
Convergence of HPC and Big Data in extreme-scale
data analysis through the DCEx programming

model
Javier Garcia-Blas, Javier Fernandez Muñoz, Jesus Carretero

Computer Science and Engineering department
University Carlos III of Madrid Leganes, Spain

Fabrizio Marozzo, Domenico Talia, Paolo Trunfio
DIMES department

University of Calabria Rende, Italy

Alberto Fernandez-Pena, Daniel Martı́n de Blas
Instituto de Investigación Sanitaria Gregorio Marañón

Departamento de Bioingenierı́a e Ingenierı́a Aeroespacial
Universidad Carlos III de Madrid Madrid, Spain

Abstract—High-level programming models can help applica-
tion developers to access and use resources without the need to
manage low-level architectural entities, as a parallel program-
ming model defines a set of programming abstractions that sim-
plify the way by which a programmer structures and expresses
her/his algorithm. Early proposals of Exascale programming tools
are based on the adaptation of traditional parallel programming
languages and hybrid solutions. This incremental approach is too
conservative, often resulting in very complex code. This paper
describes the design features, the programming constructs, and
the runtime mechanisms of the Data Centric programming model
for Exascale systems (DCEx). DCEx is based on structuring
applications into data-parallel blocks. Blocks are units of shared-
and distributed-memory parallel computation, communication,
and migration in the memory/storage hierarchy. Blocks and
their message queues are mapped onto processes and placed
in memory/storage by the DCEx runtime. Those data-parallel
blocks are orchestrated by using distributed parallel patterns
that simplify the development cost. DCEx aims to reach the
convergence of traditional HPC programming models, mainly
based on MPI, with the emerging technologies based on the data
intensive paradigms. To demonstrate the potential of DCEx, we
carried out an experimental evaluation developing a real-world
diffusion-weighted magnetic resonance imaging data processing
application in a neuroimaging research context.

Index Terms—Big Data, HPC convergence, Programming
model, PGAS, parallel patterns

I. INTRODUCTION

High-performance computing (HPC) refers to the usage
of aggregated computing power in order to deliver as much

This work was supported by the EU project “ASPIDE: Exascale Pro-
gramming Models for Extreme Data Processing” under grant 801091 and
ADMIRE project under grant 956748-ADMIRE-H2020-JTI-EuroHPC-2019-
1. This research was partially supported by the Madrid regional Government
(Spain) under the grant “Convergencia Big Data-HPC: de los sensores a las
Aplicaciones. (CABAHLA-CM)”. Finally, this work was partially supported
by the Spanish Ministry of Science and Innovation Project “New Data
Intensive Computing Methods for High-End and Edge Computing Platforms
(DECIDE)” Ref. PID2019-107858GB-I00. Data were provided [in part] by the
Human Connectome Project, WU-Minn Consortium (Principal Investigators:
David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16
NIH Institutes and Centers that support the NIH Blueprint for Neuroscience
Research; and by the McDonnell Center for Systems Neuroscience at Wash-
ington University.

speed as possible to run complex parallel programs efficiently.
This term is tightly related to the concept of supercomputing,
which pushes HPC to the highest operational rate of the avail-
able technology. Nowadays, top modern supercomputers reach
performance ranging hundreds of petaflops, and a machine
capable of delivering one exaflop is expected to appear in
2022.

Parallel programming models can assist application devel-
opers to exploit computational resources without the need to
manage low-level architectural entities, as they define a set
of programming abstractions that simplify the way program
structures are expressed in algorithms. Previous proposals are
based on the adaptation of traditional parallel programming
languages and hybrid solutions. This incremental approach is
too conservative, often resulting in very complicated codes,
which also generates the risk of limiting the scalability of
programs on millions of cores. Load balancing is still an open
question. Many current parallel programming solutions contain
an implicit trade-off between simplicity and performance.
Those abstracting the programmer from lower-level parallel
details often sacrifice performance and scalability in the name
of simplicity, and vice versa. Several current implementations
of the PGAS (partitioned global address space) model are
no exception to this and unfortunately, limited progress has
been made in the last few years toward the implementation
of simple models that can be used to program at any scale
and performance. The need for scalable programming models
continues and the emergence of new hardware architectures
makes this need more urgent.

In this paper we present a novel data-aware paradigm called
Data Centric programming model for large-scale systems
(DCEx) and runtime mechanisms for data intensive applica-
tions. DCEx1 model is based on data-parallel tasks providing
a simplified API. DCEx addresses various features to enhance
performance of data intensive computations in data-intensive
applications, by reducing the cost of accessing, moving, and

1Available at https://gitlab.arcos.inf.uc3m.es/aspide/dcex.

https://gitlab.arcos.inf.uc3m.es/aspide/dcex

processing data across a parallel system. DCEx provides a
workflow modeling mechanism that enables to set-up a data
life cycle management, allowing data locality and data affinity.
The elementary workflow units allow for either placing data
close to the computational node where data are processed (data
locality), or distributing computation where data was previ-
ously generated to avoid data movements (data affinity). This
way, the proposed solution supports application developers to
access and use resources without the need to manage low-level
architectural entities. In the same way, we want to provide
a way to easily switch among different execution modes or
policies without requiring to modify applications source code.
DCEx contributes and differs to other similar frameworks in
the following way:

• Its header-only implementation enables the generation
of native binary code. Indeed, DCEx does not require
wrappers such as PySpark or Dask [1].

• DCEx supports task-based intra/inter-node parallelism in
a single framework.

• Our scheduler enables the combination of sequential and
parallel tasks in an efficient way.

• DCEx enables the execution of applications in the fields
of workflows, batch/stream processing, MapReduce, and
scientific computation.

• Due to its C++ implementation, DCEx permits the inte-
gration with other solutions in the HPC software stack
such as Intel OneAPI, and CUDA.

The paper is structured as follows. Section II presents the
architectural model of DCEx and discusses how programming
abstractions are mapped to a parallel architecture. In Section
III, we discuss a scheduler prototype implemented for the
management of data and task locality. Section IV presents
the task-based parallel patterns that can be used in DCEx
workflows. Section V presents the experimental evaluation of a
complex application developed by DCEx. Section VI compares
DCEx with other existing frameworks of the literature. Finally,
Section VII concludes the paper.

II. DCEX ARCHITECTURAL DESIGN

Aiming at running on massively parallel architectures, the
DCEx programming model uses private data structures, ex-
ploits data locality, and limits the amount of shared data among
parallel processes. The basic idea of DCEx is structuring
programs into data-parallel blocks (DPBs). Blocks are the
units of shared- and distributed-memory parallel computation,
communication, and migration in the memory/storage hierar-
chy. Computation processes execute close to the data, using
near-data synchronization (as shown in Section III). In the
DCEx model three main types of parallelism are exploited:
data parallelism, task parallelism (data–driven), and SPMD
(Single-program, multiple-data) parallelism.

The main DCEx entities that interact with the runtime are
Master, Worker, CNode, CArea, Data Parallel Block,
Partition, Program and Tasks. The nodes that compose
the system are divided into Master and Worker nodes. The
Master node is a coordinator that receives tasks and data

from a client machine and distributes them according to the
current workload of each Worker and the static hints declared
by the programmer (see for instance [at CNode — CArea]
annotations). A CNode object conceptually represents a single
computing/storage node. A CArea object is an aggregation of
CNode objects, where each one is logically near to the other.
A CArea can refer to many CNode objects.

A Task in DCEx is the main building block of a parallel
Program. A Task is mainly represented by an object that stores
a function pointer and some parameters. The purpose of the
function stored in a task, its body, is to read data from some
data sources, processing them, and writing results to the output
datasets. Identifiers of data sources and output datasets can
be stored in the task itself to be passed to its body function
when the task is executed. A data-parallel block is a collection
of data Partitions distributed among the parallel system. In
general, each Partition can be replicated on one or more nodes.
For example, we can define a CArea ca, which is a group
of computational nodes, identifying five nodes where can be
mapped two data parallel blocks (see Figure 1): “input” and
“output”.

GrPPI Examples

DPBs

input_part0

input_part1

input_part2

input_part3

input_part4

Node1

Node2

Node3

Node4

Node0

input

Carea ca

output

output_part0

output_part1

output_part2

output_part3

output_part4

Fig. 1: Two data-parallel blocks storing two files (input and
output) split on five computing nodes.

The DCEx runtime receives the code of a parallel ap-
plication and registers the code that is executed on various
Workers by analyzing the inputs that the application must
execute. When the execution of a DCEx pattern is requested,
for example a pipeline, the runtime queries (to locate where
partitions are located) the in object and assigns each one
of its partitions to a single Worker (a local task). The
executeRemoteTask function (see the figure above) creates a
task corresponding to the pipeline and sends it to the best suit-
able Worker, which is chosen by the partition.getCNode()
according to the CArea ca and to the workload of the node
storing the specified partition. For example, a code that works
on a single partition will be executed in parallel on each Cnode
(Cnode − 0, ..., Cnode − n). Therefore, in Cnode − 0 the
runtime executes a function that analyses the partition−0 of

the input to generate the partition− 0 of the output.
1 class dcex_parallel_execution{
2 Carea ca; istream in; ostream out;
3

4 dcex_parallel_execution(Carea ca, istream in, ostream out
){

5 this->ca = ca; this->in = in; this->out = out;
6 }
7

8 void pipeline(Generator && generate_op, Transformers &&
... transform_ops){

9 Partition[] parts = in.getPartitions();
10 for(part in parts){
11 Cnode remoteNode = getBestNode(part.getCNode(), ca);
12 executeRemoteTask(remoteNode, generate_op(part), ...

, transform_ops[out.createPartition(remoteNode)]);
13 }
14 }
15 ...
16 }

Listing 1: A DCEx code snippet from the
dcex parallel execution class.

III. PARTITIONED, SCALABLE TASK-BASED SCHEDULER

The DCEx scheduler mainly follows the same principles of
Big Data frameworks such as Apache Hadoop and Apache
Spark. In that sense, the Master Cnode acts as a global
scheduler. Master receives the information about pending
tasks and dispatches them to Workers that are part of the
Carea.

To describe the internals of the proposed scheduler, first,
we define a task as a function that is applied to a given
input data to produce an output. We distinguish between two
different task types: sequential and parallel. Sequential tasks
are those that represent the execution of a non-pure/State-full
function, i.e. tasks that store any kind of state that affects the
function execution. These tasks, since they need to maintain
their state among executions, cannot be moved or executed
over multiple Workers in parallel. Therefore, to be scheduled,
a sequential task is assigned beforehand to a given Worker and
all its instances run sequentially on that Cnode. On the other
hand, parallel tasks represent pure/Stateless functions (i.e.,
functions that do not depend on state variables nor produce
side-effects) when they run in parallel over different data
items. Therefore, multiple instances of these tasks can be run
on different Workers simultaneously.

To support task transfers, we have designed a scheduler as
an independent thread that deals with requests coming from
the Worker entities. This thread is also composed of three
different task queues depending on the task-type and its data
dependencies. Figure 2 depicts the scheduler composition.

The DCEx scheduler is composed by the following task
queues; Sequential, comprised of a different queue for each
node that stores the ready tasks that should be executed in
series; Parallel, comprised also by a set of queues, one per
node, storing the tasks corresponding to the node that has local
access to the associated data; and Not-ready, a list of tasks that
have unresolved dependencies with any other task.

To execute pending tasks, we employ a pool of workers that
constantly query the scheduler for new tasks. Regarding the
communication among worker threads and the scheduler, we

have defined a set of messages to support task transfers and
to provide task metadata to the scheduler:

• Run: This message is sent from the main process to the
scheduler to launch tasks of a given parallel pattern. This
message is acknowledged back as soon as all the tasks
have finished their execution. This way, this message acts
as a barrier for the main process to wait until a pattern
execution finishes.

• GetTask: sent from a worker executor to the scheduler to
request a new task.

• SetTask: requires the scheduler to create a new task to be
scheduled.

• Consume: notifies the scheduler that a task has already
finished. Additionally, when the scheduler receives this
message, it checks the non-ready queue to annotate the
solved task dependencies. If a non-ready task has all its
dependencies resolved, it is moved to the corresponding
ready queue (sequential or parallel).

Note that the scheduler has been designed to be an inter-
changeable service module that delivers pending tasks to the
workers using task metadata and monitoring information for
exploiting computing resources and data locality.

In order to run an application using the DCEx scheduler, we
have defined three different procedures: i) initialization, which
establishes the communication channels for the executing
workers; ii) Task generation, which determines how task are
generated in the system; iii) a task scheduling algorithm to
orchestrate the execution of tasks.

A. Initialization

In order to support task communication among multiple
Workers deployed in a Cnode, firstly it is necessary to assign
communication ports for all necessary queues. Workers acts
as port servers. Port servers employ a user-defined port. Then,
each worker has to publish the listening port on the port server,
while any process that wants to connect to a server must get the
listening port by means of the same port server. Next, after
deploying the port server, Workers deploy a local scheduler
that performs the following operations:

1) Each local scheduler establishes its working Carea by
receiving the list of hostnames of the Carea nodes as
part of the scheduler creation arguments.

2) The local schedulers belonging to the same Carea es-
tablish a connection to the global scheduler.

3) Local schedulers on each Cnode deploys a set of work-
ing threads acting as a pool of execution entities. These
execution entities are in charge of requesting pending
tasks to the scheduler and execute those tasks assigned
by the scheduler.

B. Task generation procedure

To create all the required tasks, we first register the functions
to be executed that are classified as:

• Parallel tasks: Those functions that are implicitly defined
as a parallel pattern are registered as parallel task. There-

fore, the scheduler may assign different task instances to
different Workers so they can be executed in parallel; and

• Sequential tasks: Those functions that are not defined as
a parallel pattern are registered as sequential. Then, these
functions are pre-assigned to a given worker that runs
sequentially all the task instances of that function.

Additionally, in order to avoid the congestion by creating
an excessive number of pending tasks at the same time, we
also distinguish two kinds of tasks:

• Generator tasks: Those tasks that can generate two or
more new tasks after finishing their execution are con-
sidered generator tasks. The execution of those tasks is
stopped if the scheduler reaches the maximum number of
pending tasks at a given point.

• Non-generator tasks: Tasks that generate one or zero
new tasks after finishing are classified as non-generator.
Therefore, a non-generator task reduces the total number
of pending tasks by one after finishing its execution.

C. Task scheduling algorithm

At the execution time, worker threads ask the scheduler for
new tasks to be executed. Then, the scheduler decides which
task should be delivered to that worker thread following the
next algorithm.

First, the scheduler assigns to the requesting thread a
sequential task mapped to that Worker. Notice that, if any
thread of that worker is running an instance of the same task,
other task’s pending instances are marked as not-ready.

Second, if there are no sequential tasks pending for that
Worker, the scheduler looks for a parallel task whose asso-
ciated data is locally stored on the Cnode of the requesting
Worker. To do so, we take advantage of the data location
information, specified by the DCEx model, which is defined
by the list of Cnodes that store data. Therefore, when a
parallel task is created, it is enqueued on the parallel queue
corresponding to the local Cnode where its related data are
stored. If there are multiple Cnodes with local access to that
data (e.g., data replication in HDFS), the task is stored on all
of them as a unit. Thus, when one of the replicas is consumed,
all copies are removed from all the queues. Therefore, when
a worker requests a new task and there are tasks stored on
its corresponding queue, the scheduler assigns to that worker
the first task on that queue in order to ensure that data for
the task is locally stored on that Cnode. Otherwise, if there
are no tasks ready to be executed due to data are locally
stored on the resulting Cnode, the scheduler does the best
to assign another task that has its data stored elsewhere and
it moves the data from the remote node to the local one.
If data associated with a given task is temporal (i.e., it is
handled by the temporary data service), data can be freely
moved between the nodes belonging to the Carea. However,
if data are associated with a DPB, the scheduler checks the
Carea assigned to that data. If both task and DPB are part
of the same Carea, data are moved/forwarded between the
remote and the local node. Otherwise, data are moved only if
the DPB policy is defined as SOFT .

Cnode 0 Cnode 1

0 (M) 1 2 3

Fig. 2: Task generation sequence.

Cnode 0 Cnode 1

0 (M) 1 2 3

Fig. 3: Task finalization sequence.

If no task can be assigned to the requesting Worker, using
the aforementioned criteria, the Worker waits until a new task
is created. Basically, the scheduler annotates that this Worker
is pending for new tasks. Note that, if a task is a task generator,
before assigning it, the scheduler checks if the maximum
number of pending tasks has been reached. In that case, those
tasks are not assigned until there is space for the new ones,
which is generated after its execution.

Finally, as soon as the workers end the execution of the
received tasks, they communicate that event to the scheduler
using the CONSUME message. When this message is received,
the scheduler checks if the finished tasks resolve data depen-
dencies of some non-ready tasks. If so, those dependencies
are marked on the dependent task, and as soon as all the
dependencies of a non-ready task are resolved, those tasks
are moved to the corresponding ready queue.

Cnode 0 Cnode 1

0 (M) 1 2 3

Fig. 4: Dependency resolution.

As an example, Figures 2, 3 and 4 graphically represents
the scheduler execution process. Master worker is located in
Worker 0. The example topology consists of four Workers
distributed into two Cnodes. First, the application launches the
initial stage that will be a task generator. That task is assigned
to a single worker that may generate several new tasks, which
will be introduced in the corresponding scheduler queues.
Figure 2 depicts how the execution of the initial task generates
5 new tasks that are communicated to the scheduler using the
SET_TASK message. Those new tasks are allocated in the
corresponding queue depending on the nature of each task.
On the other hand, the worker communicates to the scheduler
that the task T0 has finished its execution (see Figure 3).
As soon as these tasks arrive, they will be dispatched to the
inactive workers following the algorithm presented above. In
this example, T5 has unresolved dependencies, thus it cannot
be assigned to a worker until those dependencies are satisfied.
On the other hand, T4 is a sequential task that is assigned
to the Cnode 0 as it may have some status information that
prevents multiple instances of the task from running in parallel.
Tasks T1-T3 can be freely assigned to any worker and, using
the data location information, they are allocated to the most
suitable Cnode. Figure 4 shows the two steps followed for
resolving data dependencies of a non-ready task. First, Workers
2–4 notify the completion of Tasks T1–T3 using the CONSUME
message. Those messages are received by the scheduler that
tags T5 data dependencies as resolved. Then, as a second step,
Task T5 is moved from the non-ready queue to the parallel task
queue, as all its dependencies are satisfied.

D. Temporary data service

To communicate internal temporary data, which are not
backed up by the data, we have designed a temporary data
service. This service is only in charge of storing in-transit
data among tasks. In other words, only temporary data that
may need to be used by a task and can be transferred to a
different node will be stored in this temporary data service.

Each Cnode will run a thread acting as the data server to
support this data communication. This data server is composed
of a remote-access indexed array that stores the data serialized.
Thus, data can be easily transferred to a different CNode if it
is necessary. Basically, a temporary data server behaves as
a DPB by providing the data.get and data.set functions. At
the beginning of the application execution, a temporary data
server is deployed on each CNode and these servers establish
a communication channel with all the other processes involved
in the execution.

Depending of the parallel pattern employed, it is necessary
to exploit the benefits of DPBs. For example, this is the
case of the parallel Map-Reduce pattern. More precisely, this
parallel pattern requires an intermediate shuffle stage that
enable the data exchange between participant tasks. In the Big
Data domain, this problem is addressed by using temporal
intermediate files that are access by the reduce stage, as it
is done in popular frameworks like Apache Hadoop. DCEx
copes with this problem in a similar way. Internally, map and
reduce stages are communicated using temporal files, which
are abstracted by using DPBs. End-users can determine the
location of the temporal files. In contrast to explicit interme-
diate containers, implicit data are removed once the pattern is
completely executed, as data are considered temporal.

E. Execution model

The DCEx framework is supported by MPI+X framework.
DCEx is fully compatible with MPI implementations like
MPICH or OpenMPI. The following example shows how
to execute a DCEx-based application in a classical cluster
platform:

$ mpiexec -n 40 ./string2bin_mpi
hdfs://dataset file://output

This command example shows how we take advantage of
MPI to deploy 40 processes. In the current version of the
prototype, computational resources and their topology are
obtained from a configuration file. This file has the same
format that those employed in MPICH software. Each line
of the file represents a computational node. Optionally, it is
possible to define the number of cores in each node. This
format determines the topology and process distribution done
at execution time. It is important to note that end-users do
not need to implement MPI-basic communication routines
in developing parallel code. MPI facilitates the deployment
of parallel processes by using environment variables that
are obtained at execution time. Other alternatives have been
considered, but MPI is the most popular solution usually
available in supercomputers. Additionally, DCEx also supports
the Slurm workload manager.

IV. PARALLEL PROGRAMMING ABSTRACTIONS/PATTERNS

In order to provide a generic interface to parallel pat-
terns, in a previous work we designed GrPPI, a generic and
reusable parallel pattern interface for C++ applications [2].
This interface takes full advantage of modern C++ features,

metaprogramming concepts, and generic programming to act
as a switch between parallel programming models such as
OpenMP or TBB. Its design allows developers to make use
of the aforementioned execution frameworks from a unified
and compact interface. Furthermore, their modularity permits
combining them to arrange more complex constructs (as
shown in Section V). In this work, we provide a distributed
task-based execution policy that enables the parallel execu-
tion of applications relaying on a MPI-based environment.
This section describes task-based parallel patterns like Farm,
Task, Split-join, Critical and Path generator
designed to provide application developers with structured
constructs for developing application workflows in the DCEx
model. DCEx also includes other patterns not described in
this paper such as Pipeline and MapReduce. In particular,
the MapReduce pattern in DCEx works in a similar way to
Apache Spark.

A. Farm

This distributed parallel pattern is designed to identify a task
as parallel across multiple workers. A farm pattern used as a
stage of a pipeline represents a function that can be applied
over different data items in parallel without side-effects. This
pattern receives as argument a function or another pattern
that transforms the input data item to produce a given output
data item. When used as part of a pipeline, the function will
be registered as a parallel function, and therefore multiple
Workers can execute this function over different data items.

B. Command

This pattern is designed to provide a way to introduce
external programs, as part of DCEx pipeline stages (i.e.,
executes any external application, script, or command as a
task of the pipeline). This pattern interface receives as an
argument a single function to generate the external process to
be executed for each task. Listing 3 depicts an example of a
DCEx pipeline using the command pattern as one of its stages.
This basic application generates a sequence of numbers from
0 to the value of the last variable. Then, those numbers are
passed as input to the next stage that generates the command
to be executed. In this case, the function provided by the user
for the task pattern will print the number received as argument
and will execute the hostname call. Therefore, the result of
executing each task will print a number and the hostname of
the node that executes the task. Additionally, the task pattern
is composed with a farm pattern determining that each task
has no data dependencies apart from the data generated in
the previous stage. That means that multiple instances of the
task can be executed in parallel. In a nutshell, this pattern
allows application developers to define application flows and
scheduling the execution of each task.

1 pipeline(
2 [&i,last]()->optional<int> {
3 if(i<last) return i++;
4 else return{};
5 },
6 split_join(duplicate{},
7 [](int id){

8 return id+1;}, //Branch 1
9 [](int id){

10 return id+2;}), //Branch 2
11 [](int id){
12 cout<<id<<"After join"<<endl;}
13)

Listing 2: Split-join pattern example.

1 pipeline(
2 [&i,last]()->optional<int> {
3 if(i<last) return i++;
4 else return{};
5 },
6 task([](int i){
7 return "printf ’" + to_string(i) + "’ && hostname";}
8)

Listing 3: Command pattern example.

C. Split-join

This pattern allows introducing a point to diverge the
execution flow into several flows and then merge it again after
executing the corresponding flows. The interface of this pattern
receives as arguments a split policy and the list of flows to be
executed. We support the duplicate and round-robin policies
that determine how the input items are segregated among
the different flows. The duplicate policy creates a copy of
the incoming items and initiates all the execution flows. On
the contrary, the round-robin policy executes a single flow
for each item following a round-robin policy. Regarding the
list of flows, each of them can be a single task or a pattern
composition, for instance, a given flow can be defined as a
pipeline to execute a set of consecutive tasks. After executing
the corresponding flow(s), the resulting data are joined to
generate a tuple containing the output of all the flows. Thanks
to this pattern, the developers can define kind of directed
acyclic graphs.

Listing 2 shows an example of pattern compositions using
the split-join. In this case, the first stage generates a sequence
of numbers from 0 to the value of last. Afterward, the
split-join pattern generates the multiple execution paths for
the inputs using the duplicate split policy. Duplicated tasks
are executed in parallel as soon as the input data becomes
available and, after all of them have finished, the pattern
launches the task defined after the joining point. In other
words, the task after the join will have data dependencies with
the corresponding flow execution.

D. DPB stream generator

This abstraction works as a stream generator for DPBs,
which forwards a specific DPB to the next stage of the
pipeline. This solution enables the simplification of dealing
with complex data path structures. Currently, we provide
support for the following DPB stream generators: all: returns
all possible file/folder paths inside a container at the first
level of recursion; filter: returns a filtered list of file/folder
paths inside a container at the first level of recursion; locale:
considers the data locality of the path and the execution
Cnode. This path generator enables data locality by selecting
coexisting data and Cnodes.

DPBs are supported by containers [3]. Containers provide
a generic I/O interface that unifies the access of parallel
file systems in a single I/O interface. The use of containers
hide the complexity of accessing different storage patterns
(single file, multiple files in a single folder, etc) by enabling
data accesses using iterators. These containers are high-level
abstractions that provide a common interface, with a simple
set of operations, to manage data items that belong to a dataset
or a collection of datasets. In addition, they are designed to
expose metadata that can be used to improve data locality or
perform task scheduling in runtime. They can be categorized
depending on their behavior: input, those used to read data,
and output, the ones for writing data. Listing 4 Line 2, we
show how a new DPB is created, indicating an URI of the
data source. In this case DPBs correspond to files and folders
inside this folder path.

An example of the exploitation of a DPB stream generator is
shown in Listing 4. In Line 3, we prepare a workflow execution
by using a pipeline parallel pattern. This pipeline is composed
of a farm and a simple lambda. In this case, we define as
the first stage of the pipeline an all-based path generator. This
stage returns each path inside the previously created binary
container. It is important to note that DPB’s containers provide
an iterator-like vision, which simplifies the file path generation.
In case of running path generators in a fully parallel runtime
(i.e., MPI), each deployed process takes a subset of DPBs.

1 parallel_execution_dist_task exec{};
2 dpb f("file://home/aspide/data/");
3 pipeline(exec, all(f), [](string & path) {
4 cout << "Created " + path << endl;}
5);

Listing 4: DPB generator for pipelines.

V. EVALUATION

For the evaluation of DCEx, we have implemented a real-
world use case that analyzes diffusion-weighted magnetic reso-
nance imaging (DWI) data in a neuroimaging research context.
DWI aims to characterize the water diffusion in different brain
areas, allowing to obtain unique metrics for the study of white-
matter microstructure and structural connectivity of the brain.
DWI data are 4-dimensional images composed from tens to
hundreds of volumetric (3-dimensional) acquisitions of the
brain, each one providing distinct diffusion information. Each
3-dimensional acquisition is composed of the recorded signal
of around one million volumetric pixels (voxels). This leads
to DWI images ranging from hundreds to thousands of MB
for each participant.

The pipeline proposed for the evaluation, depicted in Figure
5 and its implementation in Listing 5, is a typical DWI pro-
cessing workflow. This workflow generates for each participant
diffusion-tensor maps (more sophisticated white-matter mi-
crostructure maps), white-matter fiber orientation distribution
functions (FODs), and an estimation of white-matter tracts
(tractography). Inputs for this workflow are a preprocessed
NIfTI 4D image containing the DWI data, two plain text files

containing the diffusion weighting information, and a prepro-
cessed NIfTI 3D T1w image already coregistered to the DWI
data. We use neuroimaging data from the open-access Young
Adults Human Connectome Project (YA-HCP) database2 [4].
This dataset contains high-quality, high-resolution DWI and
structural brain data of over one thousand healthy young
adults. The high resolution of the images of this dataset
translates into large image files that pose a real processing
challenge. Furthermore, the YA-HCP database provides ready-
to-use preprocessed data [5].

The baseline processing workflow was initially imple-
mented, on the one hand using the Python package Nipype3

[6], a library that provides interfaces to the most used neu-
roimaging software, simplifying the interconnection between
packages, and provides several execution plugins, including
SLURM cluster and multithreaded executions. On the other
hand, the workflow is implemented using the DCEx to or-
chestrate the execution of different processing steps consisting
of Python scripts. The processing steps of the proposed
workflow use processing commands from different state-of-
the-art neuroimaging toolboxes:

• Q-space normalization: The diffusion weighting values
stored in a text file are binned and saved in a new text
file. This is done using the NumPy python package.

• Undersample: The DWI data (288 volumes) is loaded; we
select the first 139 and save them in a new NIfTI image.
Text files with diffusion-weighting data are modified
accordingly. This is done using the nibabel and NumPy
packages.

• Tissue segmentation: T1w image is segmented into five
tissue types [cortical grey matter (GM), subcortical GM,
white matter (WM), cerebrospinal fluid (CSF), and ab-
normal tissue]. This is done using MRtrix3’s 5ttgen
script that uses FSL’s fast tool [7]. The result is stored
in a 4D NIfTI image.

• Resampling: The tissue-type segmentation is resampled
to the DWI data resolution. The result is stored in a 4D
NIfTI image.

• Response estimation: Voxels representative of CSF, GW
and one-bundle WM are selected from the DWI data.
Then, the diffusion-weighting response of the different
tissues is estimated. This is done using the dhollander
algorithm implemented in MRtrix’s dwi2response
[8]. Results are stored in plain text files.

• FOD estimation: DWI data and DWI response for each
tissue are used to estimate the FODs for every voxel
employing the multi-shell multi-tissue constrained spher-
ical deconvolution algorithm implemented in MRtrix3’s
dwi2fod tool [9]. The computation is done indepen-
dently for every voxel, and the tool allows for multi-
threading. Results are stored in the 4D NIfTI images.

• Tensor fitting: Diffusion tensors are estimated in every
voxel to compute most common diffusion tensor imaging

2https://db.humanconnectome.org/
3https://nipype.readthedocs.io/

https://db.humanconnectome.org/
https://nipype.readthedocs.io/

metrics. This is done using FSL’s dtifit tool. The
computation can be performed independently in each
voxel, but dtifit does not offer a multithreading
implementation. Results are stored in several 3D NIfTI
images.

• Diffusion coefficients: DWI data is used to estimate
several WM microstructure metrics. This is done using
the spherical mean technique as implemented in SMT’s
fitmcmicro tool [10]. Estimation can be performed
in each voxel independently and the used tool allows
for multithreading computation. Results are stored in
several 3D NIfTI images.

• Tractography: Using the estimated WM FODs, and the
tissue type segmentation, one million streamlines repre-
senting the WM fiber bundles are computed. This is done
using the iFOD2 algorithm implemented in the MRtrix3’s
tckgen tool [11]. Each streamline computation can
be performed independently and tckgen allows for
multithreading computation. Results are stores in binary
files.

The baseline processing workflow was initially implemented
using the Python package Nipype [6], a library that provides
interfaces to the most used neuroimaging software, simpli-
fying the interconnection between packages, and provides
several execution plugins, including SLURM cluster and mul-
tithreaded executions. Then, the workflow was implemented
using the DCEx to orchestrate the execution of different
processing steps consisting of Python scripts.

Undersample

(undersample_dwi.py)

Response estimation

(response.py)

Tissue segmentation

(vettgen.py)

FOD estimation

(msmt_csd.py)

Inputs

Tensor tting

(dti t.py)

Di usion coe cients

(mcmicro.py)

T1 DWI

q-space normalization

(bin_bvals.py)

Resampling

(resize_5tt.py)

Fig. 5: DWI workflow.

1 auto resize_5tt = [](string path) {
2 auto in = path+"/5tt.nii.gz";
3 auto out = path+"/resized_5tt.nii.gz";
4 return "python resize_5tt.py "+in+" "+out;
5 };
6 ...

7 auto inner_split=split_join(duplicate{},
8 farm(task(response)),
9 farm(task(par, dtifit)),

10 farm(task(par, mcmicro))
11);
12

13 pipeline(exec,
14 all(folders),
15 task([](string path){
16 return "mkdir -p "+path;}),
17 split_join(duplicate{},
18 pipeline(farm(task(par, fivettgen)),
19 farm(task(resize_5tt))),
20 pipeline(farm(task(bin_bvals)),
21 farm(task(undersample_dwi)),
22 inner_split,
23 farm(task(par, msmt_csd)))),
24 farm(task(tracking))
25);

Listing 5: Implementation of the DWI workflow. The optional
tag par indicates that the task is intrinsically parallel (i.e.,
OpenMP, GPU, etc).

A. Results

The experiments were carried out in a bare metal cluster
composed by 24 Intel(R) Xeon(R) Silver 4214 and 128 GB of
RAM memory each. The software layer is based on Ubuntu
18.4, GCC compiler 9.3, and MPICH 3.2.0. Datasets are
shared using NFS and GlusterFS filesystems with a 10 Gbps
network. We have chosen a random subset of 32 subject-
s/patients from the YA-HCP database. The results shown
in the experiments correspond to the average value of five
consecutive executions. Focusing on reproducibility, Python-
like scripts and source code are also provided.

Table I summarizes the execution time and lines of code
(LOC)4 with Nipype/Slurm using one single Cnode. We ob-
serve that our solution significantly reduces the overall execu-
tion time. It employs a higher number of resources compared
with Nipype. DCEx enables the use of over-subscription,
allowing more active threads than available cores. Experiments
did not show a significant overhead using it. It is worth to
note that in case of a single compute node, for native multi-
threaded stages (i.e., tracking, mcmicro), the farm pattern
has been removed in order to enable specific shared-memory
scheduling. In the future, we plan to enable an adaptive
mechanism to guide the scheduling process by indicating the
expected number of running threads.

We observe that DCEx outperforms Nipype in all cases. The
improvement ratio is about 25% compared to Nipype/Slurm
for a single subject and 13% for 4 subjects. Additionally, our
approach significantly reduces the number of lines of source
code (see repository). We highlight that DCEx does not require
an external workload manager (i.e., Slurm, SGE, etc.) for a
distributed execution. In the case of Nipype, every stage is
directly translated into a Slurm job and the resource utilization
is determined by Slurm. DCEx can contribute and assist Slurm
with data locality mechanisms if no other solution is offered.

Figures 6a and 6b plot the overall execution time by
increasing the number of used cores from 24 to 780 cores,

4Line breaks are not considered.

TABLE I: Overall execution (in minutes) and LOC comparing Nipype/Slurm (baseline) and DCEx on a single Cnode.

Cores per Cnode Subjects Execution (min) LOC

Nipype max 48 per task 1 74
183Nipype max 6 per task 4 218

Nipype max 48 per task 4 231

DCEx 48 1 59 102DCEx 48 4 203

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800

Ex
ec

ut
io

n
tim

e
(m

in
ut

es
)

Number of cores

Slurm/NFS DCEx/NFS DCEx/Gluster Slurm/Gluster

(a) Overall execution time.

0

2

4

6

8

10

12

0 200 400 600 800

Sp
ee

du
p

Number of cores

Slurm/NFS Slurm/Gluster DCEx/NFS DCEx/Gluster

(b) Speedup.

Fig. 6: Comparison between DCEx and Nipype/Slurm under
NFS and GlusterFS. We used a subset of 32 random subjects
from the YA-HCP database.

comparing Nypipe/Slurm and DCEx. Figure 6b shows that
the speedup trend decreases when more cores are used for all
configurations, mainly because the system infrastructure based
on NFS negatively affects the application performance. It is
important to highlight that each subject produces 8 GB of
data approximately. However, we must point out that DCEx
outperforms Nipype/Slurm due to its locality policies and
file system cache exploitation. We expect that a better setup
based on a HPC-based filesystem, like Lustre or an in-memory
filesystem [12], can result in a more positive impact on the
execution time.

VI. RELATED WORK

The message passing interface (MPI) standard is the most
common approach to exploit inter-node parallelism in HPC,
and is the basis for numerous runtimes and workflows for sci-
entific computing. The implementations of MPI allow the exe-
cution of standard operations comprising multiple processes on
distributed memory platforms, which provides coarse-grained
parallelism sufficient for petascale applications. Current HPC
infrastructures have incorporated different types of accelerators
to enhance the performance. Programming models have been
adapted accordingly to ease the access to further finer-grain
intra-node parallelism. GPGPUs are the most widely adopted
accelerator in current HPC machines given their power effi-
ciency and their many-core architecture, which pushes forward
massive parallelism to the order of thousands of cores in
a single chip. There are several libraries that enable the
interaction with GPGPUs, such as OpenCL, NVidia CUDA,
and OpenACC, supporting data offload to the accelerators,
kernel operator definition, direct execution of such code on the
device, and result retrieval back to the host CPU. Accelerator
runtimes have also been integrated with intra-node parallelism
through OpenMP [13], and inter-node parallelism via MPI
[14], [15]. The mechanisms to build hybrid runtimes exploiting
intra- and inter-node parallelism had major influence in subse-
quent advances in parallelism integration and they are expected
to be present in future Exascale systems to cope with the need
for adaptive hybrid programming models [16]. Examples of
MPI-based MapReduce implementations are Spark-DIY [17]
and Harp.

In the literature, we can find other programming models that
support task-based parallelism, such as COMPSs/ServiceSs
[18]. COMPSs/ServiceSs provides a programming model and
an execution framework that help in abstracting applications
from the actual execution environment using MPI. Our ap-
proach offers advantages over COMPSs/ServiceSs such as the
use of distributed and parallel patterns.

Finally, a similar work was presented by Aldinucci et al.
[19] that provided a FastFlow extension aimed at support-
ing distributed memory architectures. This approach differs
from ours in multiple ways. First, DCEx addresses large-
scale workflow-based applications following a FPGA model,
which enables the elimination of explicit data sharing between
computing elements. Second, the DCEx scheduler considers
both sequential and parallel stages, enabling a greater range of
optimization. Third, DCEx provides a user-friendly interface
(as shown in Listing 5) that reduces the development complex-
ity and facilitates the implementation of complex execution
flows due to pattern’s composability.

VII. CONCLUSIONS

In this paper we presented a novel data-aware paradigm
called Data Centric programming model for Exascale systems
(DCEx) and runtime mechanisms for data intensive applica-
tions. DCEx provides a workflow-based programming model
that enables to set-up a data-oriented life cycle management,
allowing data locality and data affinity. Big Data/HPC con-
vergence is addressed in multiple ways. First, native code can
take advantage of compiler optimization such as factorization
and vectorization. Second, we facilitate the integration with
accelerators given that the implementation is based on C++.

Moreover, the DCEx implementation offers a novel run-
time system that controls and optimizes the execution of the
component-based use-cases and applications. The runtime sys-
tem is responsible for managing, coordinating, and scheduling
the execution of an application by deciding when, where and
how its constituent components should be executed by using
a data-locality aware scheduling strategy for the execution of
large-scale task workflows. We executed several experiments
with a large medical neuroimage workflow, comparing Nipype
(a tool broadly used in this area) with DCEx for performance
and scalability. Results showed that DCEx outperforms Nipype
for both metrics.

In the future, we plan to extend DCEx functionally by
supporting well-known parallel architectures such as GPUs. In
addition, it is planned to include an intermediate in-memory
filesystem subsystem to store temporal data used by future
stages or just for enabling data persistence (intensive traceable
applications). Finally, we will investigate the cache effects over
parallel file systems such as Lustre [20] and GPFS, which offer
an efficient file cache at client side.

REFERENCES

[1] M. Rocklin, “Dask: Parallel computation with blocked algorithms and
task scheduling,” in Proceedings of the 14th Python in science confer-
ence, vol. 130. Citeseer, 2015, p. 136.

[2] J. Garcia-Blas, D. del Rio, J. D. Garcia, and J. Carretero, “Exploiting
stream parallelism of MRI reconstruction using GrPPI over multiple
back-ends,” in Workshop on Clusters, Clouds and Grids for Life Sci-
ences, CCGRID-LIfe 2019, CCGRID 2019. Larnaca, Cyprus: IEEE
Explorer, 2019.

[3] P. Brox, J. Garcia-Blas, D. E. Singh, and J. Carretero, “DICE: Generic
Data Abstraction for Enhancing the Convergence of HPC and Big Data,”
in High Performance Computing, I. Gitler, C. J. Barrios Hernández, and
E. Meneses, Eds. Cham: Springer International Publishing, 2022, pp.
106–119.

[4] D. Van Essen, K. Ugurbil, E. Auerbach, D. Barch, T. Behrens,
R. Bucholz, A. Chang, L. Chen, M. Corbetta, S. Curtiss, S. Della Penna,
D. Feinberg, M. Glasser, N. Harel, A. Heath, L. Larson-Prior, D. Marcus,
G. Michalareas, S. Moeller, R. Oostenveld, S. Petersen, F. Prior,
B. Schlaggar, S. Smith, A. Snyder, J. Xu, and E. Yacoub, “The human
connectome project: A data acquisition perspective,” NeuroImage,
vol. 62, no. 4, pp. 2222–2231, 2012, connectivity. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811912001954

[5] M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson, T. S. Coalson,
B. Fischl, J. L. Andersson, J. Xu, S. Jbabdi, M. Webster, J. R. Polimeni,
D. C. Van Essen, and M. Jenkinson, “The minimal preprocessing
pipelines for the human connectome project,” NeuroImage, vol. 80,
pp. 105–124, 2013, mapping the Connectome. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1053811913005053

[6] K. Gorgolewski, C. Burns, C. Madison, D. Clark, Y. Halchenko,
M. Waskom, and S. Ghosh, “Nipype: A flexible, lightweight and
extensible neuroimaging data processing framework in python,”
Frontiers in Neuroinformatics, vol. 5, p. 13, 2011. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2011.00013

[7] R. E. Smith, J.-D. Tournier, F. Calamante, and A. Connelly,
“Anatomically-constrained tractography: Improved diffusion MRI
streamlines tractography through effective use of anatomical
information,” NeuroImage, vol. 62, no. 3, pp. 1924–1938, 2012.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1053811912005824

[8] T. Dhollander, D. Raffelt, and A. Connelly, “Unsupervised 3-tissue
response function estimation from single-shell or multi-shell diffusion
MR data without a co-registered T1 image,” in ISMRM Workshop on
Breaking the Barriers of Diffusion MRI, 09 2016.

[9] B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers,
“Multi-tissue constrained spherical deconvolution for improved analysis
of multi-shell diffusion mri data,” NeuroImage, vol. 103, pp. 411–
426, 2014. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S1053811914006442

[10] E. Kaden, N. D. Kelm, R. P. Carson, M. D. Does, and D. C. Alexander,
“Multi-compartment microscopic diffusion imaging,” NeuroImage, vol.
139, pp. 346–359, 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1053811916302063

[11] J. Tournier, F. Calamante, and A. Connelly, “Improved probabilistic
streamlines tractography by 2nd order integration over fibre orientation
distributions,” in Proc. of the International Society of Magnetic Reso-
nance in Medicine, 2010.

[12] F. Marozzo, F. Rodrigo Duro, J. Garcia Blas, J. Carretero, D. Talia, and
P. Trunfio, “A data-aware scheduling strategy for workflow execution
in clouds,” Concurrency and Computation: Practice and Experience,
vol. 29, no. 24, 2017, iSSN: 1532-0634.

[13] J. Guan, S. Yan, and J. Jin, “An openmp-cuda implementation of
multilevel fast multipole algorithm for electromagnetic simulation on
multi-gpu computing systems,” IEEE Transactions on Antennas and
Propagation, vol. 61, no. 7, pp. 3607–3616, July 2013.

[14] P. Rakić, D. Milašinović, Z. Živanov, Z. Suvajdžin, M. Nikolić, and
M. Hajduković, “MPI–CUDA parallelization of a finite-strip program
for geometric nonlinear analysis: A hybrid approach,” Advances in
Engineering Software, vol. 42, no. 5, pp. 273 – 285, 2011, pARENG
2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0965997810001286

[15] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige,
“Performance analysis of a hybrid mpi/cuda implementation of the
naslu benchmark,” SIGMETRICS Perform. Eval. Rev., vol. 38, no. 4,
pp. 23–29, Mar. 2011. [Online]. Available: http://doi.acm.org/10.1145/
1964218.1964223

[16] M. U. Ashraf, F. A. Eassa, A. A. Albeshri, and A. Algarni, “Performance
and Power Efficient Massive Parallel Computational Model for HPC
Heterogeneous Exascale Systems,” IEEE Access, vol. 6, pp. 23 095–
23 107, 2018.

[17] S. Caı́no-Lores, J. Carretero, B. Nicolae, O. Yildiz, and T. Peterka,
“Spark-diy: A framework for interoperable spark operations with high
performance block-based data models,” in 2018 IEEE/ACM 5th Interna-
tional Conference on Big Data Computing Applications and Technolo-
gies (BDCAT), Dec 2018, pp. 1–10.

[18] A. Fernández, V. Beltran, X. Martorell, R. M. Badia, E. Ayguadé, and
J. Labarta, “Task-Based Programming with OmpSs and Its Application,”
in Euro-Par 2014: Parallel Processing Workshops. Springer, 2014, pp.
601–612.

[19] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Targeting Distributed Systems in FastFlow,” in Euro-Par 2012: Parallel
Processing Workshops, I. Caragiannis, M. Alexander, R. M. Badia,
M. Cannataro, A. Costan, M. Danelutto, F. Desprez, B. Krammer,
J. Sahuquillo, S. L. Scott, and J. Weidendorfer, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 47–56.

[20] W. Cheng, C. Li, L. Zeng, Y. Qian, X. Li, and A. Brinkmann,
“Nvmm-oriented hierarchical persistent client caching for lustre,”
ACM Trans. Storage, vol. 17, no. 1, Jan. 2021. [Online]. Available:
https://doi.org/10.1145/3404190

https://www.sciencedirect.com/science/article/pii/S1053811912001954
https://www.sciencedirect.com/science/article/pii/S1053811913005053
https://www.frontiersin.org/article/10.3389/fninf.2011.00013
https://www.sciencedirect.com/science/article/pii/S1053811912005824
https://www.sciencedirect.com/science/article/pii/S1053811912005824
https://www.sciencedirect.com/science/article/pii/S1053811914006442
https://www.sciencedirect.com/science/article/pii/S1053811914006442
https://www.sciencedirect.com/science/article/pii/S1053811916302063
https://www.sciencedirect.com/science/article/pii/S1053811916302063
http://www.sciencedirect.com/science/article/pii/S0965997810001286
http://www.sciencedirect.com/science/article/pii/S0965997810001286
http://doi.acm.org/10.1145/1964218.1964223
http://doi.acm.org/10.1145/1964218.1964223
https://doi.org/10.1145/3404190

	Introduction
	DCEx architectural design
	Partitioned, scalable task-based scheduler
	Initialization
	Task generation procedure
	Task scheduling algorithm
	Temporary data service
	Execution model

	Parallel programming abstractions/patterns
	Farm
	Command
	Split-join
	DPB stream generator

	Evaluation
	Results

	Related work
	Conclusions
	References

