. Firstly, Named Entity Recognition (NER) [61] techniques are
leveraged, focused on identifying and classifying named entities within text
into predefined categories, such as names, locations, dates, and other spe-
cific terms. Afterward, location information is extracted and integrated into
the zero-shot geolocation prompt described previously. The NER-enhanced
geolocation prompt is presented in the following box:

Prompt NER-enhanced geolocation: “Considering the following tweets, ex-
tract the following geographical information: state, zip code, city, and other
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geographical information (e.g., street and/or district). You have to consider
only the text of the tweets, and their associated location entities, extracted
through Named Entity recognition. Provide only the values of the tweet id
and the required information separated by a comma without any explanation:
[tweet1, tweet2,... , tweetm], [loc1, loc2,... , locm]”.

In our experimental evaluation, we compared gpt-3.5-turbo with other
prompt-based models such as llama-2-13b-chat, command, and gemini-pro
for the zero-shot geolocation task. Given the strings S1 and S2, indicating
the exact location (e.g., Cactus St., Fulton, Texas) and the extracted one,
we used the following metrics:

• Jaro similarity [62]: it measures the similarity between two strings S1

and S2. The score is normalized so that 0 corresponds to no similarity,
while 1 indicates an exact match. It is calculated as:

dj =

{
0 if m = 0
1
3

(
m
|S1| + m

|S2| + m−t
m

)
otherwise

where m is the number of matching characters; |S1|, |S2| is the size of
strings; t is half the number of transpositions.

• Jaccard similarity [63]: it determines the similarity between two strings
S1 and S2 as the number of common tokens over the total amount of
tokens:

J(S1, S2) =
|token(S1) ∩ token(S2)|
|token(S1) ∪ token(S2)|

where token(S) represents the set of tokens in the string S.

• Cosine similarity [64]: it measures the similarity between two non-zero
vectors of an inner product space as the cosine of the angle between
them. Given to strings S1 and S2, it is defined as:

cosine similarity(S1, S2) =
S̄1 · S̄2

∥S̄1∥ · ∥S̄2∥

where S̄ represents the vector representation of the string S; S̄1 · S̄2

represents the scalar product between them; ∥S̄∥ denotes the Euclidean
norm (or length) of the vector S̄.
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Table 5 presents the results attained in the zero-shot modality, using the
different LLMs under consideration. As already noted for event classifica-
tion, the gpt-3.5-turbo model demonstrates superior performance across all
evaluated metrics, achieving the highest average score for the zero-shot ge-
olocation task. We then extended our analysis to assess the performance
of the introduced NER-enhanced geolocation strategy, testing the integra-
tion of gpt-3.5-turbo — the best performer in the zero-shot setting — with
several NER techniques [61], including SpaCy1, CoreNLP2, and BERT-base-
NER3. We also evaluated a GPT-only approach, where also the NER task is
performed using gpt-3.5-turbo in zero-shot mode.

Model Strategy NER technique jaro sim. jaccard sim. cosine sim. avg score

llama-2-13b-chat zero-shot - 0.737 0.464 0.622 0.608
command zero-shot - 0.740 0.430 0.696 0.622
gemini-pro zero-shot - 0.782 0.556 0.782 0.706

gpt-3.5-turbo zero-shot - 0.878 0.666 0.897 0.813

gpt-3.5-turbo NER-enhanced zero shot spacy 0.840 0.596 0.759 0.732
gpt-3.5-turbo NER-enhanced zero shot coreNLP 0.851 0.630 0.785 0.755
gpt-3.5-turbo NER-enhanced zero shot bert-base-NER 0.883 0.677 0.858 0.806
gpt-3.5-turbo NER-enhanced zero shot gpt-3.5-turbo 0.898 0.738 0.858 0.831

Table 5: Performance metrics for Geographic location identification for zero-shot and NER-enhanced
geolocation strategies.

The results, shown in Table 5, demonstrate the performance improve-
ments brought by the proposed NER-enhanced strategy over simple zero-shot
geolocation. Furthermore, by analyzing the different combinations with NER
techniques, we found gpt-3.5-turbo itself to be the best option for extracting
NER-based geographical information to be integrated as additional context
into the geolocation process.

4.6. Disaster Reporting using LLMs

After using LLMs to classify tweets to search for reports of sub-events
by users, and geolocate them starting from the information contained in the
text, our methodology aims to create timely reports on a disastrous event.
Specifically, by leveraging prompt-based models, our approach ensures the

1https://spacy.io/api/entityrecognizer
2https://stanfordnlp.github.io/CoreNLP/
3https://huggingface.co/dslim/bert-base-NER
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timely delivery of easily understandable reports, enabling informed decision-
making and response strategies based on a comprehensive understanding of
the situation on the ground. The objective is to continuously monitor a
disastrous event and generate reports for each affected city.

We chose Hurricane Harvey as a case study from the HumAID (Human-
Annotated Disaster Incidents Data) dataset [53]. It comprises tweets related
to Hurricane Harvey, a Category 4 storm that struck Texas in 2017, causing
approximately USD 200 billion in damages and claiming at least 82 lives,
as reported by the Texas Department of Public Safety. The dataset con-
sists of approximately 6.7 million tweets collected between August 25, 2017,
and September 5, 2017, using specific keywords such as “Hurricane Harvey,”
“Harvey,” and “Harvey 2017” as outlined in [25]. Figure 4 depicts word cloud
representations illustrating various aspects of Hurricane Harvey, including its
trajectory and the geographical distribution of related tweets. It also high-
lights the localization of tweets within the city of Houston, one of the most
affected areas.

(a) Word cloud representation

from Twitter of Hurricane Har-

vey.

(b) Tracking Hurricane Har-

vey and geolocated tweets re-

lated to that event.

(c) Geolocated tweets in the

Houston area.

Figure 4: Exploring social media interactions during Hurricane Harvey.

As done in previous analyses, we have defined some prompts and tested
them on different prompt-based LLMs, such as OpenAI’s gpt-3.5-turbo, Meta
AI’s llama-2-13b-chat, Cohere’s command, and Google AI’s gemini-pro. Specif-
ically, we asked one of these models to behave like a report writer, as specified
below:

"system": “Act as an adept report writer creating reports based on a set of
tweets.”
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Then, we defined a series of prompts to define the different parts of our
report. In particular, given a city, and given all the posts classified as sub-
events and geolocalized in that city, we asked to define a title, an introduction,
and an informative section with reference to the most relevant tweets, as
defined below:

"title prompt": “Generate a concise and captivating English title for the
report on the city [c] during the disaster [d ], within a maximum of 10 words.
Avoid the use of words with hashtags(#). Use the following tweets as input:
[tweet1, tweet2,... , tweetm]”.

"introduction prompt": “The title of the report
is”+[response title prompt ]+ “Generate a concise and engaging English
introduction for the report on the city [c] during the disaster [d ]. It must
be interesting and engaging, capture the reader’s attention, and present key
information concisely. It must be a single block of text (paragraph), without
carriage returns, without the use of a colon (:). Use the following tweets as
input: [tweet1, tweet2,... , tweetm]”.

"content prompt": “The title of the report is”+[response title prompt ]+
“The introduction of the report is ”+[response introduction prompt ]+ “Gen-
erate a concise and engaging English section to analyze the issues reported
by citizens on the city [c] during the disaster [d ]. Use colons (:) only at the
beginning, do not use them in text content. In the text, add references to
the tweets in the dataset used to describe detected issues. Use the following
tweets as input: [tweet1, tweet2,... , tweetm]”.

For the case study considered, we generated a report for all major cities af-
fected by the hurricane using each of the four prompt-based LLMs evaluated.
Among these cities, we find Houston, Rockport, Dallas, Washington, Corpus
Christi, Austin, San Antonio, Galveston, Texas, Port Arthur, League City,
New Orleans, and Victoria. The number of tweets transmitted to a model
depends on the ability of the model to handle a certain number of input
tokens (words).

Using a concrete example, let us consider a text excerpt related to the city
of Houston generated with gpt-3.5-turbo (a similar report can be produced
with other models). In the report, references to tweets used by ChatGPT to
generate the content are included. This shows that the model actually relies
on the tweets provided in the construction of the reports, thus excluding the
risk of generating unreliable information.
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"response title": “Harvey’s Impact on Houston: A City’s Resilience
Tested”

"response introduction": Amidst the deluge of Hurricane Harvey’s wrath,
Houston stood as a city tested by nature’s fury [...]

"response content": During Hurricane Harvey, Houston was engulfed by
devastating floods, with many streets and neighborhoods submerged in tor-
rential water. Intersections like the one between I-45 and N. Main Street
became impassable [1], as did areas like Allen Parkway and Studemont St
& Memorial Ct, which were completely submerged [2]. In other parts of the
city, such as Clay Rd & Queenston, rescue operations were frequent to aid
those trapped in their homes [3]. Major arteries like Almeda Genoa Rd.,
from Windmill Lakes Blvd. to Rowlett Rd., were also affected, making road
circulation extremely perilous [4]. The floods also hit the city’s iconic green
spaces, such as Buffalo Bayou and Hermann Park, causing severe damage [5]
[6]. Residents reported hazardous situations, such as high water on Sterrett
St. and the need for immediate evacuations in places like 425 Shane St [7].
Many people were stranded in their homes or public places, requiring urgent
rescue. For instance, 80 people were trapped in a church located at 5547 Cav-
alcade St [8]. Three women were reported trapped at 8130 Snowden St [9],
while a couple in the 5th district reported people trapped in their church at
3401 Liberty Rd [10]. A mother was trapped at 5400 Bayou Dr. and needed
immediate assistance [11], while an abandoned Husky was found tied to a
trailer at 2105 Matilda St [12]. A group of elderly and disabled individuals
was stranded in waist-high water at 8802 Banting St [13]. Requests for rescue
include a newborn and their family trapped at 9 Woodstone St [14], elderly
individuals trapped at 1230 Havner Lane [15], and dogs chained up along
with a bird in urgent need of rescue at 805 Pennsylvania Ave, SouthHouston
[16]. Residents of Melrose Park need a safe shelter for their pets [17]. During
the emergency, several locations were designated as shelters for those in need.
For example, NRG Park is now open as an emergency shelter [18], while Klein
Oak High School, located at 22603 Northcrest Dr., has opened its doors to
provide shelter [19]. The Convention Center, accessible by taking the Polk St
exit from 59 north, has been set up as a refuge [20], while veterans and med-
ical personnel have set up a large mobile pharmacy at Paige St/Mckinney St
[21]. First Baptist Church, at 4422 Lauder St, is providing food and essential
supplies [22]. [...]

[1] “Houston HoustonFlood the intersection of I-45 & N. Main Street.”
[2] “houstonflood ANYONE gets info on extent of buffalo bayou flooding near
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Allen Parkway and Studemont St & Memorial Ct.”
[3] “Major flooding at Clay Rd & Queenston in west Houston. Lots of rescues
going on for ppl trapped back in the neighborhood.”
[4] “Streets Flooded: Almeda Genoa Rd. from Windmill Lakes Blvd. to
Rowlett Rd. HurricaneHarvey Houston.
[5] Buffalo Bayou Park at Houston Texas ALMOST destroyed by Harvey
HarveyStorm HoustonFlood HurricaneHarvey houwx txwx.
[6] Just found out that my childhood park, Hermann Park is under water ...
HoustonFlood HoustonStrong.
[7] Fast moving water abt 5 ft high on Sterret St. Stay safe and avoid high
water houstonflood Harvey.
[...]

The report provides a detailed and insightful analysis of Hurricane Har-
vey’s impact on Houston, showcasing the resilience and challenges faced by
the city in the aftermath of the devastating storm. The introduction sets the
tone by highlighting the city’s resilience tested by nature’s fury, while the
content delves into the immediate and long-term consequences of the disas-
ter. The report effectively utilizes the classification of tweets and their correct
localization to provide precise and relevant information, painting a compre-
hensive picture of the event’s aftermath. It addresses various aspects of the
impact, including infrastructure damage, environmental concerns, commu-
nity resilience, and the emotional toll on residents. Overall, the report offers
a thorough examination of Harvey’s impact on Houston, demonstrating the
power of data-driven analysis in understanding and addressing the challenges
posed by natural disasters.

4.6.1. Evaluation of reports generated by different LLMs models

Here, we evaluate the performance of the four LLMs considered in our
study — OpenAI’s gpt-3.5-turbo, Meta AI’s llama-2-13b-chat, Cohere’s Com-
mand, and Google AI’s gemini-pro — in generating reports for four cities
affected by Hurricane Harvey in 2017, i.e., Houston, Dallas, Rockport, and
Corpus Christi. First, we employ the TextDescriptive library [65] to evaluate
the reports produced by each model, focusing on linguistic aspects such as
readability, coherence, quality, and complexity [66]. Second, following ap-
proaches used in related studies [67], we utilize an LLM, such as ChatGPT,
to assess the reports based on criteria like informativeness, coherence, quality,
and attributability.
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Prompt-based LLMs

llama-2-13b-chat command gemini-pro gpt-3.5-turbo

Readability 14.19 14.41 15.06 15.51
Quality 0.14 0.15 0.17 0.18
Coherence 0.75 0.77 0.79 0.83
Complexity 3.73 3.98 4.57 4.89

Table 6: Evaluation scores of reports using the TextDescriptives library.

Table 6 presents the average scores obtained from the TextDescriptives
library for the generated reports. Below is a summary of each criterion and
the corresponding results:

• Readability : assessed using the Coleman-Liau index, which estimates
the U.S. school grade level required to comprehend a text. Reports
generated by ChatGPT require a higher grade level compared to those
from other LLMs. Similar trends are observed across other readability
indices, indicating that ChatGPT’s reports demand a more advanced
linguistic understanding.

• Quality : measured using text repetitiveness metrics, specifically the
fraction of duplicated n-gram characters. This metric reflects the pro-
portion of characters within a document contained in repeated n-grams.
Reports generated by all models show similar percentages, implying
comparable levels of informative content.

• Coherence: evaluated based on cosine similarity between sentences,
with embeddings derived from the average vector representation of
words calculated through Latent Semantic Analysis. ChatGPT’s re-
ports generally exhibit higher coherence, reflected in greater similarity
values compared to Llama, Command, and Gemini.

• Complexity : measured using text entropy, which indicates the level of
randomness or unpredictability, with higher values representing greater
linguistic diversity and complexity. ChatGPT’s reports show the high-
est complexity, characterized by diverse language use, followed by those
generated by Gemini-pro, Command, and Llama.

The analysis indicates that while ChatGPT outperforms in readability,
coherence, and complexity, models like Gemini-pro, Command, and Llama
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offer similar informativeness with simpler structures. The choice of model
depends on whether the priority is sophisticated language or clear, essential
content.

Prompt-based LLMs

llama-2-13b-chat command gemini-pro gpt-3.5-turbo

Informativeness 3.5 4.5 4.25 4.5
Quality 3.5 4.25 4.25 4.5
Coherence 4.25 4.5 4.25 4.5
Attributability 3.25 3.75 4 4.25
Overall preference 3.5 4 4.25 4.5

Table 7: Evaluation scores for reports assessed by ChatGPT, rated on a scale from 1
(worst) to 5 (best).

Table 7 shows the average scores obtained from reports assessed using
ChatGPT as an evaluator. For each city, we provided ChatGPT with a
generated report from one of the LLMs and the corresponding set of tweets
used to produce the report (selected by our methodology) and asked it to
rate the following aspects on a scale from 1 (worst) to 5 (best):

• Informativeness : assesses how well the report conveys crucial details
from the original data. ChatGPT and Command score the highest,
indicating particularly detailed reports. Gemini follows with slightly
lower scores, while Llama underperforms, indicating less detailed con-
tent.

• Quality : measures the clarity and readability of the report. ChatGPT
achieves the highest score, reflecting well-structured and clear reports.
Command and Gemini are close behind, while Llama scores lowest,
suggesting room for improvement in report clarity.

• Coherence: evaluates the report’s logical flow and organization. All
models achieve similar scores, likely due to the report structure being
generated from multiple prompts.

• Attributability : checks if the information in the report can be traced
back to the original tweets. ChatGPT scores highest, demonstrating
strong attribution capabilities. Gemini follows, while Llama and Com-
mand score lower, indicating challenges in information traceability.
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• Overall Preference: synthesizes the evaluation of how effectively the
report conveys the main ideas. Gemini and ChatGPT receive the high-
est scores, excelling in clear and concise communication. Command
performs well, while Llama scores lowest, indicating a need for im-
provement in presenting key ideas.

Overall, the evaluation highlights that while all models exhibit strengths
across different aspects, ChatGPT consistently outperforms others in infor-
mativeness, clarity, and attribution, with Gemini and Command following
closely in terms of overall report quality and coherence, while Llama lags
behind, particularly in clarity and detail.

5. Conclusion

In recent years, social media emerged as a crucial platform for real-time
reporting during disasters and catastrophic events. While significant progress
has been made in collecting and classifying such information, there remains
an urgent need to improve the automation, aggregation, and organization of
user reports to simplify various tasks, including rescue operations, resource
allocation, and communication with the press. This paper introduces an
innovative methodology that fully leverages the power of Large Language
Models to strengthen disaster response and management. Specifically, we
focus on prompt-based LLMs that, using zero- or few-shot prompts, can
ensure faster, more effective, and better-coordinated disaster relief efforts.

By analyzing large volumes of user-generated content, our methodology
identifies issues reported by citizens who have experienced a disaster, such
as collapsed buildings, broken gas pipelines, and damaged homes. It also lo-
calizes all posts containing references to geographic information in the text,
improving localization and consequently the aggregation of posts that oc-
curred nearby. Utilizing these localized citizen-reported issues, the system
aggregates information, grouping it by location and date, to generate reports
packed with essential information for emergency services, news agencies, and
other interested parties. Extensive experimentation on large datasets vali-
dates the accuracy and efficiency of our methodology in detecting secondary
events and producing real-time reports. These findings highlight the effec-
tiveness of prompt-based LLMs in disaster response, demonstrating their
ability to accurately classify posts, identify relevant user feedback, and gen-
erate informative reports without the need for additional training on specific
datasets.
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Looking ahead, future work will focus on refining the methodology to
improve its scalability, adaptability, and robustness across various disaster
scenarios and geographic regions. A key challenge is balancing model rea-
soning capabilities with inference speed in disaster management contexts.
To address this, we propose research directions aimed at enhancing model
reasoning while maintaining efficiency. Additionally, optimizing the method-
ology to provide accurate, real-time information is crucial for practical appli-
cation in disaster response and management scenarios. We also acknowledge
the importance of integrating robust filtering mechanisms and evaluating
LLM performance in handling noisy and ambiguous data. Future work will
explore detailed mechanisms for filtering noisy documents, managing am-
biguous geolocation data, and assessing how LLMs deal with deliberately
inserted false information to ensure accurate and reliable outputs in complex
disaster settings. Effective filtering will not only enable faster analysis but
also lead to more accurate results by relying on high-quality data. Overall,
the ongoing development and refinement of such approaches hold promise
for improving preparedness, response, and resilience to increasingly frequent
and severe natural disasters.
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H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al., Retrieval-
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Sciences Naturelles 44 (2) (1908) 375–452.

[64] G. Salton, M. J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill, 1973.

[65] L. Hansen, L. R. Olsen, K. Enevoldsen, Textdescriptives: A python
package for calculating a large variety of metrics from text, Journal of
Open Source Software 8 (84) (2023) 5153.

[66] R. Cantini, C. Cosentino, F. Marozzo, Multi-dimensional classification
on social media data for detailed reporting with large language models,
in: 20th International Conference on Artificial Intelligence Applications
and Innovations, 2024, pp. 100–114.

[67] G. Adams, A. Fabbri, F. Ladhak, E. Lehman, N. Elhadad, From sparse
to dense: Gpt-4 summarization with chain of density prompting, arXiv
preprint arXiv:2309.04269 (2023).

40


	Introduction
	Related work
	Disaster management from social media data
	Using Large Language Models for information extraction
	Automatic geographic location identification from text
	Contributions of our work

	Methodology
	Experimental Results
	Data Collection and Preprocessing
	Zero-shot classification using LLMs
	Few-shot classification using LLMs
	Sub-Event classification using LLMs
	Geographic Location Identification using LLMs
	Disaster Reporting using LLMs
	Evaluation of reports generated by different LLMs models


	Conclusion

