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ABSTRACT
Solution of multi-objective optimization in the logistics sector have
become an integral important part of the Intelligent Transportation
System (ITS). In this work we focus on the intelligent and sus-
tainable transportation processes through the design of the multi-
objective model for the logistic route-order dispatching system.
We consider transportation costs, emissions, order importance and
risks for failures, for the logistic route-order dispatching system.We
present an Integer Linear Programming (ILP) optimization model
and apply state-of-the-art techniques as a part of SCIP framework
to solve pilot problem instances and evaluate the performance of the
model.We obtain results of solving the model on a single monolithic
Google Cloud Compute (GCP) to estimate the time complexity of
the solving process in relation to the various problem sizes. The
results from the experiments show low complexity of the problems
of various sizes. Therefore scalability of the model looks promising
for the applicability in various industry-related scenarios and com-
puting environments. In particular, using hybrid-cloud systems and
state-of-the-art optimization frameworks such as IBM CPLEX or
Gurobi.
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1 INTRODUCTION
In the last few years, the world has gone through a series of global
crises with direct impact on the government systems, people’s
lifestyles, and habits. The world economy turned the entire supply
chain system upside down and challenged governments in various
national systems. In the wake of the global COVID 19 pandemic, the
urgency of efficient and rapid transport systems has taken on a new
dimension in its importance, given the heterogeneous and complex
border closures and demand for medical products at the time. The
global availability and diversity of products, as in terms of the vital
medical products, visualized a necessary condition of reliable and
efficient transport systems. Sustainability and efficiency became the
most contemporary prioritized problems of contemporary logistic
networks.

Consequently, governments all over the world were struggling to
secure supplies for their respective national health care systems. In
addition to that, United Nations (UN) 2030 Agenda1 for Sustainable
Development provided a shared blueprint for peace and prosperity
for people and the planet, now and into the future. At its heart are
the 17 Sustainable Development Goals (SDGs), which are an urgent
call for action by all countries - developed and developing - in a
global partnership.

In this work we focus on addressing some SDGs by improving
intelligent and sustainable transportation processes through the
design of the multi-objective model for the logistic route-order
dispatching system. Our model assumes a quasi-static ITS envi-
ronment, operating on the level of route-order abstraction layer. In
addition to that, we consider order’s and route’s delivery-related
1https://sdgs.un.org/2030agenda.
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dynamic properties such as costs, reliability, and CO2 emissions not
to vary during the planning period. Moreover, problems that affect
the optimal allocation in any way after the optimization process
was started (e.g., activation/deactivation of routes) are assumed to
be minor or non-existent in the reasonable timing horizon. Consid-
ering this information we can see the importance of ILP adjustable
models and therefore emphasize the need for research into such
models. The allocation problem presented in this paper is NP-hard
and thus bounded within moderate dimensions sizing within the
pilot study with SCIP framework [14].

We start with a literature review in Section 2, we present envi-
ronment and optimization models in Sections 3 and 4. In Section 5,
we present the experimental setup and numerical results. Finally,
we conclude with a reflection and future work in Section 6.

2 LITERATURE REVIEW
2.1 Systems Design Models
The literature on system design models for freight transportation
and ITS is quite extensive [37, 38]. Many issues are often addressed
by evaluating topologies of the corresponding network models
for tactical or operational planning of transportation activities.
When formal models are proposed, they generally take the form of
discrete allocation and scheduling formulations to address issues
related to the location of consolidation or hub terminals and the
routing of demand from its origin to its destination terminals. Fur-
thermore, routing of the route-order flows determines the direct
connections between origins, destinations, and consolidation ter-
minals. When these connections must be explicitly decided (e.g.,
the allocation of “local” terminals to major classification facilities),
a combined location-network-design formulation is often used.
All formulations aim to capture the potential economies of scale
associated with the consolidation of freight. Extensive literature
on location and network design models and solutions is available:
Mirchandani and Francis [28], Daskin [10], Drezner [12], Labbé et
al. [22], Labbé and Louveaux [21], Crainic and Laporte [9], Drezner
and Hamacher [13], and Daskin and Owen [11] review location
issues and literature, while Magnanti and Wong [25], Minoux [27],
Nemhauser and Wolsey [40], Salkin and Mathur [30], Ahuja et
al. [24] and Crainic [7] survey the network design field. Further,
within previous research in Kashansky et al. [18], transport systems
are prescribed as multi-scale complex systems [1, 17]. For these
complex systems, we proposed an optimized approach to monitor-
ing data collection in transportation systems [16]. Later, Validi et
al. [36] demonstrated a dynamic multi-scale control system architec-
ture, enabling distributed multi-scale monitoring and analysis, that
is designed to assure reliable operation of the transport network,
improved transportation costs and lower CO2 emissions.

2.2 Automated Optimization and Decision
Making

The optimal management of the multi-scale distributed resources is
one of the central problems for the previous decades and the current

economy. Logistics and transportation context is traditionally ad-
dressed via the VRP-based2 [23], CFLP-based3[6], ELS-based4 [29],
RCPSP-based5 [4, 19, 20] and GAP-based6[5] formulations, subject
to various additional resource constraints in the context of the
contemporary ERP/MRP [29] systems. This problem plays a promi-
nent role in the fields of physical resource distribution, logistics in
intelligent transportation systems in general. Determining the opti-
mal solution to all these formulations is NP-hard [8, 35], limiting
the scales of optimally solvable problems using conventional tech-
niques of mathematical programming and software like SCIP [14]
and CPLEX [3]. In recent years, there has been a growing trend
towards developing tractable solutions through structural decom-
position. This approach aims to create computational structures
that are more manageable and numerically efficient. Traditionally,
a common optimization method involves solving a centralized MIP
instance [32] over a planning horizon using various techniques such
as direct primal-dual methods [14], heuristic algorithms, or meta-
heuristics. However, when dealing with large-scale systems [1],
the centralized optimization approach becomes impractical due
to the exponential increase in complexity. This leads to signifi-
cant computational and communication overheads, especially in
data-intensive scenarios [34]. To address this challenge, hybrid
schemes [1] have been proposed to handle large-scale problems
effectively [37]. These schemes are capable of breaking down com-
plex problems into several smaller sub-problems, making them
more tractable. One interesting aspect that remains to be explored
is the establishment of static and dynamic relationships between
these controllers and groups of controllable agents [37]. This issue
was partially examined in a previous study of Kashansky et al. [15].
Our approach however, does not require complex decomposition
techniques and is expected to enable nearly optimal (Table 1 2.80%
Inital Gap) allocations in moderate-scale ITS environments. Nev-
ertheless, large scale experiments were studied in Yuji et al. [32]
in the context of SCIP framework performance evaluation over
general MIPLIB benchmark sets in the parallel environment.

3 ENVIRONMENT MODEL AND USE-CASE
SCENARIO

Environment model for transportation [8, 38] systems derives from
the interplay between production and consumption systems with
significant distances that often separate them. Production facil-
ities require transportation services to move raw materials and
composite products, in order to meet customer demands. To visual-
ize the process more closely, the complex transportation systems
carry the goods from source to destination, while monitoring sys-
tems transfer the data from the different subsystems of the whole
corresponding ITS architecture: from the vehicle to the data cen-
ters, where the artificial intelligence further processes the data and
makes fast performance decisions.

Shippers, which may be the producers of goods or some interme-
diary company (e.g., brokers) and demand efficient transportation.
Carriers supply transportation services to meet demand. Among
2Vehicle Routing Problem
3Capacited Facility Location Problem
4Economic Lot Sizing
5Resource-Constrained Project Scheduling Problem
6Generalized Assignment Problem
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others, railroads, maritime shipping lines, trucking companies, and
postal services, as well as seaports and other intermodal platforms,
under the premise of what form of services they provide [9] can
be understood as carriers in those transportation systems. In fact,
after development of the general architectural concept for multi-
scale control system architecture by Validi et al. [36], there was a
lack of the adequate optimization model operating on the level of
route-order abstraction layer. It was a particular motivation for this
model, given set of the recommendations in Wang et al. [37].

3.1 Transportation Model
3.1.1 Transportation Order Pool. We consider a set 𝑂 of 𝑛 orders
without precedence relations:

𝑂 = {𝑂𝑖 | 1 ≤ 𝑖 ≤ 𝑛} . (1)

Each order instance 𝑂𝑖 ∈ 𝑂 characterized by desired delivery due
date T ∗

𝑖
and relative importance factor 𝜎𝑖 .

3.1.2 Transportation Route Model. We consider a set 𝑅 of𝑚 het-
erogeneous routes without precedence relations:

𝑅 =
{
𝑅 𝑗 | 1 ≤ 𝑗 ≤ 𝑚

}
. (2)

Each route instance 𝑅𝑖 ∈ 𝑅 characterized by activation cost 𝑐 𝑗 , and
order capacity 𝐵∗

𝑗
.

3.1.3 Transportation Matrices. Let 𝑄𝑘 be the 𝑘𝑡ℎ transportation
matrix that contains the corresponding values ∀(𝑖, 𝑗) ∈ 𝑂 × 𝑅:

𝑄𝑘 =


𝑅1 · · · 𝑅 𝑗

𝑂1 𝑞𝑘 1,1 · · · 𝑞𝑘 1, 𝑗
.
.
.

.

.

.
. . .

.

.

.

𝑂𝑖 𝑞𝑘𝑖,1 · · · 𝑞𝑘𝑖,𝑗

 (3)

Let the values of the 𝑘𝑡ℎ transportation matrix correspond to:
(1) Route-order pair completion times 𝑞1𝑖 𝑗 ∈ R;
(2) Route-order pair costs 𝑞2𝑖 𝑗 ∈ R;
(3) Route-order pair availability binary matrix 𝑞3𝑖 𝑗 ∈ {0, 1};
(4) Route-order pair 𝐶𝑂2-impacts 𝑞4𝑖 𝑗 ∈ R;
(5) Route-order pair failure rates 𝑞5𝑖 𝑗 ∈ R;
The provided information defines a transportation problem on

the level of route-order abstraction layer. The orders are charac-
terized by their delivery due dates and relative importance factors,
while the routes are characterized by their activation costs and
order capacities. The transportation matrices contain various val-
ues for the route-order pairs, including completion times, costs,
availability, CO2 impacts, and failure rates.

4 OPTIMIZATION MODEL
In this section, we present a formal multi-objective model and a set
of definitions essential for our work.

4.0.1 Matching and Activation Variables. We define the matching
of 𝑂 orders with 𝑅 routes as a binary variable:

𝑥 : 𝑂 × 𝑅 → {0, 1},
where 𝑥𝑖 𝑗 = 1 indicates the assignment of the order 𝑂𝑖 with the
route 𝑅 𝑗 and 𝑥𝑖 𝑗 = 0 indicates the contrary. Further:

𝑦 : 𝑅 → {0, 1},

where 𝑦 𝑗 = 1 indicates activation of the route 𝑅 𝑗 and 𝑦 𝑗 = 0
indicates the contrary.

4.0.2 Total Transportation Costs. We define the total transportation
cost B(𝑥) of a matching 𝑂 orders with 𝑅 routes as:

B(𝑥) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑞2𝑖 𝑗 · 𝑥𝑖 𝑗 +
𝑚∑︁
𝑗=1

𝑐 𝑗 · 𝑦 𝑗 , (4)

where 𝑐 𝑗 is the activation cost for route 𝑅 𝑗 ∈ 𝑅.

4.0.3 𝐶𝑂2 Costs. We define the 𝐶𝑂2 costs CO(𝑥) as:

CO(𝑥) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝑞4𝑖 𝑗 · 𝑥𝑖 𝑗 , (5)

4.0.4 Importance. We define the importance I(𝑥) as:

I(𝑥) =
𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝜎𝑖 · 𝑥𝑖 𝑗 (6)

4.0.5 Risks Mitigation. We define the maximum fault probability
as:

𝑟∗ = max
𝑖, 𝑗

{𝑞5𝑖 𝑗 · 𝑥𝑖 𝑗 } ∀(𝑖, 𝑗) ∈ 𝑂 × 𝑅. (7)

By minimizing the maximum fault probability 𝑟∗ we make sure that
the corresponding risks are mitigated.

4.0.6 Route Capacity Constraints. We define the Route Capacity
constraints ∀𝑅 𝑗 ∈ 𝑅 as:∑︁

𝑖

𝑥𝑖 𝑗 ≤ 𝐵∗𝑗 · 𝑦 𝑗 ∀1 ≤ 𝑗 ≤ 𝑚 (8)

4.0.7 Deadline Constraints. The execution of the orders must com-
plete before a deadline T ∗

𝑖
on each route 𝑅 𝑗 ∈ 𝑅, ∀𝑂𝑖 ∈ 𝑂 :

𝑞1𝑖 𝑗 · 𝑥𝑖 𝑗 ≤ T ∗
𝑖 , ∀ (𝑖, 𝑗) ∈ 𝑂 × 𝑅. (9)

4.0.8 Order-Route Availability Constraints. Every order 𝑂𝑖 ∈ 𝑂

can be available for route 𝑅 𝑗 ∈ 𝑅 or not:

𝑥𝑖 𝑗 ∈
{

{0, 1} 𝑤ℎ𝑒𝑟𝑒 𝑞3𝑖 𝑗 = 1 ∀(𝑖, 𝑗) ∈ 𝑂 × 𝑅

{0} 𝑤ℎ𝑒𝑟𝑒 𝑞3𝑖 𝑗 = 0 ∀(𝑖, 𝑗) ∈ 𝑂 × 𝑅
(10)

4.0.9 Non-redundant Placement Constraints. Every order 𝑂𝑖 ∈ 𝑂

should match particular route 𝑅𝑖 ∈ 𝑅 (no duplicates):
𝑚∑︁
𝑗=1

𝑥𝑖 𝑗 ≤ 1, ∀1 ≤ 𝑖 ≤ 𝑛 (11)

Total sum for each order𝑂𝑖 ∈ 𝑂 over all routes 𝑅 𝑗 ∈ 𝑅 restricted
to be less or equal to 1, meaning that each order 𝑂𝑖 is assigned to
only one route 𝑅 𝑗 and there can also be unassigned orders 𝑂𝑖 .

4.1 Construction of the Objective Function
Further, to transform the multiple objective optimization problem
into a single objectivemodel, we chose factors for each objective and
transformed all into minimization objectives by changing the sign.
The factors 𝛼, 𝛽,𝛾 and 𝛿 are individually assigned according to the
importance of each objective and sum up to a total of 1, weighting
each single objective to a fraction of total optimization function.
We define the problem, where the constraints are equivalent to the
equations: (12b) � Eq.8, (12c) � Eq.9, (12d) � Eq.11 and (12e) �
Eq.10, as:
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min
𝑥,𝑟 ∗

𝛼 · B(𝑥) + 𝛽 · 𝑟∗ + 𝛾 · CO(𝑥) − 𝛿 · I(𝑥) (12a)

s.t:
∑︁
𝑖

𝑥𝑖 𝑗≤ 𝐵∗𝑗 · 𝑦 𝑗 , ∀𝑗 = 1, . . . ,𝑚 (12b)

𝑞1𝑖 𝑗 · 𝑥𝑖 𝑗≤ T ∗
𝑖 , ∀ 𝑖 = 1, . . . , 𝑛

𝑗 = 1, . . . ,𝑚 (12c)

𝑚∑︁
𝑗=1

𝑥𝑖 𝑗≤ 1, ∀𝑖 = 1, . . . , 𝑛 (12d)

𝑥𝑖 𝑗=

{
{0, 1} 𝑤ℎ𝑒𝑟𝑒 𝑞3𝑖 𝑗 = 1
{0} 𝑤ℎ𝑒𝑟𝑒 𝑞3𝑖 𝑗 = 0 , ∀ 𝑖 = 1, . . . , 𝑛

𝑗 = 1, . . . ,𝑚
(12e)

𝑦 𝑗∈ {0, 1} ∀𝑗 = 1, . . . ,𝑚 (12f)

When transforming multiple objectives in such a way, it is im-
portant to also normalize all the objective variables first. In case
of B(𝑥) and 𝐶𝑂 (𝑥), we normalized with the maximum value from
the cost matrix 𝑄2 and for I(𝑥), we normalized with the impor-
tance 𝜎 . This yields a single objective model in the mixed sense of
CFLP [6] and GAP-based[5] formulations. That approach provides
optimum in weak-Pareto sense [26, 39] for all objectives according
to the chosen factors and can easily be adjusted to prioritize certain
objectives more by modifying their corresponding scalarization
factors.

5 PRELIMINARY EVALUATION
Our experimental setup is based on an instantiated computational
cluster using Google Cloud Services (GCP). Further testing of the
model (Table 1 and Figs. 2, 1a and 1b) was run on a n1-standard-1
GCP VM with a setup of scipoptsuite-8.0.3 7 and an image of the
Debian-10 image family.

5.1 Preliminary Experimental Data
For our preliminary evaluation, we have considered the case with
maximum uncertainty. In particular, we generated random vectors
and matrices of the appropriate sizes as input for the generation of
the linear program. We used the build-in library random in Python
3.9.7 to generate uniformly distributed values and class A [15] for
the GAP-type constraints. The problem sizes we chose were𝑚 = 50
for the routes and 𝑛 = {50, 100, ..., 950, 1000} orders. The amount
of routes was fixed to simulate a realistic scenario where routes
are typically static over longer periods than the order counts and
orders were chosen from 50 to 1000 to investigate the scalability of
the model for various problem sizes.

5.2 Preliminary Numerical Results
The solving process of an instance with 50 routes and 250 orders
provided the plot in Fig. 1a, where we can see the evolution of
the upper and lower bound over time during the solving process.
Initially we can see many larger improvements for the upper bound,
while the lower bound only gradually moves closer to the upper
bound until the optimal solution is found. In Fig. 1b for 50 routes
and 700 orders we see similar results, but here we can see that

7https://www.scipopt.org.

(a) 50 routes and 250 orders.

(b) 50 routes and 700 orders.

Figure 1: Upper bound (blue) and lower bound (orange) plot-
ted over time in seconds. Solved on GCP instance with SCIP
8.0.3.

the upper bound was not improved over a longer time period and
eventually when some better bound were found the solving process
concluded soon after as well.

Table 1 illustrates the solving progress of a problem instance
with 𝑛 = 𝑚 = 50 with the counter emphasis settings for SCIP on
a single machine. LP heuristics find a primal solution after 0.2 s
to restrict the search neighborhood. More heuristics improve the
primal solution after 0.4 s seven times. After 0.2 s of computation,
when the first primal bound was set, the gap between primal and
dual bound started out at only 2.82%. A low initial duality gap here
is very important, because the search space grows rapidly for this
problem.

Finding a good primal-dual bound early keeps the search space
small and therefore results in much faster solving time for the
problem. In this table we see that after 1 s the B&B-tree spans 2000

https://www.scipopt.org
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Figure 2: Duality gap (primal-dual) in percentages between
upper and lower bounds over time during problem solving
using SCIP for the presented problem with fixed 50 routes
and orders ranging from 50 to 1000 with a step size of 50.

nodes. Looking at the size of the problem over time during the
solving process, we see that only three constraints and no variables
are reduced after the presolving step at 0.3 s.

From the makespan of all problems displayed in Fig. 2, we depict
that the problem time complexity for different orders scales mostly
linear with some outliers. Assuming that increasing the amount
of routes as well as the amount of orders will result in quadratic
complexity, we can conclude that overall the problem has high time
complexity and cannot easily be scaled up on a single node.

By using multiple nodes in SCIP and the UG framework [31], we
can distribute the solving process over multiple computing nodes
and increase the scalability of the problem. The process involves
splitting up the problem workload and distributing it to all available
nodes. During the pre-solving phase, the algorithm aims to fix
variables and detect redundancy of certain constraints. The result is
a typically smaller pre-solved instance from the SCIP environment,
distributed to all available worker processes, and embedded into
each (local) SCIP worker environment. This is the only completely
transferred instance that enables transferring differences between
a sub-problem and the pre-solved problem later. This approach
allows utilizing unused resources within particular partitions by
preserving locality and local load balancing.

Load balancing highly depends on the primal and dual bounds
updated during the solving process. As the primal bound is the value
of the best-found solution so far, the workers send any improved
solution to the master, distributing the updated primal bound to
all workers. If a worker receives an improved primal bound, it
immediately applies bounding and prunes all nodes in its search
tree that cannot contain any better solution.

6 CONCLUSION AND FUTUREWORK
In this work we have focused on the intelligent and sustainable
transportation processes through the design of the multi-objective
model for the logistic route-order dispatching system. Our model
considered a static ITS environment, operating on the level of route-
order abstraction layer. We have explored the concept of using SCIP
as framework [14] and found that framework efficiently solves
the problem on moderate problem dimensions. Smaller problem
sizes with 50 routes and up to 250 orders can be solved optimally
quite quickly. For problem sizes of 50 routes and up to 1000 orders
we get small relative gaps efficiently, so with some compromises
on precision these problem sizes can be solved efficiently. This
factor allows application of our approach to the wide variety of ITS
dimension scenarios, using conventional commercial optimization
MINLP frameworks like IBM CPLEX [3] and general purpose cloud
computing systems like Amazon AWS and Google Cloud.

For larger problem sizes we consider possible distributed B&B
frameworks [31] which can improve the scalability of the optimiza-
tion system substantially. Several parallelization schemes can deal
with large-scale MIPs beyond architectural capabilities by divid-
ing a complex problem into several less-complex sub-problems.
Future work will include experimentation with UG [31] - generic
framework to parallelize branch-and-bound based solvers in a dis-
tributed or shared memory computing environment. The ParaSCIP
extension developed using UG consists of a set of base classes to
instantiate parallel branch-and-bound based solvers.

6.1 Further integration of the Model with
State-of-Art ITS Data Frameworks

We plan to map the current transportation network and analyze,
using collected data and the degree of co-modality on national and
regional levels in Austria. The vehicles equipped with On-Board
Diagnostic (OBD) dongles collect data related to fuel consumption,
acceleration, and deceleration patterns, for forming different analy-
sis models. The analysis of the collected data concerning cost and
other measures for sustainable transport enables the comparison
of transportation modes, such as air, rail, and waterways. The re-
sults of this analysis will bring important suggestions for efficient
simulations.

6.2 Integration of the Model with Connected
and Automated Transport Modeling in
SUMO

Further, we plan to model connected and automated technologies
like platooning, aiming at reducing fuel consumption andCO2 emis-
sions using the open-source Simulation of Urban Mobility (SUMO)
simulation package [2]. To better depict, analyze and implement
the platooning of vehicles, we will integrate the Veins open source
vehicular network simulation framework [33] for vehicular commu-
nication, which relies on the OMNeT++ 8 discrete event simulator.
The integration of Veins, OMNeT++ and SUMO simulators enables
autonomous vehicles to cooperate using wireless communication
and exchange position, speed, and acceleration data.

8https://omnetpp.org/.

https://omnetpp.org/
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Table 1: Solving process after presolving stage for the optimization of the linear integer program, based on the model presented
in this paper, with 50 routes and 50 orders. The problem was solved on a single n1-standard-1 GCP VM with a setup of
scipoptsuite-8.0.3 and debian-10 image.

time node left LP iter LP it/n mem/heur mdpt vars cons rows cuts sepa confs strbr dualbound primalbound gap compl.
0.2s 1 0 995 - 17M 0 500 556 556 0 0 0 0 -7.624578e-02 – Inf unknown
0.2s 1 2 995 - 17M 0 500 556 556 0 1 0 0 -7.624578e-02 – Inf unknown

* 0.2s 34 22 1152 4.8 LP 33 500 556 556 0 1 0 0 -7.624578e-02 -7.415655e-02 2.82% unknown
* 0.2s 48 28 1186 4.1 LP 33 500 556 556 0 1 0 0 -7.624578e-02 -7.416917e-02 2.80% unknown
0.2s 100 36 1341 3.5 18M 42 500 556 556 0 1 0 0 -7.624578e-02 -7.416917e-02 2.80% unknown
0.3s 200 24 1559 2.8 18M 43 500 556 556 0 0 0 0 -7.624578e-02 -7.416917e-02 2.80% unknown

* 0.3s 204 1 1563 2.8 LP 43 500 556 556 0 1 0 0 -7.624578e-02 -7.422442e-02 2.72% 23.85%
* 0.3s 227 1 1695 3.1 LP 43 500 554 556 0 1 0 0 -7.624578e-02 -7.425330e-02 2.68% 37.60%
* 0.3s 300 20 1921 3.1 LP 43 500 553 556 0 1 0 0 -7.624578e-02 -7.428375e-02 2.64% 39.04%
* 0.4s 360 14 2019 2.9 LP 43 500 553 556 0 1 0 0 -7.624578e-02 -7.428740e-02 2.64% 53.88%
* 0.4s 369 12 2035 2.8 LP 43 500 553 556 0 1 0 0 -7.624578e-02 -7.473270e-02 2.02% 54.81%
0.4s 400 17 2102 2.8 18M 43 500 553 556 0 1 0 0 -7.624578e-02 -7.473270e-02 2.02% 56.41%
0.4s 500 15 2296 2.6 18M 43 500 553 556 0 1 0 0 -7.624578e-02 -7.473270e-02 2.02% 56.41%

* 0.4s 577 16 2436 2.5 LP 43 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 56.94%
0.4s 600 11 2470 2.5 18M 43 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 57.45%
0.5s 700 9 2673 2.4 18M 43 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 57.93%
0.5s 800 9 2890 2.4 18M 43 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 57.93%
0.5s 900 11 3103 2.3 18M 43 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.06%
0.6s 1000 9 3272 2.3 18M 43 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.21%
*1.0s 2200 9 5643 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.38%
1.1s 2300 9 5832 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.39%
1.1s 2400 9 6024 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.39%
1.1s 2500 7 6234 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.41%
1.2s 2600 9 6432 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.59%
1.2s 2700 11 6600 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.59%
1.2s 2800 9 6771 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.59%
1.3s 2900 9 6976 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.59%
1.3s 3000 13 7170 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.59%
1.3s 3100 7 7346 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.59%
1.4s 3200 11 7545 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.4s 3300 7 7719 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.4s 3400 9 7924 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.5s 3500 9 8118 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.5s 3600 7 8350 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.5s 3700 7 8562 2.0 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.6s 3800 5 8768 2.0 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.6s 3900 9 9005 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.7s 4000 5 9230 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.60%
1.7s 4100 9 9426 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
1.8s 4200 9 9592 2.0 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
1.8s 4300 9 9851 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
1.8s 4400 7 10096 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
1.9s 4500 5 10325 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
1.9s 4600 5 10579 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
1.9s 4700 11 10793 2.1 18M 51 500 553 556 0 1 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
2.0s 4800 13 10990 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
2.0s 4900 11 11183 2.1 18M 51 500 553 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 58.67%
*3.0s 7400 3 16823 2.1 18M 51 500 549 556 0 0 0 0 -7.624578e-02 -7.476253e-02 1.98% 77.90%

7 DATA AVAILABILITY
All data supporting findings are available from the authors upon
request.
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