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SUMMARY

Workflows are an effective paradigm to model complex data analysis processes, e.g. Knowledge Discovery
in Databases (KDD) applications, which can be efficiently executed on distributed computing systems
such as a Cloud platform. Data analysis workflows can be designed through visual programming, which
is a convenient design approach for high-level users. On the other hand, script-based workflows are a
useful alternative to visual workflows, because they allow expert users to program complex applications
more effectively. In order to provide Cloud users with an effective script-based data analysis workflow
formalism, we designed the JS4Cloud language. The main benefits of JS4Cloud are: i) it extends the well-
known JavaScript language while using only its basic functions (arrays, functions, loops); ii) it implements
both a data-driven task parallelism that automatically spawns ready-to-run tasks to the Cloud resources
and data parallelism through an array based formalism; iii) these two types of parallelism are exploited
implicitly so that workflows can be programmed in a fully sequential way, which frees users from duties
like work partitioning, synchronization and communication. We describe how JS4Cloud has been integrated
within the Data Mining Cloud Framework (DMCF), a system supporting the scalable execution of data
analysis workflows on Cloud platforms. In particular, we describe how data analysis workflows modelled
as JS4Cloud scripts are processed by DMCF by exploiting parallelism to enable their scalable execution on
Clouds. Finally, we present some data analysis workflows developed with JS4Cloud and the performance
results obtained by executing such workflows on DMCF.
Copyright c© 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Data analysis applications often are complex processes in which multiple data processing tools
are executed in a coordinated way to analyze large datasets. The term Knowledge Discovery in
Databases (KDD) is used to describe the data analysis process of extracting useful information
from large datasets. Data analysis applications that use large datasets are often composed by
many concurrent and compute-intensive tasks that can be efficiently executed only on scalable
computing infrastructures, such as HPC systems, Grids and Cloud platforms. Among the different
paradigms used to implement data analysis applications, workflows are very effective particularly
when data analysis applications must be executed on such platforms. In fact, workflows provide
an effective way for specifying the high-level logic of a complex application while hiding the low-
level details that are not fundamental for application design, including platform-dependent execution
details [22][23].
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2 F. MAROZZO, D.TALIA AND P. TRUNFIO

Data analysis workflows can be designed through visual programming, which is a convenient
design approach for high-level users, e.g. domain-expert analysts having a limited understanding of
programming. In addition, a graphical representation of workflows intrinsically captures parallelism
at the task level, without the need to make parallelism explicit through control structures [13]. On
the other hand, visual programming may not be very flexible since it usually offers a fixed set of
visual patterns and limited ways to configure them. To address this issue, popular visual languages
give users the opportunity to customize the behaviour of a pattern by adding a block of procedural
code which may specify, for instance, the actions performed by that pattern when an event occurs.
Another issue of complex workflows designed through visual programming is their size, which is
often solved by visual workflow management systems splitting a big workflow into sub-workflows.

Script-based workflows are a useful alternative to visual workflows, because they allow users to
program complex applications more rapidly, in a more concise way, and with greater flexibility.
Figure 1 shows two workflow patterns that are defined in a more compact and easier way using a
script-based formalism rather than a visual one. The pattern in Figure 1a can be found in workflows
where a data processing tool must be applied multiple times to a given data source. For example,
ToolA may be an image processing software including N different filters (e.g., to automatically
adjust brightness, contrast, etc.), that can be applied independently of each other to an input image to
produce a filtered output image. In this scenario, the workflow represents seven different filters that
are applied sequentially to the original data (Dataset) to produce a final result Output7, with all
the intermediate results (Output1 . . .Output6) remaining available for inspection or further use.
The pattern in Figure 1b can be found in workflows where a data processing tool must be executed
multiple times to analyze growing amounts of data. For example, Dataset0 . . .Dataset9 may be
partitions of a larger dataset, and ToolB may be a data mining algorithm producing a classification
model (e.g., a decision tree) starting from one or more datasets. In this scenario, Model0 is the
classification model produced from the smallest amount of data, while Model9 is produced using
all the partitions. The models could be compared to find a good trade-off between input size and
model accuracy. By comparing the visual and script-based versions of the two workflows, it is clear
that in many cases visual workflows can be less compact and require a bigger design effort, in
particular, when the number of tools/data is higher.

For providing Cloud users with an effective script-based data analysis workflow formalism
without developing a new scripting language from scratch, we looked for: i) a scripting language
that is easy to learn and use, and includes typical functionalities of high-level programming
languages (control structures, loops, etc.); ii) a language that can be easily extended with additional
functionalities; and iii) a language ready to be integrated into a Web-based application. JavaScript
meets all those requirements. In fact, it is a lightweight programming language easy to learn and use
and is natively integrated into browsing environments. In addition, despite having a syntax relatively
similar to high-level languages like C, C++ and Java, it is an efficient scripting language.

Starting from JavaScript we designed JS4Cloud, a language for programming and executing
data analysis workflows on the Cloud. The main benefits of JS4Cloud are: i) it extends the well-
known JavaScript language while using only its basic functions (arrays, functions, loops); ii) it
implements both a data-driven task parallelism that automatically spawns ready-to-run tasks to the
Cloud resources and data parallelism through an array based formalism; iii) these two types of
parallelism are exploited implicitly so that workflows can be programmed in a totally sequential
way, which frees users from duties like work partitioning, synchronization and communication.

We present the language features and describe how JS4Cloud has been integrated within the Data

Mining Cloud Framework (DMCF), a system supporting the scalable execution of data analysis
workflows on Cloud platforms [17]. In DMCF, data analysis workflows can be designed through
visual programming, using an ad hoc workflow language. Therefore, by integrating JS4Cloud within
DMCF, we extended the latter to support also script-based data analysis workflows, as an additional
and more flexible interface for users who prefer script-based programming. We discuss how data
analysis workflows modelled as JS4Cloud scripts are processed by DMCF to make parallelism
explicit and to enable their scalable execution on Clouds. In addition, we present some data analysis
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var DRef = Data.get("Dataset");

var ftype = ["f1", "f2", ..., "f7"];

var ORef = Data.define("Output", ftype.length+1);

ORef[0] = DRef;

for(var i=0; i<ftype.length; i++)

ToolA({input:ORef[i], filter:ftype[i],

output:ORef[i+1]});

var DRef = Data.get(new RegExp("ˆDataset"));

var M = DRef.length; // equal to 10

var MRef = Data.define("Model", M);

var tmp = [];

for(var i=0; i<M; i++){

tmp.push(DRef[i]);

ToolB({input:tmp, model:MRef[i]});}

a2) b2)

Figure 1. Visual composition vs script-based programming: a) Pipeline workflow; b) Workflow where the
input dataset size increases at each step.

workflows developed with JS4Cloud, and the performance results obtained by executing such
workflows with DMCF on the Microsoft Azure platform.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3
shortly presents the Data Mining Cloud Framework and its visual workflow formalism. Section 4
presents JS4Cloud and discusses how workflows programmed through this language are executed
by DMCF. Section 5 describes data analysis applications developed with JS4Cloud and presents
performance results obtained executing such applications with DMCF. Finally, Section 6 concludes
the paper.

2. RELATED WORK

Several systems have been proposed to design workflows using script-based or visual
formalisms [22], but only some of them currently work on the Cloud. In the following, we discuss
the most representative workflow management systems that support either script-based or visual
workflow design, which can be used in Cloud environments.

Pegasus [4], developed at the University of Southern California, includes a set of technologies
to execute workflow-based applications in a number of different environments, including desktops,
clusters and Grids. It has been used in several scientific areas including bioinformatics, astronomy,
earthquake science, gravitational wave physics, and ocean science. The Pegasus workflow
management system can manage the execution of an application formalized as a visual workflow
by mapping it onto available resources and executing the workflow tasks in the order of
their dependencies. Recent research activities carried out on Pegasus investigated the system
implementation on Cloud platforms and how to manage computational workflows in the Cloud
for developing scalable scientific applications [8].
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Taverna [25] is a workflow management system developed at the University of Manchester. Its
primary goal is supporting the life sciences community (biology, chemistry, and medicine) to design
and execute scientific workflows and support in silico experimentation, where research is performed
through computer simulations with models closely reflecting the real world. Even though most
Taverna applications lie in the bioinformatics domain, it can be applied to a wide range of fields
since it can invoke any REST or SOAP-based Web services. This feature is very important for
allowing users of Taverna to reuse code (represented as a service) that is available on the Internet.
Taverna can orchestrate Web Services and these may be running in the Cloud, but this is transparent
for Taverna, as demonstrated in the BioVel project [25].

Kepler [12] is a graphical workflow management system that has been used in several projects to
manage, process, and analyze scientific data. Kepler provides a graphical user interface (GUI) for
designing scientific workflows, which are a structured set of tasks linked together that implement
a computational solution to a scientific problem. Data is encapsulated in messages or tokens, and
transferred between tasks through input and output ports. Kepler provides an assortment of built-
in components with a major focus on statistical analysis and supports task parallel execution of
workflows using multiple threads on a single machine.

WS-PGRADE [9] is a general purpose workflow management system that allows users to
create and run workflows on distributed computing systems such as a Grids and Cloud platforms.
The system allows users to define workflows through a graphical interface and to execute them
on different distributed computing infrastructures (DCIs), including popular Cloud systems like
Amazon EC2 and Google App Engine. The visual formalism expresses parallelism through parallel
paths or through parametric input nodes. A parametric input node will be executed in as many
instances as many files arrive on its port. End-users may use the system through a simplified interface
where they can download a workflow from a repository, configure its parameter, and launch and
monitor its execution on the underlying DCI.

ClowdFlows [10] is a Cloud-based platform for the composition, execution, and sharing
of interactive data mining workflows. According with the Software-as-a-Service approach,
ClowdFlows provides a user interface that allows programming visual workflows in any Web
browser. In addition, its service-oriented architecture allows using third party services (e.g., Web
services wrapping open-source or custom data mining algorithms). The server side consists of
methods for the client side workflow editor to compose and execute workflows, and a relational
database of workflows and data.

E-Science Central (e-SC) [7] is a Cloud-based system that allows scientists to store, analyze and
share data in the Cloud. Like ClowdFlows, e-Sc provides a user interface that allows programming
visual workflows in any Web browser. Its in-browser workflow editor allows users to design a
workflow by connecting services, either uploaded by themselves or shared by other users of the
system. One of the most common use cases for e-Sc is to provide a data analysis back end to
a standalone desktop or Web application. To this end, the e-SC API provides a set of workflow
control methods and data structures. In the current implementation, all the workflow services within
a single invocation of a workflow execute on the same Cloud node.

Differently from the systems above, which support visual workflow design, the Data Mining
Cloud Framework provides both visual and script-based workflow programming, so as to meet
the needs of both high-level users and who prefer to program. Moreover, the DMCF differs from
Kepler and Taverna because it natively supports the execution of workflow’s tasks on distributed
environments composed by multiple machines. In addition, the DMCF’s runtime differs from that
of ClowdFlows and E-Science Central because it is able to parallelize the execution of the tasks of
each workflow, an important feature to ensure scalable data analysis workflows execution on the
Cloud.

COMPSs [15] is a programming model and an execution runtime, whose main objective is
to ease the development of workflows for distributed environments, including private and public
Clouds. With COMPSs, users create a sequential application and specify which methods of the
application code will be executed remotely. This selection is done by providing an annotated
interface where these methods are declared with some metadata about them and their parameters.
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The runtime intercepts any call to a selected method creating a representative task and finding the
data dependencies with all the previous ones that must be considered along the application run.
This COMPSs strategy is similar to that exploited in DMCF for parallelizing JS4Cloud workflows.
However, while in COMPSs users must provide explicit annotations to specify which methods will
be executed remotely, JS4Cloud is a pure implicit parallel language, since no special directives or
annotations are needed to enable parallel execution.

Swift [24] is a parallel scripting language that runs workflows across several distributed systems,
like clusters, Clouds, grids, and supercomputers. It provides a functional language in which
workflows are modelled as a set of program invocations with their associated command-line
arguments, input and output files. Swift uses a C-like syntax consisting of function definitions and
expressions that provide an implicit data-driven task parallelism. The runtime comprises a set of
services that implement the parallel execution of Swift scripts exploiting the maximal concurrency
permitted by data dependencies within a script and by external resource availability. Users can use
Galaxy [5] to provide a visual interface for Swift [14].

Swift and JS4Cloud provide the same type of parallelism (i.e., implicit data-driven task
parallelism and data parallelism). However, this is obtained in different ways: by defining a new C-
like language from scratch in Swift, versus by extending the JavaScript functionalities in JS4Cloud.
Since a JS4Cloud code is a valid JavaScript code, it can be executed by any JavaScript intepreter,
and therefore the JS4Cloud programming environment can be embedded into any HTML browser.
In Section 4 we describe how JS4Cloud users can exploit a HTML5 Web editor to compose, check
and run data analysis workflows. Like Swift, the DMCF that is used to run JS4Cloud workflows on
the Cloud, hides the complexity of the underlying infrastructure, thus freeing users from resource
configuration and management duties.

We finally mention two script-based workflow languages, Gscript [13] and JOLIE [19], which are
related to JS4Cloud, even if they are not explicitly designed for Cloud-based systems.

Gscript is a script-based workflow language, designed to be semantically equivalent to
GWENDIA, a visual language to express scientific workflows involving complex data flow
patters [18]. A Gscript program is composed of a series of statements, blocks, scalar or array
expressions. Each statement defines a processor, its inputs and outputs, and the iteration strategies
in a single statement. JOLIE allows programmers to compose statements in a workflow by making
sequences, parallelism and non-deterministic choices. Using its communication primitives and its
compositional operators, JOLIE can compose other services by exploiting their input operations.
JOLIE provides also statements for user input/output console interaction.

Both Gscript and JOLIE are custom languages with a given syntax to write a workflow and
to invoke services from it, while JS4Cloud relies on the widely-known JavaScript language.
Furthermore, Gscript and JOLIE require the user to explicitly deal with parallelism (through specific
control structures in the case of Gscript; by specifying operators between statements in the case of
JOLIE), whereas JS4Cloud relies on sequential JavaScript programming and leaves to the runtime
the task of exploiting workflow parallelism.

Table I summarizes the features of related work in comparison with the system proposed in this
paper (last row in the table). We take into account only systems that provide a textual programming
language to define workflows, and consequently we do not consider systems that allow workflow
design through a visual formalism or a data representation language (e.g., XML and JSON). For
each system, the table indicates: (i) on which programming language is based; (ii) what type
of parallelism it provides; (iii) the level of programming skills required to write a script-based
workflow; (iv) whether or not an end-user must configure the distributed execution environment;
and (v) whether or not the system has been designed for the Cloud. As shown in the table,
JS4Cloud and Swift are the only Cloud-oriented languages for data analysis applications that needs
low programming skills and does not require specific configurations of the distributed execution
environment.
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Table I. Comparison with main related systems.

System Language Type of parallelism
Level of
programming
skills required

Configuration of the
distributed system Cloud

COMPSs Java
Data-driven task parallelism
driven by Java annotations Medium No Yes

Swift C-like syntax
Implicit data-driven task paral-
lelism and data parallelism Low No Yes

Gscript
Custom
language

Defined by specific control struc-
tures

High Yes No

JOLIE C-like syntax Specified by operators between
statements

High Yes No

JS4Cloud JavaScript
Implicit data-driven task paral-

lelism and data parallelism
Low No Yes

3. DATA MINING CLOUD FRAMEWORK

The Data Mining Cloud Framework (DMCF) is a software framework for designing and executing
data analysis workflows on the Cloud. DMCF supports a large variety of processing patterns that
can be used in data mining, including single-task applications, parameter sweeping applications, and
workflow-based applications. Following the approach proposed in [2], DMCF represents knowledge
discovery workflows as graphs whose nodes denote resources (datasets, data analysis tools, mining
models) and whose edges denote dependencies among resources. A Web-based user interface
allows users to compose their applications and to submit them for execution to the Cloud platform,
following a Software-as-a-Service (SaaS) approach.

Figure 2. Architecture of the Data Mining Cloud Framework.

The architecture of DMCF includes different kinds of components that can be grouped into
storage and compute components (see Figure 2).

The storage components include:

• A Data Folder that contains data sources and the results of knowledge discovery processes.
Similarly, a Tool Folder contains libraries and executable files for data selection, pre-
processing, transformation, data mining, and results evaluation.
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• Data Table, Tool Table and Task Table contain metadata information associated with data,
tools, and tasks.

• The Task Queue contains the tasks ready for execution.

The compute components are:

• A pool of Virtual Compute Servers, which are in charge of executing the data analysis tasks.
• A pool of Virtual Web Servers host the Web-based user interface.

The user interface provides access to three functionalities: i) App submission, which allows users
to submit single-task, parameter sweeping, or workflow-based applications; ii) App monitoring,
which is used to monitor the status and access results of the submitted applications; iii) Data/Tool

management, which allows users to manage input/output data and tools.
The DMCF architecture has been designed in a sufficiently abstract and generic way to be

implemented on top of different Cloud systems. The current implementation discussed here is based
on Microsoft Azure†.

Although DMCF is a SaaS solution, in the future it could evolve to a Platform-as-a-Service (PaaS)
solution for developing custom SaaS systems. To this end, DMCF should provide APIs and services
to access its core functionalities (workflow design, workflow execution, workflow monitoring, etc.),
so that developers could directly exploit these functionalities to implement their SaaS solutions.

3.1. Execution mechanisms

A user interacts with the system to perform the following steps for designing and executing a
knowledge discovery application:

1. The user accesses the Website and designs the application (either single-task, parameter
sweeping, or workflow-based) through a Web-based interface.

2. After application submission, the system creates a set of tasks and inserts them into the Task
Queue on the basis of the application.

3. Each idle Virtual Compute Server picks a task from the Task Queue, and concurrently executes
it.

4. Each Virtual Compute Server gets the input dataset from the location specified by the
application. To this end, a file transfer is performed from the Data Folder where the dataset is
located, to the local storage of the Virtual Compute Server.

5. After task completion, each Virtual Compute Server puts the result on the Data Folder.
6. The Website notifies the user as soon as her/his task(s) have completed, and allows her/him to

access the results.

The set of tasks created on the second step depends on the type of application submitted by the
user. In the case of a single-task application, just one data analysis task is inserted into the Task
Queue. If the user submits a parameter sweeping application, the set of tasks corresponding to the
combinations of the input parameters values are executed in parallel‡. In the case of a workflow-
based application, the set of tasks created depends on how many data analysis tools are invoked
within the workflow; initially, only the workflow tasks without dependencies are inserted into the
Task Queue. All the potential parallelism of the workflow is exploited by using the needed Virtual
Compute Servers. In addition, multi-threaded tasks exploit all the cores available on the Virtual
Compute Servers they are assigned to.

To reduce the overhead of data transfers between Data Folder and the local storage of Virtual
Compute Servers, it is important that data are kept physically close to the virtual servers where
processing takes place. In the Microsoft Azure implementation, this is achieved by exploiting the

†http://azure.microsoft.com
‡In general, the number of tasks is given by

∏
n

i=1
vi, where n is the number of input parameters and vi is the number of

values assumed by the i
th parameter
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8 F. MAROZZO, D.TALIA AND P. TRUNFIO

Azure’s Affinity Group feature, which allows Data Folder and Virtual Compute Servers to be located
near to each other in the same data center for optimal performance.

In DMCF, at least one Virtual Web Server runs continuously in the Cloud, as it serves as user
front-end. Moreover, users can specify the minimum and maximum number of Virtual Compute
Servers. Since storage is managed by the Cloud platform, the number of storage servers is
transparent to the user. DMCF can exploit the auto-scaling features of Microsoft Azure that allows
spinning up or shutting down Virtual Compute Servers, based on the number of tasks ready for
execution in the DMCFs Task Queue. The average sign-up and shut-down times in Azure are 4
minutes and 2 minutes, respectively.

3.2. Visual workflow formalism

Visual workflows can be programmed in DMCF through a language called VL4Cloud (Visual
Language for Cloud). VL4Cloud workflows are directed acyclic graphs whose nodes represent
resources and whose edges represent the dependencies among the resources. Workflows includes
two types of nodes:

• Data node, which represents an input or output data element. Two subtypes exist: Dataset,
which represents a data collection, and Model, which represents a model generated by a data
analysis tool (e.g., a decision tree).

• Tool node, which represents a tool performing any kind of operation that can be applied to a
data node (filtering, splitting, data mining, etc.).

The nodes can be connected through direct edges, establishing specific dependency relationships
among them. When an edge is being created between two nodes, a label is automatically attached
to it representing the kind of relationship between the two nodes.

Data and Tool nodes can be added to the workflow singularly or in array form. A data array is an
ordered collection of input/output data elements, while a tool array represents multiple instances of
the same tool.

Figure 3 shows an example of data analysis workflow developed using the visual workflow
formalism of DMCF. In this example, the Census dataset is split into a training set and a test
set using a partitioning tool. Then the training set is analyzed in parallel by ten instances of the
J48 classification tool (a Java implementation of the C4.5 algorithm [20] provided by the Weka
toolkit [6]), which are represented as a single tool array node in the workflow. The J48 instances
differ each other only for the value of one input parameter (the confidence factor). The ten models
generated by the J48 instances, represented as a data array, are then evaluated against the test set by
a ModelSelector to identify the best model, which is the final output of the workflow.

Figure 3. Example of data analysis application designed using the DMCF visual formalism.
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4. THE JS4CLOUD LANGUAGE

JS4Cloud (JavaScript for Cloud) is a JavaScript-based language for programming data analysis
workflows. It has been introduced as the script-based language for the Data Mining Cloud
Framework (DMCF) [16]. The Web interface of DMCF allows to design and execute workflows
programmed by the JS4Cloud language, by providing an environment similar to that used to develop
visual workflows in the same framework. In particular, the App submission section of the DMCF’s
Web interface has been extended for allowing users to write, compile and execute JS4Cloud
workflows through an integrated development environment including the following functionalities:
i) Code Assist, which helps users to write JS4Cloud code faster, by providing them with a list
of code fragments usable in a specific context; ii) Syntax Checker, which detects and reports to
the user syntactic errors present in a JS4Cloud program; iii) Logger, which provides detailed
execution information for debugging purpose, during or after program execution; iv) Interpreter,
which translates a JS4Cloud workflow into a set of concurrent tasks that can be executed on the
Cloud.

In particular, the Interpreter generates a JSON descriptor of the workflow, specifying which are
the tasks to be executed and the dependency relationships among them. The Interpreter is a standard
JavaScript interpreter that invokes an ad hoc library, called JS4Cloud.js, to interpret the specific
JS4Cloud functions that will be introduced in Section 4.2. This is shown in Figure 4, where the
JavaScript interpreter takes the JS4Cloud workflow as input to generate the corresponding JSON
representation. Whenever the JavaScript interpreter encounters one of the JS4Cloud functions for
data access, data definition and tool execution, it delegates interpretation to JS4Cloud.js, which
knows how those functions must be managed.

JS4Cloud

Workflow

JavaScript 

Interpreter

JS4Cloud.js

library

JSON 

Workflow

Descriptor

Figure 4. Relationship between JavaScript interpreter and JS4Cloud.js library.

The main benefits of JS4Cloud are: i) it extends the well-known JavaScript language while
using only its basic functions (arrays, functions, loops); ii) it implements both a data-driven task
parallelism that automatically spawns ready-to-run tasks to the Cloud resources and data parallelism
through an array based formalism; iii) these two types of parallelism are exploited implicitly so that
workflows can be programmed in a totally sequential way, which frees users from duties like work
partitioning, synchronization and communication.

Two strength points of JavaScript motivated its adoption as the basis for JS4Cloud: i) JavaScript
natively provides support to arrays and calls to external functions, which are fundamental to
implement parallelism and remote task execution in DMCF; ii) JavaScript code can be executed
using the standard interpreters available in any modern Web browser, a key feature to write and
execute script-based workflows using the Web interface of DMCF.

4.1. Key programming concepts

Two key programming abstractions in JS4Cloud are Data and Tool:

• Data elements denote input files or storage elements (e.g., a dataset to be analyzed) or output
files or stored elements (e.g., a data mining model).

• Tool elements denote algorithms, software tools or complex applications performing any kind
of operation that can be applied to a data element (data mining, filtering, partitioning, etc.).
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10 F. MAROZZO, D.TALIA AND P. TRUNFIO

For each Data and Tool element included in a JS4Cloud workflow, an associated descriptor,
expressed in JSON format, is included in the environment of the user who is developing the
workflow.

A Tool descriptor includes a reference to its executable, the required libraries, and the list of
input and output parameters. Each parameter is characterized by name, description, type, and can
be mandatory or optional. An example of descriptor for a data classification tool is presented in
Figure 5.

"J48": {

"libraryList": ["java.exe","weka.jar"],

"executable": "java.exe -cp weka.jar weka.classifiers.trees.J48",

"parameterList":[{

"name": "dataset", "flag": "-t",

"mandatory": true, "parType": "IN",

"type": "file", "array": false,

"description": "Input dataset"

},{

"name": "confidence", "flag": "-C",

"mandatory": false, "parType": "OP",

"type": "real", "array": false,

"description": "Confidence value",

"value": "0.25"

},{

"name": "model", "flag": "-d",

"mandatory": true, "parType": "OUT",

"type": "file", "array": false,

"description": "Output model"}]}

Figure 5. Example of Tool descriptor in JSON format.

The JSON descriptor of a new tool is created automatically through a guided procedure
provided by DMCF, which allows users to specify all the needed information for invoking the tool
(executable, input and output parameters, etc.). A DMCF module, called Tool Manager, supports the
deployment of new tools in the system (see Figure 6), which allows their subsequent use in JS4Cloud
workflows. To this end, the Tool Manager performs the following tasks: 1) uploads libraries and
executable files in Tool Folder; 2) creates a tool descriptor in JSON format; 3) publishes the JSON
descriptor in Tool Table.

Similarly, a Data descriptor contains information to access an input or output file, including
its identifier, location, and format. Differently from Tool descriptors, Data descriptors can also be
created dynamically as a result of a task operation during the execution of a JS4Cloud script. For
example, if a workflow W reads a dataset Di and creates (writes) a new dataset Dj , only Di’s
descriptor will be present in the environment before W ’s execution, whereas Dj’s descriptor will be
created at runtime.

Another key element in JS4Cloud is the task concept, which represents the unit of parallelism in
our model. A task is a Tool, invoked from the script code, which is intended to run in parallel with
other tasks on a set of Cloud resources.

According to this approach, JS4Cloud implements data-driven task parallelism. This means
that, as soon as a task does not depend on any other task in the same workflow, the runtime
asynchronously spawns it to the first available virtual machine. A task Tj does not depend on a
task Ti belonging to the same workflow (with i 6= j), if Tj during its execution does not read any
data element created by Ti.

4.2. JS4Cloud Functions

JS4Cloud extends JavaScript with three additional functionalities, implemented by the set of
functions listed in Table II:
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Figure 6. Adding a new tool to the system.

Table II. JS4Cloud functions.

Functionality Function Description

Data
Access

Data.get(<dataName>);
Returns a reference to the data element with
the provided name.

Data.get(new RegExp(<regular expression>));
Returns an array of references to the data
elements whose name match the regular
expression.

Data
Definition

Data.define(<dataName>);
Defines a new data element that will be created
at runtime.

Data.define(<arrayName>,<dim>); Define an array of data elements.

Data.define(<arrayName>,[<dim1>,...,<dimn>]); Define a multi-dimensional array of data
elements.

Tool
Execution

<toolName>({<par1>:<val1>,...,<parn>:<valn>});
Invokes an existing tool with associated
parameter values.

• Data Access, for accessing a data element stored in the Cloud;
• Data Definition: to define a new data element that will be created at runtime as a result of a

tool execution;
• Tool Execution: to invoke the execution of a tool available in the Cloud.

Data Access is implemented by the Data.get function, which is available in two versions: the
first one receives the name of a data element, and returns a reference to it; the second one returns
an array of references to the data elements whose name match the provided regular expression. For
example, the following statement:

var ref = Data.get("Census");

assigns to variable ref a reference to the dataset named Census, while the following statement:

Copyright c© 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
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12 F. MAROZZO, D.TALIA AND P. TRUNFIO

var ref = Data.get(new RegExp("ˆCensusPart"));

assigns to ref an array of references (ref[0]...ref[n-1]) to all the datasets whose name begins
with CensusPart.

Data Definition is done through the Data.define function, available in three versions: the first
one defines a single data element; the second one defines a one-dimensional array of data elements;
the third one defines a multi-dimensional array of data elements. For instance, the following piece
of code:

var ref = Data.define("CensusModel");

defines a new data element named CensusModel and assigns its reference to variable ref, while
the following statement:

var ref = Data.define("CensusModel", 16);

defines an array of data elements of size 16 (ref[0]...ref[15]).
The following is an example statement defining a two-dimensional array of data elements of size

4 times 16:

var ref = Data.define("ClassDataset", [4,16]);

In all cases, the data elements defined using Data.define will be created at runtime as result of
a tool execution.

Differently from Data Access and Data Definition, there is not a named function for Tool
Execution. In fact, the invocation of a tool T is made by calling a function with the same name of T .
The DMCF makes the tools available to the users by loading their descriptions into the integrated
development environment (i.e., Code Assist, Syntax Checker, Interpreter). For example, the J48 tool
defined in Figure 5 can be invoked as in the following statement:

J48({dataset:DRef, confidence:0.05, model:MRef});

where DRef is a reference to the dataset to be analyzed, previously introduced using the Data.get
function, and MRef is a reference to the model to be generated, previously introduced using
Data.define.

From an implementation perspective, the Data.get primitive returns a reference to a data
element stored in Data Folder, which is a persistent storage independent from the local storage of
each Virtual Compute Server. Whenever a data element referenced by Data.getmust be processed,
it is transparently copied to the local storage of the virtual server onto which processing will take
place. Similarly, the Data.define primitive defines a new data element that will be created at
runtime in the local storage of a virtual server, as a consequence of a tool execution. The data
elements so created are then transparently copied to the Data Folder.

4.3. Basic patterns

In the following we describe how the basic control flow patterns can be programmed with JS4Cloud.
We focus on basic patterns [1] such as single task, pipeline, data partitioning and data aggregation,
and on three additional patterns provided by the visual workflow formalism of DMCF, namely
parameter sweeping, input sweeping and tool sweeping. For each pattern, we first introduce an
example as a visual DMCF workflow, and then we show how the same example can be coded using
JS4Cloud.

Single task

An example of single-task pattern is shown in the following figure:
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Customers K-Means ClustModel

dataset model

This example represents a K-Means tool that produces a clustering model from a dataset. Each
workflow node hides some configuration parameters that have been set by the user, e.g., the number
of clusters for the K-Means tool. The following JS4Cloud script is equivalent to the visual workflow
shown above:

var DRef = Data.get("Customers");

var nc = 5;

var MRef = Data.define("ClustModel");

K-Means({dataset:DRef, numClusters:nc, model:MRef});

The script accesses the dataset to be analyzed (Customers), sets to 5 the number of clusters, and
defines the name of data element that will contain the clustering model (ClustModel). Then, the
K-Means tool is invoked along with the parameters indicated in its JSON descriptor (input dataset,
number of clusters, output model).

Pipeline

In the pipeline pattern, the output of a task is the input for the subsequent task, as in the following
example:

SCensus J48 CensusTree

dataset model

Census Sampler

input output

The first part of the shown example extracts a sample from an input dataset using a tool named
Sampler. The second part creates a classification model from the sample using the J48 tool. This
pattern example can be implemented in JS4Cloud as follows:

var DRef = Data.get("Census");

var SDRef = Data.define("SCensus");

Sampler({input:DRef, percent:0.25, output:SDRef});

var MRef = Data.define("CensusTree");

J48({dataset:SDRef, confidence:0.1, model:MRef});

In this case, since J48 receives as input the output of Sampler, the former will be executed only
after the end of the latter.

Data partitioning

The data partitioning pattern produces two or more output data from an input data element, as in
the following example:

CovTypeTest

CovType PartitionerTT

dataset

trainSet

CovTypeTrain

testSet
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14 F. MAROZZO, D.TALIA AND P. TRUNFIO

In this example a training set and a test set are extracted from a dataset, using a tool named
PartitionerTT. With JS4Cloud, this can be written as follows:

var DRef = Data.get("CovType");

var TrRef = Data.define("CovTypeTrain");

var TeRef = Data.define("CovTypeTest");

PartitionerTT({dataset:DRef, percTrain:0.70, trainSet:TrRef, testSet:TeRef});

If data partitioning is used to divide a dataset into a number of splits, the DMCF’s data array
formalism can be conveniently used as in the following example:

NetLog Partitioner

dataset datasetParts

NetLogPart[16]

In this case, a Partitioner tool splits a dataset into 16 parts. The corresponding JS4Cloud code is:

var DRef = Data.get("NetLog");

var PRef = Data.define("NetLogParts", 16);

Partitioner({dataset:DRef, datasetParts:PRef});

Note that an array of 16 data elements is first defined and then created by the Partitioner tool.

Data aggregation

The data aggregation pattern generates one output data from multiple input data, as in the
following example:

Model2 ModelChooser

Model1

Model3

BestModel

model1

model2

model3

bestModel

In this example, a ModelChooser tool takes as input three data mining models and chooses the
best one based on some evaluation criteria. The corresponding JS4Cloud script is:

var M1Ref = Data.get("Model1");

var M2Ref = Data.get("Model2");

var M3Ref = Data.get("Model3");

var BMRef = Data.define("BestModel");

ModelChooser({model1:M1Ref, model2:M2Ref, model3:M3Ref, bestModel:BMRef});

DMCF’s data arrays may be used for a more compact visual representation. For example, the
following pattern example chooses the best one among 8 models:

ModelChooser

models bestModel

Model[8] BestModel
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The same task can be coded as follows using JS4Cloud:

var BMRef = Data.define("BestModel");

ModelChooser({models:MsRef, bestModel:BMRef});

In this script, it is assumed that MsRef is a reference to an array of models created on a previous step.

Parameter sweeping

Parameter sweeping is a data analysis pattern in which a dataset is analyzed in parallel by multiple
instances of the same tool with different parameters, as in the following example:

TrainSet J48[5]
PS: confidence

Model[5]

dataset model

In this example, a training set is processed in parallel by 5 instances of J48 to produce the same
number of data mining models. The DMCF’s tool array formalism is used to represent the 5 tools
in a compact form. The J48 instances differ each other by the value of a single parameter, the
confidence factor, which has been configured (through the visual interface) to range from 0.1 to 0.5
with a step of 0.1. The equivalent JS4Cloud script is:

var TRef = Data.get("TrainSet");

var nMod = 5;

var MRef = Data.define("Model", nMod);

var min = 0.1;

var max = 0.5;

for(var i=0; i<nMod; i++)

J48({dataset:TRef, model:MRef[i], confidence:(min+i*(max-min)/(nMod-1))});

In this case, the for construct is used to create 5 instances of J48, where the i-th instance takes
as input the same training set (TRef), and produces a different model (MRef[i]), using a specific
value for the confidence parameter (0.1 for J48[0], 0.2 for J48[1], and so on). It is worth
noticing that the tools are independent of each other, and so the runtime can execute them in parallel.

Input sweeping

Input sweeping is a pattern in which a set of input data is analyzed independently to produce the
same number of output data. It is similar to the parameter sweeping pattern, with the difference that
in this case the sweeping is done on the input data rather than on a tool parameter. An example of
input sweeping pattern is represented in the following figure:

TrainSet[10] J48[10]
IS: dataset

Model[10]

dataset model

In this example, 10 training sets are processed in parallel by 10 instances of J48, to produce the same
number of data mining models. Data arrays are used to represent both input data and output models,
while a tool array is used to represent the J48 tools. The following JS4Cloud script corresponds to
the example shown above:

var nMod = 10;

var MRef = Data.define("Model", nMod);

for(var i=0; i<nMod; i++)

J48({dataset:TsRef[i], model:MRef[i], confidence:0.1});
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16 F. MAROZZO, D.TALIA AND P. TRUNFIO

It is assumed that TsRef is a reference to an array of training sets created on a previous step. The
for loop creates 10 instances of J48, where the i-th instance takes as input TsRef[i] to produce
MRef[i].

Another example of input sweeping pattern is represented in the following figure:

UnclassD[5]

Predictor[5][3]
IS: dataset,

model

dataset

classData

Model[3]

ClassD[5][3]
model

In this case there are 15 instances of a Predictor. Each Predictor takes in input one unclassified
dataset and one model, and generates concurrently one classified dataset. The following JS4Cloud
script corresponds to this example:

var nData = 5, nMod = 3;

var CRef = Data.define("ClassD", [nData, nMod]);

for(var i=0; i<nData; i++)

for(var j=0; j<nMod; j++)

Predictor({dataset:DRef[i], model:MRef[j], classDataset:CRef[i][j]});

Here is assumed that DRef is a reference to an array of unlabeled datasets, and MRef is a reference
to an array of models, created on previous steps. The double for loop creates a two-dimensional
array of classified datasets, denoted CRef, where CRef[i][j] is the classified dataset generated by
a Predictor instance on DRef[i] using MRef[j]. Also in this case, since the tools are independent
each other, they can be executed in parallel by the runtime.

Tool sweeping

Tool sweeping is a pattern in which a dataset is analyzed in parallel by different tools, as in the
following example:

TrainSet Tool[3]
TS: [NaiveBayes, 

RandomForest, 

J48]

Model[3]

dataset model

In this case, each of the three classification tools (NaiveBayes, RandomForest, J48) analyzes the
same training set to produce three classification models. This corresponds to the following JS4Cloud
script:

var TRef = Data.get("TrainSet");

var MRef = Data.define("Model", 3);

NaiveBayes({dataset:TRef, model:MRef[0], kernelDensity:true});

RandomForest({dataset:TRef, model:MRef[1], numberOfTrees:500});

J48({dataset:TRef, model:MRef[2], confidence:0.1});

Combination of sweeping patterns

In JS4Cloud, it is possible to combine parameter, input and tool sweeping patterns. In the
following we present two examples of sweeping patterns combinations.
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As a first example we show an input/parameter sweeping, i.e. the combination of input and
parameter sweeping. With this pattern, each input data is analyzed in parallel by multiple instances
of the same tool with different parameters, as in the following figure:

TrainSet[10] J48[10][5]
IS: dataset,

PS: confidence

Model[10][5]

dataset model

In this example, each of the 10 training sets is processed by 5 instances of J48 to produce 5 data
mining models. Thus, there are in total 50 instances of J48, represented by a two-dimensional
array of size 10 times 5, that generate the same number of models. The following JS4Cloud script
corresponds to this example:

var nTr = 10;

var conf = [0.1, 0.2, 0.3, 0.4, 0.5];

var MRef = Data.define("Model", [nTr, conf.length]);

for(var i=0; i<nTr; i++)

for(var j=0; j<conf.length; j++)

J48({dataset:TsRef[i], model:MRef[i][j], confidence:conf[j]});

The second example is a tool/parameter sweeping, i.e. the combination of tool and parameter
sweeping. With this pattern, a dataset is analyzed in parallel by a set of tools, each of them
configured with different parameters, as in the following figure:

Customers Tool[3][5]
TS: [K-Means, EM, 

Canopy]

PS: numClusters

ClustModel[3][5]

dataset model

In this workflow, three clustering tools, K-Means, Em and Canopy, analyze in parallel the same
dataset. Each clustering algorithm is executed five times varying an algorithm parameter (the
number of clusters). Thus, for each of the three clustering tool there five instances, represented
by a two-dimensional array of size 3 times 5. This is the equivalent JS4Cloud script:

var DRef = Data.get("Customers");

var nt = 3;

var nc = [3,4,5,6];

var MRef = Data.define("ClustModel", [nt, nc.length]);

for(var i=0; i<nc.length; i++){

K-Means({dataset:DRef, numClusters:nc[i], model:MRef[0,i]});

EM({dataset:DRef, numClusters:nc[i], model:MRef[1,i]});

Canopy({dataset:DRef, numClusters:nc[i], model:MRef[2,i]});}

4.4. Parallelism exploitation

As explained above, as soon as a task in a JS4Cloud workflow does not depend on any other task,
the DMCF runtime asynchronously spawns it to the first available virtual machine. To better explain
how parallelism is exploited with this approach, let us consider again the visual workflow shown in
Figure 3, which performs a data classification with parameter sweeping. The equivalent JS4Cloud
workflow is shown in the left part of Figure 7.

The workflow can be seen as composed of three steps. In the first step, PartitionerTT splits
the input dataset into training set and test set (task T1). The second step consists in the concurrent
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var DRef = Data.get("Census");  

var TrRef = Data.define("TrainSet");  

var TeRef = Data.define("TestSet"); 

var min = 0.1, max = 0.5; nMod = 10; 

var MRef = Data.define("Model", nMod); 

var BRef = Data.define("BestModel"); 

PartitionerTT({dataset:DRef, percTrain:0.70, trainSet:TrRef,  

                  testSet:TeRef}); 

for(int i=0; i<nMod; i++) 

   J48({dataset:TrRef, model:MRef[i],  

       confidence:(min+i*(max-min)/(nMod-1))}); 

ModelSelector({testSet:TeRef, model:MRef, bestModel:BRef}); 

T1 

T2
1 

T2
0 

T2
9 

T3 

PartitionerTT 

J48 

ModelSelector 

Figure 7. JS4Cloud script equivalent to the workflow in Figure 3, with associated task dependency graph.

execution of 10 instances of J48 (tasks T20...T29). During the third step, ModelSelector chooses
the best model (task T3).

Overall, the workflow generates 12 tasks that are related each other as specified by the dependency
graph shown in the right part of Figure 7. The graph shows that, as soon as T1 completes, tasks
T20...T29 can be executed. After completion of all such tasks, T3 can be finally executed. The
parallelism exhibited by the graph is fully exploited by executing the dependency-free tasks on
the available virtual machines. In this case, tasks T20...T29 will run in parallel, thus resulting in a
significant execution speedup.

5. EXPERIMENTAL EVALUATION

In this section we present some experimental performance results obtained executing two JS4Cloud
workflows with the Data Mining Cloud Framework. The first workflow represents an ensemble
learning application, while the second workflow represents a parallel classification application. The
main goal of the first workflow is to illustrate the JS4Cloud capability of expressing a complex
data analysis process, while the second workflow shows the high scalability that can be achieved by
executing JS4Cloud workflows. The Cloud environment used for the experimental evaluation was
composed by up to 64 virtual servers, each one equipped with a single-core 1.66 GHz CPU, 1.75
GB of memory, and 225 GB of disk space with a cost of $0.08/hr.

5.1. Ensemble learning workflow

This workflow is the implementation of a multi-class cancer classifier based on the analysis of genes,
using an ensemble learning approach [11]. The input dataset is the Global Cancer Map (GCM)§,
which contains the gene expression profiles of 280 samples representing 14 common human cancer
classes. For each sample is reported the status of 16,063 genes and the type of tumor (class label).
The GCM dataset is available as a training set containing 144 instances and as a test set containing 46
instances. The goal is to classify an unlabeled dataset (UnclassGCM) composed by 20,000 samples,
divided in four parts.

The workflow begins by analyzing the training set using n instances of the J48 classification
tool and m instances of the JRip classification tool (Weka’s implementation of the Ripper [3]
algorithm). The n J48 instances are obtained by sweeping the confidence and the minNumObj

(minimum number of instances per leaf) parameters, while the m JRip instances are obtained by
sweeping the numFolds (number of folders) and seed parameters. The resulting n+m classification
models (classifiers) are passes as input to n+m evaluators, which produce an evaluation of each

§http://eps.upo.es/bigs/datasets.html
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1: var TrRef = Data.get("GCM-train");

2: var conf = [0.1, 0.25, 0.5], mno = [2, 5, 10], nfol = [3, 5, 10],

snum = [1487, 5741, 7699];

3: var n = conf.length*mno.length, m = nfol.length*snum.length;

4: var M1Ref = Data.define("Model1", n), M2Ref = Data.define("Model2", m);

5: for(var i=0; i<conf.length; i++)

6: for(var j=0; j<mno.length; j++)

7: J48({dataset:TrRef, model:M1Ref[i*mno.length+j], confidence:conf[i],

minNumObj:mno[j]});

8: for(var i=0; i<nfol.length; i++)

9: for(var j=0; j<snum.length; j++)

10: JRip({dataset:TrRef, model:M2Ref[i*snum.length+j], numFolds:nfol[i],

seed:snum[j]});

11: var TeRef = Data.get("GCM-test"), EvM1Ref = Data.define("EvModel1", n),

EvM2Ref = Data.define("EvModel2", m);

12: for(var i=0; i<n; i++)

13: Evaluator({dataset:TeRef, model:M1Ref[i], evalModel:EvM1Ref[i]});

14: for(var i=0; i<m; i++)

15: Evaluator({dataset:TeRef, model:M2Ref[i], evalModel:EvM2Ref[i]});

16: var k = 4;

17: var DRef = Data.get("UnlabGCM", k), CRef = Data.define("ClassGCM",[k,n+m]);

18: for(var i=0; i<k; i++){

19: for(var j=0; j<n; j++)

20: Predictor({dataset:DRef[i], model:M1Ref[j], classDataset:CRef[i][j]});

21: for(var j=0; j<m; j++)

22: Predictor({dataset:DRef[i], model:M2Ref[j], classDataset:CRef[i][n+j]});

23: }

24: var FRef = Data.define("FinalClassGCM", k), EvMRef = EvM1Ref.concat(EvM2Ref);

25: for(var i=0; i<k; i++)

26: WeightedVoter({classDataset:CRef[i], evalModel:EvMRef,

finalClassDataset:FRef[i]});

Figure 8. Ensemble learning JS4Cloud workflow.

model against the test set. Then, k unclassified datasets are classified using the n+m models by
k ∗ (n+m) predictors. Finally, k voters take in input n+m model evaluations and the k ∗ (n+m)
classified datasets, producing k classified datasets through weighted voting.

Figure 8 shows the JS4Cloud code of the workflow. At the beginning, the training set is specified
(line 1). Then, arrays conf and mno specify, respectively, the confidence and minNumObj values for
J48, while arrays nfol and snum specify, respectively, the numFolds and seed values for JRip (line

2). Given the size of the above arrays, variables n and m as defined on line 3 are both equal to 9.
Afterwards, n instances of J48 and m instances of JRip are executed, where each instance uses a
different combination of its parameters to analyze the training set (lines 5-10). Line 11 specifies the
test set, which is used to evaluate the two arrays of models generated by the n J48 instances and
the m JRip instances (lines 12-15). Then, k unlabeled datasets are specified as input, with k = 4
(line 17). Each of the k input datasets is classified by n predictors using the n models generated by
J48, and by m predictors using the m models generated by JRip; therefore, for each of the k input
datasets, n+m classified datasets are generated (lines 18-22). As a final step, k weighted voters
are executed; the i-th voter receives the n+m classified datasets generated from the i-th input and
the n+m models, and returns the final classified dataset for the i-th input (lines 25-26). In general,
the workflow is composed of k + (k + 2)(n+m) tasks, which are related each other as specified
by the dependency graph shown in Figure 9. In the specific example (with n = 9, m = 9, k = 4) the
number of tasks is 112.

This example demonstrates the flexibility of JS4Cloud. In fact, thanks to its integration with native
JavaScript functionalities, we could use it to express a quite complex ensemble learning application.
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Vot[0] 

J48[0] 

J48[n-1] 

Voter 

Ev[0] 

Ev[n-1] 

J48/JRip Evaluator 

P[0][0] P[k][0] 

JRip[0] Ev[n] 

JRip[m-1] Ev[n+m-1] 

P[0][n-1] P[k][n-1] 

P[0][n] P[k][n] 

P[0][n+m-1] P[k][n+m-1] 

Vot[k] 

Predictor 

Figure 9. Task dependency graph associated with the ensemble learning workflow in Figure 8.

In addition, the experimental evaluation of the workflow, conducted using 19 virtual servers, showed
a significant reduction of turnaround time compared to that achieved by the sequential execution.
In particular, the turnaround time passed from about 162 minutes using a single server, to about 11
minutes using 19 servers, which results in a speedup of about 14.7.

5.2. Parallel classification workflow

This workflow analyzes a dataset using n instances of the J48 algorithm that work on n partitions
of the training set and generate n classification models. By using the n models and the test set,
n predictors produce in parallel n classified datasets. In the final step of the workflow, a voter
generates the final classification (in the file FinalClassTestSet) by assigning a class to each
data item. This is done by choosing the class predicted by the majority of the models [27].

The input dataset, containing about 46 million tuples and with a size of 5 GB, was generated
from the KDD Cup 1999’s dataset¶, which contains a wide variety of simulated intrusion records in
a military network environment.

Figure 10 shows the JS4Cloud code of the workflow, where n = 64. At the beginning, the input
dataset is split into training set and test set by a partitioning tool (line 3). Then, the training set is
partitioned into 64 parts using another partitioning tool (line 5). As third step, the training sets
are analyzed in parallel by 64 instances of the J48 algorithm, to produce the same number of
classification models (lines 7-8). The fourth step classifies the test set using the 64 models generated
on the previous step (lines 10-11). The classification is performed by 64 predictors that run in
parallel to produce 64 classified test sets. As the last operation, the 64 classified test sets are passed
to a voter that produces the final classified test set. The workflow is composed of 3 + 2n tasks,
whose dependency graph is shown in Figure 11. In the specific example in which n = 64, the total
number of tasks is 131.

Figure 12 shows a snapshot of the parallel classification workflow taken during its execution
in the DMCF’s user interface. Beside each code line number, a colored circle indicates the status
of execution. The green circles at lines 3 and 5 indicate that the two partitioners have completed

¶http://kdd.ics.uci.edu/databases/kddcup99/kddcup99
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1: var n = 64;

2: var DRef = Data.get("KDDCup99_5GB"), TrRef = Data.define("TrainSet"),

TeRef = Data.define("TestSet");

3: PartitionerTT({dataset:DRef, percTrain:0.7, trainSet:TrRef,

testSet:TeRef});

4: var PRef = Data.define("TrainsetPart", n);

5: Partitioner({dataset:TrRef, datasetPart:PRef});

6: var MRef = Data.define("Model", n);

7: for(var i=0; i<n; i++)

8: J48({dataset:PRef[i], model:MRef[i], confidence:0.1});

9: var CRef = Data.define("ClassTestSet", n);

10: for(var i=0; i<n; i++)

11: Predictor({dataset:TeRef, model:MRef[i], classDataset:CRef[i]});

12: var FRef = Data.define("FinalClassTestSet");

13: Voter({classDataset:CRef, finalClassDataset:FRef});

Figure 10. Parallel classification JS4Cloud workflow.

J48[0] 

J48[1] 

J48[n-2] 

J48[n-1] 

PartitionerTT Partitioner 

J48 Predictor 

Voter 

P[0] 

P[1] 

P[n-2] 

P[n-1] 

Figure 11. Task dependency graph associated with the parallel classification workflow in Figure 10.

Figure 12. Snapshot of the JS4Cloud workflow in Figure 10 running in the DMCF’s user interface.

their execution; the blue circle at line 8 indicates that J48 tasks are still running; the orange circles
indicates that the corresponding tasks are waiting to be executed. A text area at the bottom of the
user interface shows the overall program’s status and execution time.
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Figure 13. Parallel classification workflow: a) Turnaround time vs. number of available servers; b) Speedup
vs. number of available servers; c) Efficiency vs. number of available servers.

Figure 13a shows the turnaround times of the workflow, obtained varying the number of virtual
servers used to run it on the Cloud from 1 (sequential execution) to 64 (maximum parallelism). As
shown in the figure, the turnaround time decreases from more than 107 hours (4.5 days) by using
a single server, to about 2 hours on 64 servers. This is an evident and significant reduction of time,
which proves the system scalability.

The scalability achieved by the system can be further evaluated through Figure 13b, which
illustrates the relative speedup achieved by using up to 64 servers. As shown in the figure, the
speedup increases from 7.64 using 8 servers to 50.78 using 64 servers. This is a very positive result,
taking into account that some sequential parts of the implemented application (namely, partitioning
and voting) do not run in parallel.
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Figure 14. Parallel classification workflow: Efficiency vs. number of available servers.

Figure 14 shows the application efficiency, calculated as the speedup divided by the number of
servers used. As shown in the figure, efficiency on 32 servers is equal to 0.9 whereas on 64 servers
it is equal to 0.8. Thus in this case, 80% of the computing power of each used server is exploited.

The experiments described above have been executed with all the Virtual Compute Servers
continuously running. To test the auto-scaling features of the Cloud platform, we re-executed the
workflow with 64 servers, by using the auto-scaling feature of Azure turned on. To this end, we set
the minimum and maximum number of Virtual Compute Servers equal to 1 and 64, respectively, to
evaluate the impact of server sign-up on turnaround time and cost paid by the user. The results are as
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follows. With all the Virtual Compute Servers continuously running, the turnaround time was 2.11
hours with a total cost of $10.82. With the auto-scaling enabled, the turnaround time was 2.23 hours
with a total cost of $8.88. The increase in the turnaround time registered in the auto-scaling case
(about 5 minutes), is due to the time needed to switch-on the servers used to run the 64 instances of
J48, after completion of the partitioning task.

6. CONCLUSION

Data analysis applications are often composed by many concurrent and compute-intensive tasks that
can be efficiently executed only on scalable computing infrastructures, such as Cloud platforms.
Workflows are an effective paradigm for modelling complex data analysis applications, particularly
when they must executed on such platforms. In this paper, we presented the JS4Cloud language
designed to provide Cloud users with an effective script-based data analysis workflow programming
paradigm.

The main benefits of JS4Cloud are: i) it extends the well-known JavaScript language while
using only its basic functions (arrays, functions, loops); ii) it implements both a data-driven task
parallelism that automatically spawns ready-to-run tasks to the Cloud resources and data parallelism
through an array based formalism; iii) these two types of parallelism are exploited implicitly so that
workflows can be programmed in a fully sequential way, which frees users from duties like work
partitioning, synchronization and communication.

Experimental performance results, obtained designing and executing JS4Cloud workflows
in DMCF, have proven the effectiveness of the language for programming data analysis
workflows, as well as the scalability that can be achieved by executing such workflows on
a public Cloud infrastructure. Cloud environments like DMCF and its visual and script-based
programming interfaces are important components for supporting researchers and developers in
the implementation of Big data analysis applications [21]. A full implementation of the DMCF
system is in use in our lab. We are currently planning to make the system available to the research
community in the near future.
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