December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

The International Journal of Parallel, Emergent and Distributed Systems
Vol. 00, No. 00, December 2017, 1-24

RESEARCH ARTICLE

Programming Models and Systems for Big Data Analysis

Loris Belcastro, Fabrizio Marozzo*, and Domenico Talia
b)

DIMES, University of Calabria, Italy
[lbelcastro, fmarozzo, talia]@dimes.unical.it;

(Recetved October 2017)

Big Data analysis refers to advanced and efficient data mining and machine learning techniques
applied to large amount of data. Research work and results in the area of Big Data analysis
are continuously rising, and more and more new and efficient architectures, programming
models, systems, and data mining algorithms are proposed.

Taking into account the most popular programming models for Big Data analysis (MapRe-
duce, Directed Acyclic Graph, Message Passing, Bulk Synchronous Parallel, Workflow and
SQL-like), we analyzed the features of the main systems implementing them. Such systems
are compared using four classification criteria (i.e., level of abstraction, type of parallelism,
infrastructure scale and classes of applications) for helping developers and users to identify
and select the best solution according to their skills, hardware availability, productivity and
application needs.

Keywords: Parallel Programming models; Programming systems; Big data analysis; Cloud
computing; Programming frameworks; MapReduce; Directed Acyclic Graph; Message
Passing; Bulk Synchronous Parallel; Workflow; SQL-like.

1. Introduction

In the last years the ability to produce and gather data has increased exponentially.
In fact, in the Internet of Things’ era, huge amounts of digital data are generated
by and collected from several sources, such as sensors, cams, in-vehicle infotain-
ment, smart meters, mobile devices, GPS devices, web applications and services.
The huge amount of data generated, the speed at which it is produced, and its het-
erogeneity in terms of format (e.g., video, text, XML, email), represent a challenge
to the current storage, process and analysis capabilities. For instance, thanks to
the growth of social networks and the widespread diffusion of mobile phones every
day millions of people access social network services and share information about
their interests and activities. Those data volumes, commonly referred as Big Data,
can be exploited to extract useful information and produce valuable knowledge for
science [1], economy [2], health [3] and society [4].

Although nowadays the term Big Data is often misused, it is very important
in computer science for understanding business and human activities. In fact, Big
Data is not only characterized by the large size of datasets, but also by the com-
plexity, by the variety, and by the velocity of data that can be collected and pro-

*Corresponding author. Email: fmarozzo@dimes.unical.it

OThis is an Accepted Manuscript of an article published by Taylor & Francis Group in the In-
ternational Journal of Parallel, Emergent & Distributed Systems on 26/12/2017, available online:
http://www.tandfonline.com/ http://dx.doi.org/10.1080/17445760.2017.1422501

ISSN: 1023-6198 print /ISSN 1563-5120 online
© 2017 Taylor & Francis

DOI: 10.1080/17445760.2017.1422501
http://www.informaworld.com

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

2 Taylor € Francis and I.T. Consultant

cessed [5]. So, we can collect huge amounts of digital data from sources, at a very
high rate that the volume of data is overwhelming our ability to make use of it.

To extract value from such kind of data, novel architectures, programming mod-
els and systems have been developed for capturing and analyzing complex and/or
high velocity data. In this scenario data mining raised in the last decades as a
research and technology field that provides several different techniques and algo-
rithms for the automatic analysis of large datasets. The usage of sequential data
mining algorithms for analyzing large volumes of data requires a very long time
for extracting useful models and patterns. For this reason, high performance com-
puters, such as many and multi-core systems, Clouds, and multi-clusters, paired
with parallel and distributed algorithms are commonly used by data analysts to
tackle Big Data issues and get valuable information and knowledge in a reasonable
time [6].

This paper addresses the main issues in the area of programming models and
systems for Big Data analysis. Taking into account the most popular programming
models for Big Data analysis (MapReduce, Directed Acyclic Graph, Message Pass-
ing, Bulk Synchronous Parallel, Workflow and SQL-like), we analyzed the features
of the main systems implementing them. Such systems are compared using four cri-
teria for assessing their suitability for parallel programming: i) level of abstraction
that refers the programming capabilities of hiding low-level details of a system; i7)
type of parallelism that describes the way in which a system allows to express par-
allel operations; i) infrastructure scale that refers to the capability of a system to
efficiently execute applications taking advantage from the infrastructure size; and
iv) classes of applications that describes the most common application domain of
a system.

The final aim of this work is to help developers identifying and selecting the best
solution according to their skills, hardware availability and application needs.

The structure of the paper is as follows. Section 2 provides a description of the
main requirements of Big Data programming systems and a conceptual description
of the four criteria used to classify them. Section 3 describes the most widespread
programming models for analyzing Big Data and compares the main systems imple-
menting them according to the classification criteria we defined. Finally, Section 4
concludes the paper.

2. Requirements and classification criteria

This section discusses the main requirements of Big Data programming systems
and describes the four classification criteria used to classify them. To cope with
the need of processing large amount of data, a programming system should meet
the following requirements:

e Ffficient data management and exchange. Big Data sets are often arranged
by gathering data from several heterogeneous and sometimes not well-known
sources. In this context, programming systems must support efficient protocols
for data transfers and for communications as well as they have to enable lo-
cal computation of data sources and fusion mechanisms to compose the results
produced in distributed nodes.

o Interoperability. It is a main issue in large-scale applications that use resources
such as data and computing nodes. Programming systems for Big Data should
support interoperability by allowing the use of different data formats and tools.
The National Institute of Standards and Technology (NIST) just released the Big

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 3

Data interoperability framework!, a collection of documents aiming at defining
some standards for Big Data.

e FEfficient parallel computation. An effective approach for analyzing large volumes
of data and obtaining results in a reasonable time is based on the exploitation
of inherent parallelism of the most data analysis and mining algorithms. Thus,
programming systems for Big Data analysis have to allow parallel data processing
and provide a way to easy monitor and tune the degree of parallelism.

e Scalability. With the exponential increases in the volume of data to be processed,
programming systems for Big Data analysis must accommodate rapid changes
in the growth of data, either in traffic or volume, by exploiting the increment of
computational or storage resources efficiently.

Starting from these requirements we classified the programming systems for Big
Data analysis according to the following four criteria:

1. Level of abstraction The level of abstraction of a system refers its programming
capabilities to hide the low-level details of a solution (e.g., a function, a data
structure, a communication protocol). In this way, developers can focus on their
problem logic, without the need of implementing it by scratch. An high-level of
abstraction makes it easy to build applications but hard to compile them to efficient
code. Whereas a low-level of abstraction makes it hard to build applications but
easy to implement them efficiently [7]. We use these requirements as a metric for
classifying and assessing Big Data analysis programming systems. For comparison
purposes, we distinguish three levels of abstraction:

e Low, when a programmer can exploit low-level APIs, mechanisms and instruc-
tions which are powerful but not trivial to use. A greater development effort is
required with respect to systems providing a higher level of abstraction, but the
code efficiency is very high because it can be fully tuned. It also requires a low-
level understanding of the system, including working with files on distributed
environments [8]. At this level, productivity of programmers is poor, whereas
program performance can be effective.

o Medium, when a programmer defines an application as a script or a visual rep-
resentation of the program code, hiding the low-level details that are not funda-
mental for application design. It requires a medium development effort and code
tuning capabilities.

e High, when developers, also with low programming skills, can build applications
using high-level interfaces, such as visual IDEs or abstract models with high-
level constructs not related to the running architecture. At this level, program
development effort is low as well as the code efficiency at run time because
executable generation is harder and code mapping is not direct.

2. Type of parallelism The type of parallelism describes the way in which a pro-
gramming model or system expresses parallel operations and how its runtime sup-
ports the execution of concurrent operations on multiple nodes or processors. For
comparison purposes, we distinguish three types of parallelism:

o Data parallelism: it is achieved when the same code is executed in parallel on dif-
ferent data elements. Data parallelism is also known as SIMD (Single Instruction

Lhttp://www.nist.gov/itl/bigdata/bigdatainfo.cfm

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

4 Taylor € Francis and I.T. Consultant

Multiple Data), which is a class in the Flynn’s taxonomy for classifying parallel
computation [9].

o Task parallelism: it is achieved when different tasks that compose applications
run in parallel. The presence of data dependencies can limit the benefits of this
kind of parallelism. Such parallelism can be defined in two manners: i) explicit,
a programmer defines dependencies among tasks through explicit instructions;
i1) implicit, the system analyzes the input/output of tasks to understand depen-
dencies among them.

o Pipeline parallelism: it is obtained when data is processed in parallel at different
stages, so as that the (partial) output of a task is passed to the next task to be
processed. Pipeline parallelism is appropriate for processing data streams as their
stages manage the flow of data in parallel. Because of its features, pipeline paral-
lelism can be considered a specialization of both data and task parallelism [10].

3. Infrastructure scale This feature refers to the capability of a programming
system to efficiently execute applications on a infrastructure of a given size (i.e.,
number of computation nodes). Some systems are designed to be used on infras-
tructures with a small number of nodes, while others are able to scale up to a
large number of nodes. For comparison purposes, we distinguish three scales of
infrastructures:

o Small: it refers to a small enterprise cluster or Cloud platforms with up to
hundreds of computational nodes.

o Medium: it identifies a medium enterprise cluster consisting of up to thousands
of nodes.

o Large: it refers to large HPC environments or high-level Cloud services with up
to ten thousands of nodes.

4. Classes of applications Choosing the right programming solution for develop-
ing a Big Data analysis application is not easy, since several programming systems,
libraries and languages are available today. Some solutions can be efficiently used
in a specific field (e.g., stream data processing, data querying, machine learning),
while others are more general so as to be used for different classes of applications.

3. Programming models

This section presents and discusses the most popular programming models for
Big Data analysis and their associated languages and libraries. They are MapRe-
duce, Directed Acyclic Graph (DAG), Message Passing, Bulk Synchronous Parallel
(BSP), Workflow and SQL-like. The goal is to highlight the features, issues and
benefits of each programming model and systems implementing it. A textual box
at the end of each section highlights how a system is classified according to the
four criteria defined in the previous section.

3.1 MapReduce

MapReduce is a programming model developed by Google [11] in 2004 for large-
scale data processing to cope efficiently with the challenge of processing Big Data.
The MapReduce model is inspired by the map and reduce functions commonly used
in functional programming, however it was mainly designed for allowing designers

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 5

to implement distributed applications based on the map and reduce operations [12].
The map function processes a (key, value) pair and returns a list of intermediate
(key, value) pairs:

map (k1,v1) — list(k2,v2).

The reduce function merges all intermediate values having the same intermediate
key:

reduce (k2, list(v2)) — list(v3).

In general, the whole transformation process performed in a MapReduce appli-
cation can be described through the following steps (see Figure 1):

(1) A master process receives a job descriptor which specifies the MapReduce
job to be executed. The job descriptor contains, among other information,
the location of the input data, which may be accessed using a distributed
file system.

(2) According to the job descriptor, the master starts a number of mapper
and reducer processes on different machines. At the same time, it starts a
process that reads the input data from its location, partitions that data
into a set of splits, and distributes those splits to the various mappers.

(3) After receiving its data partition, each mapper process executes the map
function (provided as part of the job descriptor) to generate a list of inter-
mediate key/value pairs. Those pairs are then grouped on the basis of their
keys.

(4) All pairs with the same keys are assigned to the same reducer process.
Hence, each reducer process executes the reduce function (defined by the
job descriptor) which merges all the values associated to the same key to
generate a possibly smaller set of values.

(5) The results generated by each reducer process are then collected and de-
livered to a location specified by the job descriptor, so as to form the final
output data.

Mapper

Input

Output
data

data

Final
splits results

Figure 1. MapReduce execution flow.

MapReduce has been designed to be used in a wide range of domains, includ-
ing data mining and machine learning, social media analysis, financial analysis,
image retrieval and processing, scientific simulation, web site crawling, machine
translation, and bioinformatics. Nowadays, MapReduce is considered as one of the
most important parallel programming models for distributed environments. It is

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

6 Taylor € Francis and I.T. Consultant

supported by the leading IT companies, such as Google, Amazon', Microsoft? and
IBM?3, or by private Cloud infrastructures such as OpenStack?.

3.1.1 Apache Hadoop

Apache Hadoop' is the most used open source MapReduce implementation. It
can be adopted for developing distributed and parallel applications using many
programming languages. Hadoop relieves developers from having to deal with clas-
sical distributed computing issues, such as load balancing, fault tolerance, data
locality, and network bandwidth saving.

The Hadoop project is not only about the MapReduce programming model
(Hadoop MapReduce module), as it includes other modules such as:

e Hadoop Distributed File System (HDFS): a distributed file system providing fault
tolerance with automatic recovery, portability across heterogeneous commodity
hardware and operating systems, high-throughput access and data reliability.

o Hadoop YARN: a framework for cluster resource management and job schedul-
ing.

o Hadoop Common: common utilities that support the other Hadoop modules.

Ambari
Provisioning, managing and monitoring Hadoop clusters

Storm, Flink | Giraph, Hama Pig, Hive Other Hadoop
(Streaming) (Graph) (Query) libraries

Hadoop MapReduce

Distributed Batch Processing Framework

YARN

Cluster resource management

HDFS
Hadoop Distributed File System

Figure 2. Hadoop software stack.

In particular, thanks to the introduction of YARN in 2013, Hadoop turns from a
batch processing solution into a platform for running a large variety of data appli-
cations, such as streaming, in-memory, and graphs analysis. As a result, Hadoop
has become a reference for several other programming systems, such as: Storm and
Flink for streaming data analysis; Giraph and Hama for graph analysis; Pig and
Hive for querying large datasets; Qozie, for managing Hadoop jobs; Ambari for
provisioning, managing, and monitoring Apache Hadoop clusters. An overview of
the Hadoop software stack is shown in Figure 2.

Apache Hadoop provides a low-level of abstraction, because a programmer
can define an application using APIs which are powerful but not easy to use
because they are related to the computing infrastructure. It also requires a low-
level understanding of the system and the execution environment for dealing
with issues related to file systems, networked computers and distributed pro-

Lhttps://aws.amazon.com/elasticmapreduce/
2https://azure.microsoft.com/services/hdinsight/
Shttps://www.ibm.com/analytics/us/en/technology/hadoop/
4https://wiki.openstack.org/wiki/Sahara
Lhttps://hadoop.apache.org/

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 7

gramming [8]. Developing an application based on Hadoop requires more lines
of code and development effort when compared to systems providing a greater
level of abstraction (e.g., Hive or Pig), but the code efficiency is higher because
it can be fully tuned.

Hadoop is designed for exploiting data parallelism during map /reduce steps.
Input data is partitioned into chunks and processed by different computing
nodes in parallel. It is designed to process very large amounts of data in
large-scale infrastructures with up to tens of thousands of machines. In fact,
Hadoop is used by most of the leading IT companies, such as Yahoo!, IBM,
and Amazon.

Hadoop is a general-purpose system that enables large-scale data processing
over a set of distributed nodes. It is widely used to develop iterative batch
applications using many programming languages, such as Java, C, C++, Ruby,
Groovy, Perl, Python.

3.2 Directed Acyclic Graph (DAG)

Directed Acyclic Graph (DAG) is an effective paradigm to model complex data
analysis processes, such as data mining applications, which can be efficiently exe-
cuted on distributed computing systems such as a Cloud platform. A DAG consists
of a finite set of edges and vertices, with each edge directed from one vertex to an-
other. DAGs are very close to workflows (see Section 3.5), but they do not include
cycles (i.e., circular dependencies among vertices). DAGs can easily model many
different kinds of applications, where the input, output, and tasks of an applica-
tions depend on other tasks (see Figure 3). The tasks of a DAG application and
their dependencies can be defined using two alternative ways:

e Fuxplicitly, a programmer defines dependencies among tasks through explicit in-
structions (e.g., 1o depends on T});

o Implicitly, the system analyzes the input/output of tasks to understand depen-
dencies among them (e.g., T5 reads the input Op, which is an output of 77);.

DAG tasks can be composed together following a number of different patterns
(e.g., sequences, parallel constructs), whose variety helps designers addressing the
needs of a wide range of application scenarios.

Input
data

Figure 3. DAG execution flow.

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

8 Taylor € Francis and I.T. Consultant

3.2.1 Apache Spark

Apache Spark! is another top project of Apache Software Foundation for Big
Data analysis. Differently from Hadoop, in which intermediate data are always
stored in distributed file systems, Spark stores data in RAM memory and queries
it repeatedly so as to obtain better performance for some classes of applications
compared to Hadoop (e.g., iterative machine learning algorithms) [13]. A Spark
application in defined as a set of independent stages running on a pool of worker
nodes. A stage is a set of tasks executing the same code on different partitions of
input data.

Spark and Hadoop are considered the leading open source Big Data systems and
thus are supported by every major Cloud providers. As shown in Figure 4, different
libraries have been built on top of Spark: Spark SQL for dealing with SQL and Data
Frames, MLIlib for machine learning, GraphX for graph-parallel computation, Spark
Streaming for building streaming applications. The execution of a generic Spark
application on a cluster is driven by a central coordinator (i.e., the main process
of the application), which can connect with different cluster managers, such as
Apache Mesos', YARN, or Spark Standalone (i.e., a cluster manager available as
part of the Spark distribution). Ambari can be used for provisioning, managing,
and monitoring Spark clusters.

Ambari
Provisioning, managing and monitoring Spark clusters
MLIib Spark Other
SpazgkL?QL (Machine G GhraphX_) Streaming Spark
Q Learning) raph processing (Streaming) libraries
Spark Core

Processing Engine

Mesos / YARN / Standalone

Cluster Resource Management

HDFS / Amazon S3 / OpenStack Swift / Cassandra
Distributed File System & Storage

Figure 4. Spark software stack.

Even though in some classes of applications Spark is considered a better alter-
native to Hadoop, in many others it has limitations that make it complementary
to Hadoop. The main limitation of Spark is that datasets should fit in RAM mem-
ory. In addition, it does not provide its own distributed storage system, which is a
fundamental requirement for Big Data applications. To overcome this lack, Spark
has been designed to run on top of several data sources, such as distributed file
systems (e.g., HDFS), Cloud object storages (e.g., Amazon S3, OpenStack Swift)
and NoSQL databases (e.g., Cassandra).

Spark’s real-time processing capability is increasingly being used into applica-
tions that requires to extract insights quickly from data, such as recommendation
and monitoring systems. For this reason, several big companies exploit Spark for
data analysis purpose: SK Telecom analyzes mobile usage patterns of customers,
Ebay uses Spark for log aggregation, and Kelkoo for product recommendations.

Thttps://spark.apache.org
Thttp://mesos.apache.org/

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 9

Apache Spark provides a low-level of abstraction, because a programmer can
define an application using APIs which are powerful but require high pro-
gramming skills. With respect to Hadoop, developing an application based on
Spark requires smaller number of lines of code, especially when Scala is used as
programming language. In fact, Spark provides some built-in operators (e.g.,
flat, flatMap, saveAsTextFile, reduceByKey, groupByKey) that make easier to
code a parallel application.

Spark is designed to exploit data parallelism into stages. Input data is di-
vided in chunks and processed in parallel by different computing nodes. It
supports also task parallelism, when independent stages of the same applica-
tion are executed in parallel. Spark is designed to process very large amounts
of data in large-scale infrastructures with up to tens of thousands of nodes.
Several big companies and organizations uses Spark in production, like eBay,
Amazon, Alibaba.

Spark is a general-purpose distributed computing system for large-scale data
processing. It is commonly used to develop in-memory iterative batch appli-
cations using many programming languages (e.g., Java, Scala, Python, R).
Many powerful libraries are built on top of Spark: MLIib for machine learning,
GraphX for graph-parallel computation, Spark Streaming for stream process-
ing.

3.2.2 Apache Storm

Apache Storm! is an open source system for real-time stream processing of large
volumes of data. Storm is designed to ensure a high degree of scalability, fault-
tolerance, high-speed data processing and low-latency response time.

The programming paradigm proposed by Storm is quite simple and it is based
on four abstractions:

e Stream: it represents an unbounded sequence of tuples, which is created or pro-
cessed in parallel. Storm provides some standard serializers for creating streams
(e.g., integer, doubles, string), but programmers are free to create custom ones.

e Spout: it is the data source of a stream. Data is read from different external
sources, such as social network APIs, sensor network, queueing systems (e.g.,
JMS, Kafka, Redis), and then is input to the application.

e Bolt: it represents the processing entity. Specifically, it can execute any type of
tasks or algorithms (e.g., data cleaning, functions, joins, queries).

e Topology: it represents a job. A generic topology is created as a DAG, where
spouts and bolts represents the graph vertices and streams act as the graph
edges. A topology runs forever until it is stopped.

Differently from other systems, such as Hadoop, Storm is stateless and uses a “at
least once” processing semantic, which ensures all the messages will be processed,
but some of them should be processed more than once (e.g., in case of system
failure). If developers need to implement a stateful operation or to use a “only one”
processing semantic, they could use the Storm coupled with the Trident library.

Storm today is used by leading IT companies, such as Twitter that uses it to
process many terabytes of data flows a day, for filtering and aggregating contents or
for applying machine learning algorithms on stream data. However, due to its user
friendly features, Storm can be adopted by small-medium companies for business
purposes (e.g., real-time customer services, security analytics, and threat detec-

Lhttps://storm.apache.org

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

10 Taylor € Francis and I.T. Consultant
tion).

Apache Storm provides a medium-level of abstraction, because a programmer
can easily define an application by using spouts, streams and bolts. Its APIs
allow to test an application in local-mode, without having to use a cluster.

Storm supports data parallelism (when many threads executes in parallel the
same code on different chunks), task parallelism (when different spouts and
bolts run in parallel) and pipeline parallelism (for data stream propagation in
a topology). Storm has been designed to process very large amounts of data in
large-scale infrastructures with up to tens of thousands of nodes. Storm is used
in production by several big companies like Groupon, Twitter and Spotify.

Storm is commonly used for real-time stream processing. An applications
based on Storm can be written using Java, Clojure or any other programming
languages by exploiting the Storm Multi-Language Protocol.

3.2.8 Apache Flink

Apache Flink! is an open source stream processing system for large volumes
of data. Flink allows programmers to implement distributed, high-performing
and high-available data streaming applications. It provides a streaming dataflow
paradigm for processing event-at-a-time, rather than as a series of batch of events,
on both finite and infinite datasets. The programming paradigm is quite simple
and it is based on three abstractions:

o Data source: it represents the incoming data that Flink processes in parallel.

o Transformation: it represents the processing entity, when incoming data is mod-
ified.

e Data sink: it represents the output of a Flink task.

The core of Flink is a distributed streaming dataflow runtime, which is alternative
to that provided by Hadoop MapReduce. However, despite having its own runtime
Flink can work on a cluster or Cloud infrastructure managed by YARN and access
data on HDFS. Flink provides programmers with a series of APIs: DataStream API
and Dataset API for transformations respectively on data streams and datasets;
Table API for relational stream and batch processing; Streaming SQL API for
enabling SQL queries on streaming and batch tables.

Flink today is used by important I'T companies, such as Alibaba that uses it to
optimize search rankings in real time, Bouygues Telecom that processes 10 billion
raw events per day, or Zalando that uses it for real-time process monitoring and
data management. Anyhow, due to its user friendly features, Flink can be used by
small-medium companies for business purposes (e.g., real-time activity monitoring
and alerting, content recommendations).

Apache Flink provides a medium-level of abstraction, because a programmer
can easily define an application by using data sources, trasformations and data
sinks. Its APIs allow programmers to manage finite and infinite sets of data,
and different type of data sources like streams, datasets and relational tables.

Like Storm, Flink supports data parallelism, task parallelism and pipeline
parallelism. Flink has been designed to process very large amounts of data in
large-scale infrastructures with up to tens of thousands of nodes. Several big
companies like Alibaba, Bouygues Telecom and Zalando use Flink in produc-

Lhttps://flink.apache.org

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 11

tion.
Flink is mainly used for real-time stream processing. An applications based
on Flink can be written using Java or Scala.

3.2.4 Azure Machine Learning

Microsoft Azure Machine Learning! (Azure ML) is a SaaS that provides a Web-
based development environment for creating and sharing machine learning work-
flows as DAGs. Through its user-friendly interface, data scientists and developers
can perform several common data analysis and mining tasks and automate their
workflows, without needing to buy any hardware/software nor manage virtual ma-
chine manually.

Using its drag-and-drop interface, users can import their data in the environ-
ment or use special readers to retrieve data form several sources, such as Web
URL (HTTP), OData Web service, Azure Table, Azure Blob Storage, Azure SQL
Database. After that, users can compose their data analysis workflows where each
data processing task is represented as a block that can be connected with each other
through direct edges, establishing specific dependency relationships among them.
Azure ML includes a rich catalog of processing tools that can be easily included in
a workflow to prepare/transform data or to mine data through supervised learning
(regression e classification) or unsupervised learning (clustering) algorithms.

Users can easily visualize the execution results for finding very useful information
about models accuracy, precision and recall. Finally, the built models can be shared
as Web services for predicting new data or performing real time predictions. Thanks
to the auto-scaling feature provided by Azure, users do not have to worry about
scaling models if the usage is increased.

Azure ML provides a very high-level of abstraction, because a programmer can
easily design and execute data analytics applications by using simple drag-and-
drop web interface and exploiting many built-in tools for data manipulation
and machine learning algorithms.

Azure ML supports task parallelism because independent tasks (represented
as blocks) of the same data analysis application are executed in parallel.
Azure ML is thought for providing data analysis services to customers (e.g.,
small/medium companies) that need small virtualized infrastructures. The
amount of computational resources assigned by Azure ML to each customer is
not visible, which makes the service very simple to use but does not provide
any way to configure it.

Azure ML is commonly used for data analysis applications to support pre-
dictive analytics and machine learning applications. Most applications can be
defined in a totally visual way without the need to use any programming lan-
guage. Optionally, programmers can include their own custom scripts (e.g., in
R or Python) to extend the tools and algorithms available in the catalog.

3.3 Message Passing

The message passing model is a well-known paradigm that provides the basic mech-
anisms for process-to-process communication in distributed computing systems
where each processing element has its own private memory. In message passing
the sending process composes the message containing the data to share with the
receiving process(es) including a header specifying to which processing element and

Thttps://azure.microsoft.com/en-us/services/machine-learning,/

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

12 Taylor € Francis and I.T. Consultant

process the data is to be routed, and sends it to the network. Once the message

has been inserted in the communication network, generally the sending process

continues its execution (see Figure 5). This kind of send is called a non-blocking

send. The receiving process must be aware that it is expecting data. It indicates

its readiness to receive a message by executing a receive operation. If the expected

data has not yet arrived, the receiving process suspends (blocks) until it does.
Thus, the primitives of message passing model are basically two:

o Send(destination, message): a process sends a message to another process iden-
tified as destination;

e Receive(source, message): a process receives a message from another process
identified as source.

Message passing is used in many programming languages, operating systems
and library for supporting data communication. Among those, the Message Pass-
ing Interface (MPI) is the most used library for programming message passing
applications on distributed-memory parallel systems. Although MPI library has
been largely used as a general parallel programming model, recently it has been
exploited for implementing Big Data applications with positive results in terms of
programmability and scalability [14-16].

(Q BTN, -1 - N

- L S B AL S

Init Computation and communication Finalize

Figure 5. Message Passing execution flow.

3.3.1 MPI

As mentioned above, MPI [17] is a de-facto standard message-passing interface
for parallel applications defined since 1992 by a forum composed of many industrial
and academic organizations. MPI-1 was the first version of this message passing
library that has been extended in 1997 by MPI-2 [18]. MPI-1 provided a rich set of
messaging primitives (129), including point-to-point communication, broadcasting,
barrier, reduce, and the ability to collect processes in groups and communicate only
within each group. MPI has been implemented on massively parallel computers,
workstation networks, clusters, Grids. Therefore MPI programs are portable on a
very large set of parallel and sequential architectures.

An MPI-1 parallel program is composed of a set of similar processes running
on different processors that use MPI functions for message passing. A single MPI
process can be executed on each processor of a parallel computer and, according the
SPMD (Single Program Multiple Data) model, all the MPT processes that compose
a parallel program execute the same code on different data elements. Examples of
MPI point-to-point communication primitives are:

e MPI Send(msg, leng, type, rank, tag, comm);
o MPI _Recv(msg, leng, type, source, tag, comm, €status);

Group communication is implemented by the primitives:

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 13

e MPI Bceast (inbuf, incnt, intype, root, comm);
o MPI _Gather (outbuf, outent, outype, inbuf, incnt, intype, root, comm);
e MPI Reduce (inbuf, outbuf, count, type, op, root, comm);

For program initialize and termination the MPI_Init and MPI_Finalize functions
are used. MPI provides a sort of low-level programming model, but it is widely used
for its portability and its efficiency. Should be also mentioned that MPI-1 does not
make any provision for process creation. However, in the MPI-2 version additional
features have been provided for the implementation of active messages, process
startup, and dynamic process creation.

MPI is becoming more and more the most used programming tool for message-
passing parallel computers. However, it should be used as a an Esperanto for
programming portable system-oriented software rather than for end-user paral-
lel applications where higher level languages could simplify the programmer task
in comparison with MPI. The most recent version of MPI, version 3, is under de-
velopment with the objective to include also shared memory access inside a single
processing element and the management of many-core systems with adaptivity and
fine-grain parallelism.

MPI provides a low-level of abstraction for developing high performance par-
allel applications. Programmers can exploit only basic primitives without any
high-level construct, and need to manually deal with complex issues, such as
data exchanges, distribution of data across processors, synchronizations, and
deadlocks.

MPI is designed for exploiting data parallelism, because all the MPI applica-
tion’s processes execute in parallel the same code on different data elements. It
is used by academia and industry for running parallel applications in medium-
scale infrastructures.

MPI is a general-purpose distributed memory system for parallel program-
ming, which is commonly used for developing iterative parallel applications
where nodes require data exchange and synchronization to proceed. A generic
MPI program can be written by using APIs available for many programming
languages (e.g., Java, Fortran, C, C++, Perl, Python).

3.4 Bulk Synchronous Parallel (BSP)

Bulk Synchronous Parallel (BSP) [19] is a parallel computation model in which
computation is divided into a sequence of supersteps (see Figure 6). In each super-
step the following operations can be performed:

(1) Concurrent computation: each processor performs computation using local
data asynchronously;

(2) Global communication: the processes exchange data among them according
to requests made during the local computation;

(3) Barrier synchronization: when a process reaches the barrier, it expects all
other processes have reached the same barrier.

The communication and synchronization are completely decoupled, so as to guar-
antee that all the processes in a superstep are mutually independent. Moreover,
this solution avoids problems due to synchronous message passing among processes
(e.g. deadlocks). These features make the BSP programming model a very robust
solution for developing scalable parallel applications.

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems
[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

14 Taylor € Francis and I.T. Consultant

i~ Superstep ['

(e]
o
(e]
—/
Concurrent Global Barrier
computation communication — synchronization

Figure 6. BSP execution flow.

3.4.1 Apache Giraph

Apache Giraph! is an iterative graph processing system built for developing high
scalable applications. In 2012, when the first version of Giraph was released, it
was considered the open source implementation of Pregel [20], a graph processing
architecture developed at Google. Compared to Pregel, Giraph introduces several
enhancements, such as master computation, sharded aggregators, edge-oriented
input, out-of-core computation.

Giraph follows the BSP programming model and it is implemented using Hadoop
as resource manager and Netty! for communication. Specifically, Giraph runs su-
persteps as a set of computations executed by map-only jobs. Each vertex executes
a mapper task by performing the following operations: i) it receives messages sent
to the vertex in the previous superstep; ii) it performs computation using the ver-
tex data and received messages; iii) it sends messages to other connected vertices.
After every vertex computation, synchronization is performed and Giraph prepares
for the next superstep. The execution will halt when there are no more messages
to process and all work is done.

Since Giraph runs map-only jobs, it improves performances by eliminating the
reduce stage operations, which include data sorting and intermediate data storing
(disk is accessed only for loading the initial graph data, writing check-points, and
saving final results). Giraph is currently used at Facebook for processing very large
graphs (i.e., trillion edge graphs) and for discovering relationships among users [21].

Apache Giraph provides a low-level of abstraction, because programmers have
to implement different classes (e.g., Reader, Writer, InputFormat, OutputFor-
mat) for each vertex of their graph applications. The code of a Giraph ap-
plication is similar to MapReduce, since Giraph is a specialized programming
system built on top of Hadoop.

Giraph runs map-only Hadoop jobs, so it supports data parallelism as
Hadoop. Aiming at providing a more grained parallelism and a better CPUs
usage, developers introduced the multi-threading support at worker node level.
Giraph is mainly used by academia and small industry to run graph processing
applications in small infrastructures.

Giraph is used for iterative graph processing applications (e.g., page rank
and shared connections) according to the BSP model, which can be written
using Java or Python.

Lhttps://giraph.apache.org
Thttps://netty.io

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 15

3.4.2 Apache Hama

Apache Hama? is a Java system, based on the BSP programming model. The BSP
model used by Hama allows tasks to communicate with each others through a mes-
sage passing interface, with significant benefits in terms of performance. Differently
from Giraph, which follows a vertex-centric programming model and depends on
MapReduce paradigm, Hama uses a pure BSP engine, which makes it suitable for
developing applications in many fields, such as graph computing, machine learning,
complex query processing.

Differently from Hadoop, each Hama tasks do not have mandatory to sort, shuffle
and reduce data: in such way, it does not have to store intermediate data on HDF'S,
leading to a significant lower overhead than an Hadoop. At the current state, Hama
lacks of efficient algorithms for graph partition and of a more efficient system for
retrieving data (e.g., message data) on the local file system [22].

Although Hama is a top project under the Apache Software Foundation since
2012, it is not still widely used, very likely because of several issues that need
to be addressed yet. In fact, its community of contributors is actually small with
regard to those ones of other popular systems (e.g., Hadoop or Spark) and the
development is slow. However, Hama seems to be very promising: comparative
studies demonstrated that Hama is able to provide higher performances compared
to other related systems, such as Apache Giraph, for some types of applications [23],
such as graph processing and intensive iterative applications.

Apache Hama provides a low-level of abstraction, because a programmer can
define an application using low-level BSP primitives for computation and com-
munication. Hama seems to be at an early stage of development, because it
does not provide proper APIs (e.g., for input/output data, for data partition-
ing) or high-level operators that make easier to build parallel applications.

Hama supports data parallelism since the same computation is executed in
parallel on different portions of data. It is a research project for running graph
processing applications in small infrastructures.

Hama is used for developing iterative graph processing applications (e.g.,
graph analysis, deep learning, machine learning) based on the BSP model and
written in Java.

3.5 Workflow

A workflow is a well defined, and possibly repeatable, pattern or systematic or-
ganization of activities designed to achieve a certain transformation of data [24].
Workflows provide a declarative way of specifying the high-level logic of different
kinds of applications, hiding the low-level details that are not fundamental for ap-
plication design. A workflow is programmed as a graph, which consists of a finite
set of edges and vertices, with each edge directed from one vertex to another. For
example, a data analysis workflow can be designed as a sequence of pre-processing,
analysis, post-processing, and interpretation tasks (see Figure 3). Differently from
DAGs, workflows permit to define applications with cycles, which are circular de-
pendencies among vertices. Workflow tasks can be composed together following a
number of different patterns (e.g., loops, parallel constructs), whose variety helps
designers addressing the needs of a wide range of application scenarios. A compre-
hensive collection of workflow patterns, focusing on the description of control flow
dependencies among tasks, has been described in [25].

2https://hama.apache.org

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

16 Taylor € Francis and I.T. Consultant

3.5.1 Swift

Swift [26] is a parallel scripting language that runs workflows across several
distributed systems, like clusters, Clouds, grids, and supercomputers. Swift is based
on a C-like syntax and uses an implicit data-driven task parallelism [27]. In fact, it
looks like a sequential language, but all variables are futures, thus the execution is
based on data availability. When the input data is ready, functions are executed in
parallel. Its runtime, namely Turbine, comprises a set of services that implement the
parallel execution of Swift scripts exploiting the maximal concurrency permitted
by both data dependencies (within a script) and external resource availability.

The Swift language provides a functional programming paradigm where work-
flows are designed as a set of code invocations with their associated command-line
arguments and input/output files. It also allows invocation and running of ex-
ternal application code and binding with execution environments without extra
coding from the user. Swift exploits arrays of data that are an ordered collection
of input/output data elements. Arrays can be analyzed in parallel, for example by
applying a function on each element of the array in a fully concurrent and pipelined
manner.

In the latest releases, a Swift program can be translated into an MPI program
that uses Turbine and runtime libraries for scalable dataflow processing over MPI.
The Swift compiler maps the load of Swift workflow tasks across multiple comput-
ing nodes. Users can also use Galaxy [28] to provide a visual interface for Swift.

Swift provides a medium-level of abstraction, because a programmer defines
an application as a script (i.e., sequence of instructions). The runtime will
execute script instructions in parallel according to data dependencies present
into them.

Swift provides an implicit data-driven task parallelism. The runtime com-
prises a set of services that implement the parallel execution of Swift scripts by
exploiting the maximal concurrency permitted by data dependencies. It also
provides pipeline parallelism, since the (partial) output of an array is passed
to the next tasks to be processed. Swift is a research project for running script
applications in medium-scale infrastructures.

Swift is used to develop scientific data analytics workflows written using a
C-like syntax. It has been used for modeling the molecular structure of new
materials, predicting protein structures, and decision making in climate and
energy policy.

3.5.2 COMPSs

COMPSs [29] is a programming system and an execution runtime, whose main
objective is to ease the development of workflows for distributed environments,
including Grids and Clouds. With COMPSs, users create a Java sequential ap-
plication and select which methods will be executed remotely. Specifically, this
selection is performed by providing an annotated interface where remote methods
are declared with some metadata about them and their parameters. The runtime
intercepts any call to a selected method creating a representative task and finding
the data dependencies with all the previous ones that must be considered along
the application run.

COMPSs applications are implemented in a sequential way, without APIs that
deal with the infrastructure or with duties of parallelization and distribution (e.g.,
synchronizations, data transfer). This means that applications will not be based on
a specific API to express the interaction with the infrastructure, therefore avoiding
vendor lock-in and lack of portability of applications. Moreover, the use of sequen-

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 17

tial programming allows end users to achieve an easy way to program parallel and
distributed applications. Users do not need to worry about how their program is
going to be run in the computing infrastructure, because the COMPSs runtime
will take care of the actual execution of the application. Instead, users only need
to focus on their specific domain of knowledge to create a new program that will
be able to run in the distributed environment.

Recently, PyCOMPSs [30], a new system built on top of COMPSs, has been
proposed with the aim of facilitate the development of computational workflows in
Python for distributed infrastructures.

COMPSs provides a medium-level of abstraction, because a programmer can
define an application by specifying through annotations which methods will
be executed as remote tasks.

COMPSs provides data-driven task parallelism. The runtime converts the
annotated methods in remote tasks and executes them in parallel according
to their dependencies. COMPSs is a research project for running data analysis
applications in small infrastructures.

COMPSs is used to scientific data analytics workflows written using the
Java language.

3.5.8 DMCF

The Data Mining Cloud Framework (DMCF) [31] is a software system for design-
ing and executing data analysis workflows on Clouds. A Web-based user interface
allows users to compose their applications and submit them for execution over
Cloud resources, according to a Software-as-a-Service approach.

DMCF allows to program data analysis workflows using two languages:

VL/Cloud (Visual Language for Cloud), a visual programming language that
lets users develop workflows by programming their components graphically [31].
o JS4Cloud (JavaScript for Cloud), a scripting language for programming data
analysis workflows based on JavaScript [32].

Both languages use three key abstractions:

e Data elements, representing input files (e.g., a dataset to be analyzed) or output
files (e.g., a data mining model).

e Tool elements, representing software tools used to perform operations on data
elements (e.g., partitioning, filtering, mining).

o Tusks, which represent the execution of Tool elements on given input Data ele-
ments to produce some output Data elements.

Data and Tool nodes can be added to the workflow singularly or in array form.
A data array is an ordered collection of input/output data elements, while a tool
array represents multiple instances of the same tool. Data/Tool arrays allow users
to design parallel and distributed data analysis applications in a compact way. In
addition, array nodes are effective to fork the concurrent execution of many parallel
tasks to Cloud resources, thus improving scalability.

Regardless of the language used, the DMCF editor generates a JSON descriptor
of the workflow, specifying what are the tasks to be executed and the dependency
relationships among them. The JSON workflow descriptor is managed by a engine
that is in charge of executing workflow tasks on a set of workers (virtual processing
nodes) provided by the Cloud infrastructure. The effectiveness of these formalisms
to facilitate workflow design and to enable scalability has been be demonstrated
through real data analysis applications in different fields, such as bioinformatics [33]
or mobility[34].

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

18 Taylor € Francis and I.T. Consultant

DMCF provides a high-level of abstraction, because a programmer can define
workflows by using a high-level visual language (VL4Cloud) or a script-based
language (JS4Cloud). VL4Cloud is a convenient design approach for high-level
users, for example, domain-expert analysts having a limited understanding of
programming. Conversely, JS4Cloud allows skilled users to program complex
applications more rapidly, in a more concise way, and with greater flexibility.

DMCF provides an implicit data-driven task parallelism. Its runtime is able
to parallelize the execution of workflow tasks by exploiting the maximal con-
currency permitted by data dependencies. It also provides a pipeline paral-
lelism, since the (partial) output of an array is passed to the next tasks to be
processed. DMCF is a research project for running workflows in small infras-
tructures.

DMCEF is used to develop wisual and script-based analytics workflows. For
example, it has been used to run real data analysis workflows for parallel
clustering, association analysis and trajectory mining.

3.6 SQL-like

With the exponential growth of data to be stored in distributed network scenarios,
relational databases highlight scalability limitations that significantly reduce the
efficiency of querying and analysis [35]. Relational databases are not able to scale
horizontally over many machines, which makes challenging storing and managing
the huge amounts of data produced everyday by many applications. The NoSQL or
not-relational database approach became popular in the last years as an alternative
or as a complement to relational databases, in order to ensure horizontal scalability
of simple read/write database operations distributed over many servers [36].

NoSQL databases addresses several issues about storing and managing Big Data,
but in many cases they are not suitable for analyzing data. For this reason, much
effort has been spent developing MapReduce solutions to query and analyze data
in a more productively manner.

Although Hadoop is able to address scalability issues and reduce querying times,
it is not easy to be used by low-skilled people since it requires to write a complete
MapReduce applications also for simple tasks (e.g., sum or average calculation, row
selections or counts), with a considerable waste of time (and money) for compa-
nies. To cope with this lack, some systems have been developed for improving the
query capabilities of Hadoop and easing the development of simple data analysis
applications using an SQL-like language.

3.6.1 Apache Pig

Apache Pig! is a high-level Apache open source project for executing data flow
applications on top of Hadoop. It was originally developed by Yahoo! for easing the
development of Big Data analysis applications and then moved into the Apache
Software Foundation in 2007.

Pig provides a high-level scripting language, called Pig Latin that is a procedu-
ral data flow language allowing users to define a script containing a sequence of
operations. Each operation is defined in a SQL-like syntax for describing how data
must be manipulated and processed.

Pig can embed custom processing functions written in other programming lan-
guages directly into its scripts. Moreover, Pig scripts can be invoked by applications
written in many other programming languages.

Thttps://pig.apache.org

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

Parallel, Emergent and Distributed Systems 19

The Pig engine is able to automatically optimize the execution of a script by
using several built-in optimization rules, such as reducing unused statements or
applying filters during data loading. In addition, Pig exploits a multi-query execu-
tion system for processing an entire script or a batch of statements at once. This
aims at optimizing the execution a set of queries, which may share common data,
by combining and running common tasks only once.

Pig is commonly used for developing FEzxtract, Transform, Load applications,
which are able to gather, transform and load data coming from several sources
(e.g., streams, HDFS, files). Each Pig script is translated into a series of MapRe-
duce jobs. The Pig interpreter tries to optimize the execution of these jobs on a
Hadoop cluster.

Apache Pig provides a medium-level of abstraction, because a programmer can
develop a data analysis application through a SQL-like script (written in Pig
Latin). Compared to other systems, such as Hadoop, developers do not have
to write long and complex codes to perform tasks. In fact, a Pig script can use
a large collection of operators to easily perform common tasks on data, such
as load, filter, join and sort.

Pig supports data parallelism, because data is partitioned in chunks and pro-
cessed in parallel, and task parallelism because several queries can be executed
in parallel on the same data. Pig is designed to process very large amounts
of data in large-scale infrastructures. Companies and organizations using Pig
include LinkedIn, PayPal and Mendeley.

Pig is commonly used for developing data querying and simple data analysis
applications (e.g., document indexing, log processing, text mining, predictive
modeling), by using data from several sources (e.g., streams, HDFS, files).
A Pig script can be written by using the Pig Latin language and can embed
custom processing functions written in other programming languages (actually
Java, Python, and JavaScript).

3.6.2 Apache Hive

Apache Hive! is a popular data warehouse system built on top of Hadoop, which
has been designed with the main aim of providing a scalable solution for managing
and processing very large amounts of data (up to petabytes). Nowadays, it is used
and supported by most important I'T companies, such as Facebook, Yahoo, eBay,
Netflix. It has a large community of developers that collectively ensure a rapid
development of the system. Hive provides a declarative SQL-like language, called
Hive Query Language (HiveQL), which can be used to easily develop scripts for
querying data stored on HDFS. The HiveQL syntax is very similar to SQL syntax,
since it reuses the main concepts of relational databases (e.g., table, row, column).
Each data manipulation query is automatically translated into a MapReduce job,
which allows developers to deal with Big Data without having to write long and
complex programs directly in MapReduce.

Although both Hive and Pig can be used to do the same things, their goals are
different. Pig is designed for programmers with a good SQL background that want
to process large amounts of unstructured data. Instead, Hive is data warehouse
software for data analysts to read, write, and manage large amounts of structured
data residing in distributed storage. Moreover, HiveQL is a declarative SQL-like
language, while Pig Latin is a procedural data flow language with a SQL-like
syntax.

Lhttps://hive.apache.org

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems
[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

20

3.

It

Taylor € Francis and I.T. Consultant

Apache Hive provides a high-level of abstraction, because a programmer can
develop a data processing application by using a SQL-like syntax, which re-
calls well-known concepts of relational databases (e.g., table, row, column). In
addition, Hive provides many User Defined Functions (UDF) for data manip-
ulation (e.g., sum, average, explode) and makes it really easy to write custom
ones.

Hive supports data parallelism that allows to execute the same query on
different portions of data. When many complex queries run in parallel, each
query can be composed by several jobs, which could starve computational
resources. To address this issue, Hive has been recently powered by the Cost-
Based Optmizer (CBO), which performs further optimizations by taking a
set of decisions according to query cost (e.g., join order, type of join to exe-
cute, number of query to be performed in parallel). Hive is used in large-scale
infrastructures by several big I'T companies such as Facebook and Netflix.

Hive is commonly used by data analysts for data querying and reporting on
large datasets. A script in Hive can be written by using the HiveQL, which
has a SQL-like syntax.

7 Summary

is hard to summarize all the features of the systems discussed in this paper and

do a comparison among them. Some of these systems have common features and, in
some cases, using one rather than another is an hard choice. In fact, given a specific
Big Data analysis task, it can be implemented using different programming models
and systems. Some of those are widely used commercial tools, provided through
Cloud services, which can be easily used by no skilled people (e.g., Azure Machine
Learning). Other are open-source systems that require skilled users who prefer to
program their application using a more technical approach (e.g., Apache Spark).
Table 1 presents a comparison of the programming systems described above, ac-
cording to the four classification criteria considered in this paper.

Concerning the level of abstraction, we classified the systems in three categories:

Low: this category includes Hadoop, Spark, MPI, Giraph and Hama. These sys-
tems provide powerful APIs and primitives that require distributed programming
skills and make the development effort high. Although developing an application
using these systems requires many lines of code, the code efficiency is high be-
cause it can be fully tuned.

Medium: it includes Storm, Flink, Swift, COMPSs and Pig. Such systems allow to
develop parallel and distributed applications through scripts or codes built using
few constructs. They require some programming skills, but the development
effort is lower than systems with a low-level of abstraction.

High: it includes Azure ML, DMCF and Hive. These systems provide a conve-
nient design for high-level users with a limited programming skill. These systems
allow to rapidly build data analytics applications through simple visual interfaces
or scripts.

About the type of parallelism, we classified the systems as follows:

Data parallelism: it includes Hadoop, Spark, Storm, Flink, MPI, Giraph, Hama,
Pig and Hive. Such systems are designed to automatically manage large input
data, which is split in chunks and processed in parallel on different computing
nodes.

Task parallelism: it includes Spark, Storm, Flink, Azure ML, Swift, COMPSs,

December 27, 2017

16:35 The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

REFERENCES 21

DMCEF, and Pig. Such systems allow to execute in parallel independent tasks
(with no data dependencies).

o Pipeline parallelism: it includes Storm, Flink, Swift and DMCF, which allow to
send the partial output of a task to the next tasks to be processed in parallel in
the different stages.

The systems have been also classified according to the infrastructure scale they
can support. In particular, they can be classified as follow:

e Small: it includes Azure ML, Giraph, Hama, COMPSs and DMCF, which can
be used in small enterprise cluster or Cloud platforms with up to hundreds of
computational nodes

o Medium: it includes Swift and MPI, which have been designed to run on a
medium enterprise cluster consisting of up to thousands of nodes

e Large: it includes Hadoop, Spark, Storm, Flink, Pig and Hive, which have been
designed to be used in large HPC environments or high-level Cloud services with
up to ten thousands of computational nodes.

With regard to the classes of applications, developers can decide to exploits
some general purpose systems (Hadoop, Spark, MPI) or systems that have been
developed to be used in specific application domains. For example, Hama and
Giraph have been used for developing graph processing applications, Hive and Pig
for data querying, Storm and Flink for stream processing and so on.

4. Conclusion

In the last years the ability to gather data has increased exponentially and it
represents a challenge to the current storage, process and analysis capabilities. To
extract value from large data repositories, novel programming models and systems
have been developed for capturing and analyzing Big Data that are complex and /or
are produced at high rate.

This paper analyzed the most popular programming models for Big Data anal-
ysis and the features of the main systems implementing them. In particular, such
systems have been compared according to four criteria: i) level of abstraction that
refers the programming capabilities of hiding low-level details of a system; ii) type
of parallelism that describes the way in which a system allows to express and run
parallel operations; iii) infrastructure scale that refers to the capability of a sys-
tem to efficiently execute applications taking advantage from the infrastructure
size; and iv) classes of applications that describes the most common application
domain of a system.

The final aim of this work is to support programmers and users in identifying
and selecting the best solution according to their skills, hardware availability and
application needs.

References

[1] V. Marx, Biology: The big challenges of big data, Nature 498 (2013), pp. 255—
260.

[2] L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio, Using scalable data min-
ing for predicting flight delays, ACM Transactions on Intelligent Systems and
Technology 8 (2016).

December 27, 2017

16:35

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

The International Journal of Parallel, Emergent and Distributed Systems

22 REFERENCES
Table 1. Comparison of most popular programming systems grouped by programming models.
Svstem Level of Type of Infrastructure Classes
¥ Abstraction Parallelism Scale of Applications
¢
g Apache Hadoop Low Data Large General purpose
=
Apache Spark Low Data/Task Large General purpose
Apache Storm Medium Data/Task/Pipeline Large Real—trlrrlne stream
&) processing
EC Real-time stream
Apache Flink Medium Data/Task/Pipeline Large .
processing
Azure ML High Task Small Predlctlve. analytlc.s
and machine learning
% MPI Low Data Medium General purpose
o Apache Giraph Low Data Small Graph processing
15}
. Apache Hama Low Data Small Graph processing
Swift Medium Task/Pipeline Medium Sc1ent1.ﬁc data
. analytics
S Lo
2| compss Medium Task Small Scientific data
5 analytics
g DMCF High Task/Pipeline Small Visual and script-
& § pe based analytics
D -
v Apache Pig Medium Data/Task Large ata duerying
= and analysis
3 Data querying
g Apache Hive High Data Large AUCLYING
and reporting

[3] T.B. Murdoch and A.S. Detsky, The inevitable application of big data to health
care, Jama 309 (2013), pp. 1351-1352.

[4] S. John Walker, Big data: A revolution that will transform how we live, work,
and think (2014).

[5] L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio, Big data analysis on clouds,
in Handbook of Big Data Technologies, A. Zomaya and S. Sakr, eds., Springer,
2017, pp. 101-142.

[6] D. Talia, P. Trunfio, and F. Marozzo, Data Analysis in the Cloud, Elsevier,
2015, ISBN 978-0-12-802881-0.

[7] D.B. Skillicorn and D. Talia, Models and languages for parallel computation,
ACM Comput. Surv. 30 (1998), pp. 123-169.

[8] S. Wadkar, M. Siddalingaiah, and J. Venner, Pro Apache Hadoop, Apress,
2014.

[9] M.J. Flynn, Some computer organizations and their effectiveness, IEEE trans-
actions on computers 100 (1972), pp. 948-960.

[10] M. Bux and U. Leser, Parallelization in scientific workflow management sys-
tems, CoRR abs/1303.7195 (2013).

[11] J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (2008), pp. 107-113.

[12] F. Marozzo, D. Talia, and P. Trunfio, P2p-mapreduce: Parallel data processing
i dynamic cloud environments, Journal of Computer and System Sciences 78

December 27, 2017 16:35

The International Journal of Parallel, Emergent and Distributed Systems

[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

[13]

[14]

[15]

[16]
[17]

[18]

[23]

[24]

[25]

[26]

REFERENCES 23

(2012), pp. 1382-1402.

R.S. Xin, J. Rosen, M. Zaharia, M.J. Franklin, S. Shenker, and I. Stoica, Shark:
SQL and Rich Analytics at Scale, in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, SIGMOD 13, New York,
New York, USA, ACM, New York, NY, USA, 2013, pp. 13-24.

D. LaSalle and G. Karypis, Mpi for big data: New tricks for an old dog, Parallel
Computing 40 (2014), pp. 754-767.

J.L. Reyes-Ortiz, L. Oneto, and D. Anguita, Big data analytics in the cloud:
Spark on hadoop vs mpi/openmp on beowulf, Procedia Computer Science 53
(2015), pp. 121-130.

F. Liang and X. Lu, Accelerating iterative big data computing through mpi,
Journal of Computer Science and Technology 30 (2015), p. 283.

W. Gropp, E. Lusk, and A. Skjellum, Using MPI: portable parallel program-
ming with the message-passing interface, Vol. 1, MIT press, 1999.

A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir,
T. Skjellum, and M. Snir, MPI-2: Extending the message-passing interface, in
Euro-Par’96 Parallel Processing, Springer, 1996, pp. 128-135.

L.G. Valiant, A bridging model for parallel computation, Commun. ACM 33
(1990), pp. 103-111.

G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, and G.
Czajkowski, Pregel: a system for large-scale graph processing, in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
ACM, 2010, pp. 135-146.

A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, One
trillion edges: Graph processing at facebook-scale, Proceedings of the VLDB
Endowment 8 (2015), pp. 1804-1815.

Z. Wang, Y. Bao, Y. Gu, F. Leng, G. Yu, C. Deng, and L. Guo, A BSP-based
parallel iterative processing system with multiple partition strategies for big
graphs, in Big Data (BigData Congress), 2013 IEEE International Congress
on, IEEE, 2013, pp. 173-180.

K. Siddique, Z. Akhtar, E.J. Yoon, Y.S. Jeong, D. Dasgupta, and Y. Kim,
Apache hama: An emerging bulk synchronous parallel computing framework
for big data applications, IEEE Access 4 (2016), pp. 8879-8887.

D. Talia and P. Trunfio, Service-oriented distributed knowledge discovery,
Chapman and Hall/CRC, 2012.

W.M.P. Van Der Aalst, A.H.M. Ter Hofstede, B. Kiepuszewski, and A.P. Bar-
ros, Workflow patterns, Distrib. Parallel Databases 14 (2003), pp. 5-51, URL
https://doi.org/10.1023/A:1022883727209.

M. Wilde, M. Hategan, J.M. Wozniak, B. Clifford, D.S. Katz, and I. Fos-
ter, Swift: A language for distributed parallel scripting, Parallel Computing 37
(2011), pp. 633-652.

J.M. Wozniak, M. Wilde, and I.T. Foster, Language features for scalable
distributed-memory dataflow computing, in Data-Flow FExecution Models for
Extreme Scale Computing (DFM), 2014 Fourth Workshop on, IEEE, 2014,
pp. 50-53.

B. Giardine, C. Riemer, R.C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, 1. Albert, J. Taylor, et al., Galazy: a platform
for interactive large-scale genome analysis, Genome research 15 (2005), pp.
1451-1455.

F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. lvarez, F. Marozzo, D. Lezzi,
R. Sirvent, D. Talia, and R. Badia, Servicess: An interoperable programming
framework for the cloud, Journal of Grid Computing 12 (2014), pp. 67-91.

December 27, 2017 16:35 The International Journal of Parallel, Emergent and Distributed Systems
[IJPEDS-ProgrammingBigDataAnalysis-PrePrint

24

[30]

[31]

32]

[33]

[34]

[35]

[36]

REFERENCES

E. Tejedor, Y. Becerra, G. Alomar, A. Queralt, R.M. Badia, J. Torres, T.
Cortes, and J. Labarta, Pycompss: Parallel computational workflows in python,
The International Journal of High Performance Computing Applications 31
(2017), pp. 66-82.

F. Marozzo, D. Talia, and P. Trunfio, A workflow management system for
scalable data mining on clouds, IEEE Transactions On Services Computing
(2016).

F. Marozzo, D. Talia, and P. Trunfio, Js/cloud: Script-based workflow program-
ming for scalable data analysis on cloud platforms, Concurrency and Compu-
tation: Practice and Experience 27 (2015), pp. 5214-5237.

G. Agapito, M. Cannataro, P.H. Guzzi, F. Marozzo, D. Talia, and P. Trunfio,
Cloud4SNP: Distributed Analysis of SNP Microarray Data on the Cloud, in
Proc. of the ACM Conference on Bioinformatics, Computational Biology and
Biomedical Informatics 2013 (ACM BCB 2013), September, ISBN 978-1-4503-
2434-2, ACM Press, Washington, DC, USA, 2013, p. 468.

A. Altomare, E. Cesario, C. Comito, F. Marozzo, and D. Talia, Trajectory
pattern mining for urban computing in the cloud, Transactions on Parallel and
Distributed Systems (IEEE TPDS) 28 (2017), pp. 586-599, ISSN:1045-9219.

V. Abramova, J. Bernardino, and P. Furtado, Which nosql database? a per-
formance overview, Open Journal of Databases (OJDB) 1 (2014), pp. 17-24.

R. Cattell, Scalable sql and nosql data stores, ACM SIGMOD Record 39
(2011), pp. 12-27.

