
Edge-cloud continuum solutions for
urban mobility prediction and planning
LORIS BELCASTRO1, FABRIZIO MAROZZO1, ALESSIO ORSINO1, DOMENICO TALIA1, AND 
PAOLO TRUNFIO1

1Department of Informatics, Modeling, Electronics and Systems (DIMES), University of Calabria, Rende 87036, Italy (e-mail: {lbelcastro, fmarozzo, aorsino, 

talia, trunfio}@dimes.unical.it)

Corresponding author: F. Marozzo (e-mail: fmarozzo@dimes.unical.it).

ABSTRACT
In recent years, there has been an increase in the use of edge-cloud continuum solutions to efficiently 
collect and analyze data generated by IoT devices. In this paper, we investigate to what extent these 
solutions can manage tasks related to urban mobility, by combining real-time and low latency analysis 
offered by the edge with large computing and storage resources provided by the cloud. Our proposal is 
organized into three parts. The first part focuses on defining three application scenarios in which geotagged 
data generated by IoT objects, such as taxis, cars, and smartphones, are collected and analyzed through 
machine learning-based algorithms (i.e., next location prediction, location-based advertising, and points of 
interest recommendation). The second part is dedicated to modeling an edge-cloud continuum architecture 
capable of managing a large number of IoT devices and executing machine learning algorithms to 
analyze the data they generate. The third part analyzes the experimental results in which different design 
choices were evaluated, such as the number of devices and orchestration policies, to improve the 
performance of machine learning algorithms in terms of processing time, network delay, task failure, 
and computational resource utilization. The results highlight the potential benefits of edge and cloud 
cooperation in the three application scenarios, demonstrating that it significantly improves resource 
utilization and reduces the task failure rate compared to other widely adopted architectures, such as edge- 
or cloud-only architectures.

INDEX TERMS Edge-cloud architecture, IoT infrastructure, Edge computing, Urban computing, Smart 
cities, Urban mobility

I. INTRODUCTION processing data closer to where they are generated [4]. In
this way, the following advantages can be achieved: 𝑖) low
latency, since the computation takes place close to the data
source; 𝑖𝑖) energy saving, as battery-limited devices could
offload computing tasks to edge servers for reducing energy
consumption; 𝑖𝑖𝑖) privacy preserving, since data are not
necessarily uploaded to the cloud, but are processed and
analyzed locally; and 𝑖𝑣) scalability, as a strongly decentral-
ized and distributed approach allows to manage increasing
workloads efficiently. The benefits deriving from solutions
based on edge computing can be complemented by using
those provided by the cloud, as the latter allows to aggregate
large amounts of data persistently and perform compute-
intensive analyzes using scalable computational resources.

For all these benefits, edge-cloud continuum solutions
are increasingly being proposed for new frontier applica-
tion scenarios such as smart cities, industrial IoT and smart

The rapid spread of Internet of Things (IoT) devices is
generating huge volumes of data at the network edge [1].
Managing this data flow using highly centralized solutions,
such as those based on cloud platforms, is extremely inef-
fective in terms of response time, network traffic manage-
ment, power consumption, and scalability [2]. Uploading
such huge volumes of data directly to the cloud leads to
significant c onsumption o f b andwidth a nd r equires t he use
of high-power computing solutions to manage the resulting
workload. Furthermore, in many application fields s uch as
medicine and security, it is essential to offer low-latency
and privacy-preserving services, as data transfer delay or
malicious data manipulation can cause significant disservices
and even loss of life [3].

In recent years, researchers and IT companies have pro-
posed the adoption of the edge computing paradigm for

1



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

healthcare [5], [6]. Particularly, in the field of urban mo-
bility, the process of collecting, integrating and analyzing
data generated from many sources can greatly benefit from
scalable architectures and proximity solutions [7]. For ex-
ample, tasks like driver assistance, collision avoidance and
traffic sign recognition, which require real-time analysis and
low response times, can benefit from edge computing [8].
Differently, tasks like diagnostic data collection and analysis,
route calculations and targeted advertising, which require a
lot of computational resources and access to large datasets,
can benefit from the use of cloud computing.

In this paper we analyze how the compute continuum can
be exploited to efficiently manage tasks related to urban mo-
bility in large-scale computing environments. In particular,
an edge-cloud continuum architecture is exploited to analyze
geotagged data generated at the network edge by the move-
ments of IoT objects such as taxis, cars, and smartphones.
Once collected, these data can be analyzed through machine
learning algorithms in real-time to provide solutions to differ-
ent problems in our daily life. For example, 𝑖) for taxis, dis-
covering the location to which they will have to move to more
likely find new passengers; 𝑖𝑖) for cars, delivering targeted
advertising based on the positions and interests of drivers;
and 𝑖𝑖𝑖) for tourists, recommending new points of interest to
visit based on what they like. The main contributions of this
work are (𝑖) the description of three application scenarios,
in which geotagged data, generated during the movements
of IoT objects (e.g., taxis, cars, smartphones), are collected
and processed by machine learning algorithms (i.e., next
location prediction, location-based advertising, and points of
interest recommendation); (𝑖𝑖) a modeling part that defines
an edge-cloud continuum architecture able to manage a large
number of IoT devices and to efficiently execute machine
learning algorithms to analyze the data they generate; (𝑖𝑖𝑖)
an experimental part in which different design choices are
evaluated (e.g., number of devices, type of task, orchestration
policies) to improve the performance of machine learning
algorithms in terms of processing time, network delay, task
failure and computational resource utilization. By evaluating
different application scenarios in a real-world environment
(the city of Rome) and using settings derived from actual
data, we provide a complete and advanced understanding of
the benefits of edge-cloud architectures for urban mobility
management.

The achieved results showed that the use of an edge-cloud
continuum architecture, supported by efficient orchestration
policies (e.g., network- or utilization-based), improves re-
source utilization and ensures a lower task failure rate in
comparison to the traditional cloud- or edge-only configu-
rations, where data are entirely processed at the cloud or
the edge respectively. Specifically, for all the considered
application scenarios, the orchestration policies were able to
obtain a significant reduction in processing time (up to 87%
compared to the edge-only configuration), a drastic reduction
of the number of failed tasks (up to 40% compared to both
cloud- and edge-only configurations), and a good lowering

of resource utilization (up to 38% compared to the edge- and
cloud-only configurations).

The structure of the paper is as follows. Section II dis-
cusses related work and introduces the problem statement.
Section III describes the proposed edge-cloud continuum
architecture. Section IV presents three application scenarios
as case studies and a performance evaluation by using two or-
chestration policies. Finally, Section V concludes the paper.

II. RELATED WORK
Urban computing is a research field that focuses on the study
and development of systems and methods for supporting
decision-making in urban environments using data generated
in cities [9]. In particular, urban mobility is a sub-field of
urban computing that refers to the mobility of people and
vehicles within cities, including the challenges and oppor-
tunities associated with the planning, management and op-
timization of urban transport systems [10]. The analysis of
large amounts of geotagged data generated by IoT devices
installed on means of transport and road infrastructures can
be used for many purposes, including traffic flow monitoring
and transport route planning, decision-making to improve
the quality of urban life and the provision of location-based
services to citizens [11].

In this scenario, the edge-cloud compute continuum has
emerged as a solution to process and analyze the data gener-
ated by IoT devices efficiently and in real-time [12], [13].
However, effective resource allocation and orchestration
strategies are critical for maximizing the benefits of edge-
cloud computing, and for this reason, researchers have fo-
cused on optimizing the placement of tasks and data in edge-
cloud systems, considering factors such as performance, en-
ergy efficiency, cost and reliability [14], [15]. To this end,
in the literature different techniques have been proposed that
make use of supervised/unsupervised machine learning, deep
learning and reinforcement learning [16].

Designing and testing large-scale and multi-layer edge-
cloud architectures are still open issues, especially for archi-
tectures composed of several components based on different
technologies and software stacks [17], [18]. Using a large
number of hardware devices for prototyping could be very
expensive, as well as setting up real-world experiments could
be logistically challenging [19]. For these reasons, simulat-
ing edge-cloud continuum solutions is important because it
allows testing and evaluating system performance to identify
and resolve problems or limitations before the deployment
in a real context [20]. In particular, the simulation of edge-
cloud architectures allows evaluating many aspects including
𝑖) the scalability of the system and its ability to manage large
amounts of data generated by IoT devices; 𝑖𝑖) the latency
of the system, i.e., the time between data collection and
processing, ensuring that the system provides results in real-
time; 𝑖𝑖𝑖) the ability to exploit both edge and cloud resources
efficiently, to optimize data processing and transmission and
to ensure energy sustainability as well. The main issues of
modeling IoT systems and how simulation approaches can

2



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

assist the design and validation of edge-cloud architectures
are discussed in different research papers [21]–[23].

In terms of tools and software solutions, different open-
source simulators have been proposed in recent years to
simulate IoT environments, such as iFog-Sim [24], IoTSim
[25] and EdgeCloudSim [26]. Several research works have
made use of simulators to test the behavior of specific IoT
applications on edge-cloud architectures [27]–[30]. Unlike
these, our work analyzes how a large-scale edge-cloud archi-
tecture can be leveraged to efficiently manage urban mobility
applications based on machine learning. Through three appli-
cation scenarios, we show how the data generated by different
IoT devices can be efficiently managed and processed using
an edge-cloud continuum architecture.

A. APPLICATION SCENARIOS
Urban mobility data can be used in multiple ways to im-
prove people’s quality of life and make cities more efficient
and sustainable. For example, they can be used for traffic
monitoring, route planning and transportation management,
among others. We have decided to focus our attention on
three different use cases where the geotagged data generated
by three different types of IoT objects (i.e., taxis, cars and
smartphones) are analyzed through machine learning algo-
rithms. Specifically, the following cases are considered: 𝑖)
the location to which taxis will have to move to more likely
find new passengers; 𝑖𝑖) targeted advertising based on the
positions and interests of car drivers; and 𝑖𝑖𝑖) suggestion
of the next points to visit based on tourist preferences and
behaviors.

Geotagged data generated by taxis can be used to predict
their next destination, reducing route costs and traffic con-
gestion. Unlike other forms of public transportation, taxis do
not have fixed routes and plan their routes after a passenger
is dropped off [31]. GPS trackers in taxis allow for real-time
monitoring of the vehicle’s location and trajectory analysis
can be used to predict where a taxi will move next, known
as the next location prediction problem [32], which can be
modeled as a short-term or long-term prediction task. There
are several methods in the literature for this problem, such as
frequent patterns and association rules [33], [34], or machine
learning-based methods like clustering and Markov chain-
based framework [35] or neural network-based models [36].

Geotagged data from vehicles can be leveraged for
location-based advertising, which can provide car drivers
with relevant products, services and offers based on their
habits while they are on the road. Popular approaches include
using GPS data [37] from the driver’s in-car navigation
system to deliver location-based ads and offers (e.g., a driver
passing by a restaurant might receive a coupon for a dis-
counted meal), as well as using contextual data [38] such as
time of day and traffic conditions (e.g., a driver stuck in traffic
might receive an ad for a nearby coffee shop).

Similarly, geotagged data generated by people during their

this, data mining algorithms are used to discover frequent
patterns in user trajectories across interesting locations fre-
quently visited by users, commonly referred to as Points-
of-Interest (PoIs) [40]. A common application is related to
PoIs recommendation to suggest places to visit based on a
tourist’s route collected from the smartphone during a trip
for improving touristic services [41], [42]. Machine learning
and data mining models have been used in previous work
to solve this problem, such as using a bidirectional LSTM
neural network [43] or sequential pattern analysis [44].

B. MACHINE LEARNING SOLUTIONS FOR LARGE
URBAN AREAS
With the growth of urban areas and the number of IoT de-
vices, there is an increasing need to develop machine learning
algorithms that can scale efficiently on distributed architec-
tures such as those of the edge-cloud continuum. Federated
learning, through the hierarchical aggregation of learning
models, has emerged as a promising paradigm for overcom-
ing the limitations of traditional centralized approaches, such
as those related to bandwidth, latency, and centralized data
processing and storage. In federated learning, data are kept
on local devices and only model updates are shared, ensuring
greater scalability and efficiency but also privacy preserva-
tion of sensitive data, making it suitable for large-scale IoT
environments such as those of the Internet of Vehicles (IoV)
and Intelligent Transportation Systems (ITS) [45].

Recently, several frameworks have been proposed in the
IoV that use federated learning. For instance, Balasubra-
manian et al. [46] proposed a cooperative edge intelligence
framework that uses a hybrid stacked autoencoder model
called VeNet to perform anomaly detection and classifica-
tion tasks among multiple edge devices in a decentralized
manner. It consists of a local autoencoder that is trained
on data collected by each edge device, and a global au-
toencoder that is trained on a subset of the data from all
the edge devices. Similarly, Zhou et al. [47] introduced a
novel two-layer federated learning framework for IoV that
allows for aggregating models with different architectures
and hyperparameters. This approach allows for more flexibil-
ity in model selection and greater performance of federated
learning frameworks. Overall, the experimental evaluations
on real-world and large-scale datasets demonstrate the scal-
ability, efficiency, and potential benefits of using federated
learning in urban computing contexts, making it suitable in
large-scale IoT environments.

III. SYSTEM ARCHITECTURE
Although cloud computing provides high scalability with dy-
namic resource allocation, it may raise performance issues as
a result of the centralization of data collection and processing
[48], [49]. On the other hand, an edge-cloud continuum archi-
tecture might address these issues by enabling efficient and
fast management of the massive volume of data generated
by IoT devices. In particular, these architectures enhance
computation capabilities and scalability while reducing net-

movements can be used to provide insights for destination 
planning, service design and marketing [39]. To achieve

3



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

work congestion and failed tasks. For these reasons, such
architectures can also have a significant impact on urban
mobility applications. Figure 1 shows a three-layer edge-
cloud continuum architecture for supporting urban mobility.

The edge-cloud continuum leverages all the resources
from the edge of the network (e.g., IoT devices) to the core
(e.g., cloud data centers) [50]. Specifically:

∙ The device layer includes the components that are
leveraged by vehicles and humans to share information
during their movements across different urban cells,
which define a partitioning of an urban area. These
components (e.g., GPS, infotainment devices, on-board
cameras) produce a very high volume of data in different
formats and in real-time, which is sent to the edge server
of the current cell. This data can be combined with
the personal data of the users (e.g., preferences and
behaviors) and information about the surrounding envi-
ronment, to deliver advanced, customized and context-
aware services.

∙ The edge layer includes heterogeneous hardware com-
ponents (e.g., gateways, micro data centers), which
serve as elements of the infrastructure that collect and
partially process raw data generated at the device layer.

∙ The cloud layer provides access to a large set of com-
puting and storage resources, which can be dynamically
allocated for executing tasks that cannot be performed
by edge servers. From the client’s perspective, the cloud
is an abstraction for remote and infinitely scalable com-
puting and storage resources. For these reasons, it has
emerged as an effective computing paradigm to meet the
challenge of processing big data in a limited time and to
provide an efficient data analysis environment.

The edge layer includes a key component called Edge Or-
chestrator (EO), which is responsible for managing and co-
ordinating the execution of tasks, determining whether each
task will run on the edge or cloud. It can be programmed to
apply different orchestration policies to optimize the overall
performance of the architecture. These policies can take into
consideration many parameters, such as network congestion,
data volume to be processed, and status and load level of both
edge nodes and cloud. Two orchestration policies were em-
ployed in this work, namely network-based (edge/cloud-NB)
and utilization-based (edge/cloud-UB), whose pseudocode
is shown in Algorithm 1. In particular, for each task to
be scheduled, the cell and the associated edge server are
identified from the coordinates of the IoT object generating
that task (lines 3-4). Then, the desired orchestration policy
(i.e. utilization-based or network-based) is applied to decide
where the incoming task must be executed. Specifically, the
utilization-based policy schedules tasks based on the utiliza-
tion of edge nodes (lines 6-12). If the average edge utilization
is greater than a fixed threshold (i.e., 𝜃1), the incoming task is
offloaded to the cloud (lines 8-9); otherwise, it is assigned to
the edge layer (lines 10-11). The network-based orchestration
policy (lines 14-21) measures the network delay from the

device that generated the task to the cloud (line 14). For
deciding where it must be executed, a dummy task that
uploads and downloads 1 MB of data is exploited. In detail,
the algorithm measures the upload delay which includes both
the transmission delay (i.e., the time required to transmit the
data over the network) and the processing delay (i.e., the time
required for the cloud to process the request). Particularly, the
transmission delay includes both the time required to transmit
the request and response over the network, which depends
on the size of the data being transmitted and the available
transmission rate, and propagation delay, which is due to the
distance between the server and the cloud. Then, this delay
is leveraged to determine the percentage of used bandwidth
compared to the maximum bandwidth (line 15). If it is less
than a fixed threshold (i.e., 𝜃2), the incoming task is offloaded
to the cloud (lines 16-17); otherwise, it is assigned to the edge
layer (lines 18-19). In the end, according to the chosen layer,
the task is assigned to the cloud or the edge server of the
current cell (line 22).

In the experimental section, the values of thresholds were
chosen according to conventions often used on cloud plat-
forms. Indeed, in different technical reports [51]–[53], a
threshold value is used to determine when to scale the com-
puting resources (e.g., 80% of the total resources). This is
because, if the percentage of resource utilization reaches the
threshold value, it can indicate that such resources are under
pressure and may not be able to handle any further requests.

Algorithm 1 Edge Orchestrator
1: Initializing EO and orchestration policy p.
2: procedure GETSERVER(𝑡𝑎𝑠𝑘, 𝑐𝑜𝑜𝑟𝑑, 𝜃1, 𝜃2)
3: 𝑐𝑒𝑙𝑙← 𝑔𝑒𝑡𝐶𝑒𝑙𝑙(𝑐𝑜𝑜𝑟𝑑)
4: 𝑒𝑑𝑔𝑒𝑆 ← 𝑔𝑒𝑡𝐸𝑑𝑔𝑒𝑆𝑒𝑟𝑣𝑒𝑟(𝑐𝑒𝑙𝑙)
5: 𝑙𝑎𝑦𝑒𝑟 ← 𝑛𝑢𝑙𝑙
6: if 𝑝 == 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛_𝐵𝑎𝑠𝑒𝑑 then
7: 𝑒𝑑𝑔𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛← 𝑔𝑒𝑡𝐸𝑑𝑔𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛()
8: if 𝑒𝑑𝑔𝑒𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛>𝜃1 then
9: 𝑙𝑎𝑦𝑒𝑟 ← 𝐶𝐿𝑂𝑈𝐷

10: else
11: 𝑙𝑎𝑦𝑒𝑟 ← 𝐸𝐷𝐺𝐸
12: end if
13: else
14: 𝑤𝑎𝑛𝐷𝑒𝑙𝑎𝑦 ← 𝑔𝑒𝑡𝑈𝑝𝐷𝑒𝑙𝑎𝑦(𝑡𝑎𝑠𝑘.𝑔𝑒𝑡𝐷𝑒𝑣𝑖𝑐𝑒(),

𝐶𝐿𝑂𝑈𝐷)
15: 𝑤𝑎𝑛𝑈𝐵𝑊 ← 𝑔𝑒𝑡𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑤𝑎𝑛𝐷𝑒𝑙𝑎𝑦)
16: if 𝑤𝑎𝑛𝑈𝐵𝑊<𝜃2 then
17: 𝑙𝑎𝑦𝑒𝑟 ← 𝐶𝐿𝑂𝑈𝐷
18: else
19: 𝑙𝑎𝑦𝑒𝑟 ← 𝐸𝐷𝐺𝐸
20: end if
21: end if
22: return (𝑙𝑎𝑦𝑒𝑟 == 𝐸𝐷𝐺𝐸)?𝑒𝑑𝑔𝑒𝑆 : 𝑐𝑙𝑜𝑢𝑑
23: end procedure

IV. EXPERIMENTAL EVALUATION
To evaluate the performance of the proposed edge-cloud
continuum architecture, we used the EdgeCloudSim simula-
tor and considered three different urban mobility scenarios
(taxis, cars and tourists with smartphones). Among the open-

4



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

Cell 1

Cell 2

AP AP

Edge
orchestrator

WAN

Cloud layer

Edge layer

Device layer

Edge
server 1

Edge
server 2

Edge
server 3

Edge
server N

AP AP

Cell N

Cell 3

FIGURE 1. The edge-cloud continuum architecture.

TABLE 1. Description of the main EdgeCloudSim simulation parameters

Parameter Description

Num. of IoT objects Number of IoT objects used in the simulation
scenarios.

Num. of edge servers Number of edge servers.

MIPS for edge server VM Computing processor’s speed of edge servers
in terms of Million Instructions Per Second.

MIPS for cloud VM Computing processor’s speed of cloud in
terms of Million Instructions Per Second.

Poisson interarrival Mean interarrival time between two tasks.
Active period The active period of the task.
Idle period The idle period of the task.
Upload data size Mean input file sizes to upload.
Download data size Mean output file sizes to download.

Task length Mean number of instructions to execute the
incoming task.

source simulators discussed in Section II, we have chosen
EdgeCloudSim, which is particularly well-suited for mod-
eling urban mobility scenarios, since it supports different
architectures, devices, and device mobility [26]. Table 1
reports the main parameters required by the simulator along
with their description.

The three different applications are concerned with urban
mobility in which machine learning algorithms are used to
analyze large sets of geotagged data generated during the
movements of IoT objects. In particular:

1) Application scenario 1 is about the taxi destination pre-
diction problem, aimed at establishing the next position
where taxis will have to move to have a better chance
of finding new customers.

2) Application scenario 2 models the problem of deliv-
ering location-based and targeted advertising to car
drivers based on the position of the car and the interests
of the driver.

3) Application scenario 3 concerns the next location rec-

ommendation problem applied to tourists, aimed at
suggesting new points of interest to visit based on their
movements collected by their smartphones.

For each scenario, we considered three common tasks:
∙ Data collection task: it consists in collecting and pre-

processing the data generated at the device layer (e.g.,
data generated by IoT objects).

∙ Training task: it consists in training a machine learning
model, which is regularly updated with new mobility
patterns. In these experiments, we used a centralized
approach for model update. This turns out to be an
appropriate choice according to the size of the urban
area and the number of devices considered, in contrast
to the approaches based on federated learning which are
more suitable for larger urban areas scenarios.

∙ Prediction task: it exploits the trained model for sug-
gesting the next location where a taxi should move
to find new passengers or to provide location-based
advertising and suggestions to car drivers and tourists.

Table 2 reports the main parameters used to configure the
simulations, which have been extracted from official reports
of public administrations or scientific papers. In particular,
we used Rome in Italy as the reference city, and according to
the official report [54] we have defined the number of taxis,
cars and tourists, i.e. 10K, 100K and 100K respectively. The
city has been divided into 100 cells covering about 1𝑘𝑚2

each. The infrastructure is composed of an edge layer with
100 edge servers configured as a virtual machine (VM) hav-
ing 4 cores, 4 GB of RAM and 64 GB of storage memory, and
a cloud layer configured as a VM equipped with 8 cores, 32
GB of RAM and 1 TB of storage memory. In our simulations,
IoT devices follow a Nomadic Mobility Model, in which the
time a device remains in a cell before moving to a nearby
one is taken from an exponential distribution. The mean

5



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

value of the exponential distribution is set to 140 seconds
for application scenarios 1 and 2, and at 900 seconds for
application scenario 3. In fact, considering that the average
speed of a vehicle in the center of Rome is estimated at 26
km/h [55] and that the city area has been divided into cells
covering areas of 1𝑘𝑚2, vehicles at this speed cross a cell
on average in about 2.3 minutes (i.e., 140 seconds). Instead,
the average speed of a pedestrian walking at a slow pace is 4
km/h [56], therefore the time taken to pass from one cell to
another is about 15 minutes (i.e., 900 seconds).

The training and inference times together with the infor-
mation on the hardware characteristics reported in [35], [40]
and [44], have been used to determine the type of tasks
and their average length for application scenario 1, 2 and 3
respectively. Moreover, for each task (i.e., data collection,
training and prediction) in each application scenario, a set of
parameters are required, including the Poisson interarrival,
the active/idle period time of tasks, and the amount of data
that is downloaded and uploaded. The Poisson interarrival
time is used to define the rate at which the devices generate
the different types of tasks. Overall, for data collection and
prediction tasks modeling, the interarrival times were set to
low values to reflect the high level of devices’ activity in
the urban area under consideration. Conversely, higher values
were chosen for the training tasks to model that they are less
recurring (e.g., periodic retraining of the machine learning
model might occur once a day). The active and idle periods
are used to control the amount of time a device spends
actively generating or not generating a specific task, while
the upload/download data sizes control the amount of data
generated and transmitted by devices in the simulation. For
example, large upload and download data sizes indicate a
task with high data transmission requirements, such as the
prediction and data collection tasks that involve significant
data exchange.

Among all the parameters described, the number of IoT
objects, the Poisson interarrival time and the task length are
the ones that mostly drive the results of our simulations and,
for this reason, we mainly focused on them to define the
different tasks in the application scenarios. Other parameters
required to configure and run the simulations (e.g., active/idle
period and download/upload data size) were defined differ-
ently for each task but uniformly across scenarios.

A. PERFORMANCE EVALUATION
We carried out a large number of experiments to evaluate the
edge-cloud continuum architecture. To make the simulation
results more significant, we repeated the experiments 10
times for each input configuration and reported the mean
values. The experiments are used to assess the behavior of
the edge-cloud continuum solution compared to centralized
ones that exploit only cloud or edge resources. Specifically,
the four configurations we evaluated are the following:

∙ Cloud-only: tasks are performed exclusively on the
cloud.

∙ Edge-only: tasks are performed directly on the edge.

TABLE 2. Simulation parameters for the three scenarios.

Parameter Scenario1
(Taxis)

Scenario2
(Cars)

Scenario3
(Tourists)

Num. of IoT objects 10𝑘 100𝑘 100𝑘

Num. of edge servers 100 100 100
Edge processing speed (MIPS) 2.5𝑘 2.5𝑘 2.5𝑘
Cloud processing speed (MIPS) 300𝑘 300𝑘 300𝑘
WLAN bandwidth (Mbps) 300 300 300
WAN bandwidth (Mbps) 150 150 150
Waiting time in a cell (s) 140 140 900

Data collection task
Task length (MI) 25𝑘 25𝑘 25𝑘
Poisson interarrival (s) 1𝑘 1.5𝑘 2𝑘
Active period (s) 10 10 10
Idle period (s) 10 10 10
Upload data size (KB) 200 200 200
Download data size (KB) 1 1 1

Training task
Task length (MI) 60𝑀 30𝑀 30𝑀
Poisson interarrival (s) 10𝑘 35𝑘 35𝑘
Active period (s) 500 500 500
Idle period (s) 10 10 10
Upload data size (KB) 1 1 1
Download data size (KB) 1 1 1

Prediction task
Task length (MI) 50𝑘 40𝑘 35𝑘
Poisson interarrival (s) 600 900 1000
Active period (s) 5 5 5
Idle period (s) 10 10 10
Upload data size (KB) 200 200 200
Download data size (KB) 200 200 200

∙ Edge/cloud-UB and edge/cloud-NB: tasks are per-
formed locally on edge servers or remotely in the
cloud based on the policy of the edge orchestrator (i.e.,
network-based and utilization-based).

Regarding the edge/cloud configurations, as discussed in
Algorithm 1, the decision whether to offload a task to the
cloud or perform it on the edge server is driven by two main
parameters, i.e. the two thresholds 𝜃1 and 𝜃2. In the experi-
mental evaluation of all application scenarios, the threshold
for the utilization- and network-based policies was set at
80% [51]–[53], which means that the computing and network
resources are preserved from being used no more than 80%
of their capacity to avoid their saturation.

The configurations were evaluated and compared on four
different metrics, which are the average processing time,
percentage of failed tasks, network delay and VM utilization.

1) Application scenario 1: next location prediction for taxis
In this section, we present the main results we obtained for
the scenario related to taxi destination prediction. Figure 2
reports the performance metrics for each of the four con-
figurations (i.e., cloud-only, edge-only, edge/cloud-NB, and
edge/cloud-UB). As stated before, the application is modeled
to simulate the city of Rome, which has around 10𝑘 taxi
licenses according to official data [54]. However, we consid-
ered a variable number of taxis, ranging from 5𝑘 to 12.5𝑘,
to investigate how a different number of taxis can impact the
performance metrics in the different configurations.

6



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

6000 8000 10000 12000
Number of vehicles

0

20

40

60

80

100

Av
er

ag
e 

pr
oc

es
sin

g 
tim

e 
(s

) Cloud-only
Edge-only
EO-UB
EO-NB

(a) Processing time.

6000 8000 10000 12000
Number of vehicles

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f f
ai

le
d 

ta
sk

s (
%

) Cloud-only
Edge-only
EO-UB
EO-NB

(b) Failed tasks.

6000 8000 10000 12000
Number of vehicles

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e 

ne
tw

or
k 

de
la

y 
(s

) Cloud-only
Edge-only
EO-UB
EO-NB

(c) Network delay.

6000 8000 10000 12000
Number of vehicles

0

20

40

60

80

100

Av
er

ag
e 

VM
 u

til
iza

tio
n 

(%
) Cloud-only

Edge-only
EO-UB
EO-NB

(d) VM utilization.

FIGURE 2. Performance results for the different configurations (cloud-only, edge-only, edge/cloud-UB and edge/cloud-NB) for application scenario 1.

results obtained show a low variance, with a relative standard
deviation that is at most 2% with respect to the mean value.

Figure 2(c) shows the average network delay. In particular,
it emerges how the cloud-only configuration generates a
very high network delay because of data transfer from the
edge layer to the cloud, resulting in a significant increase
in communication delay (up to around 98% higher than the
edge-only solution), while processing data locally at the edge
does not produce significant effects. For the network delay,
simulation results showed a negligible relative standard devi-
ation below the 1%.

Figure 2(d) illustrates the average VM utilization obtained
by the different simulated configurations, with a relative devi-
ation from the mean value being at most 7%. The edge/cloud-
NB achieved the best result showing a low utilization of
resources while keeping, as discussed, a low processing
time and a low percentage of failed tasks. Reducing the
use of VMs is a crucial aspect in large-scale applications
that involve large computational resources because it allows
for optimizing costs and energy consumption. Additionally,
reducing the risk of saturating computational resources al-
lows for handling any unexpected workload peak that may
occur. It should be also noted that the edge-only configuration
produces a significant increase in the VM utilization for a
high number of vehicles, but it still achieves a lower task
failure rate than the cloud-only one (see Figure 2(b)). If

The average processing time obtained by the different 
configurations is shown in Figure 2(a). The achieved results 
are stable and consistent over the different runs and exhibit 
low variance. On average, the relative standard deviation is 
at most 4% compared to the mean value over the 10 runs. 
In particular, the edge-only showed the worst results, with 
a significant drop in performance as the number of vehicles 
increased (the processing time increases from around 10 
seconds with 5𝑘 vehicles up to around 70 seconds with 12.5𝑘 
vehicles). Instead, the cloud-only configuration a chieved a 
very low average processing time. However, it dramatically 
increases the number of failed tasks as the number of vehicles 
increases. In fact, as shown in Figure 2(b), the percentage 
of failed tasks for the cloud- and edge-only architectures 
increases rapidly as the number of vehicles increases. In 
particular, a steep increase can be observed when using more 
than 7.5𝑘 vehicles: this means that, as long as there are few 
vehicles, the cloud-only architecture can handle the incoming 
workload better than the other configurations, b ut a s the 
number of devices increases it leads to a higher percentage 
of failed tasks. On the other hand, the use of the edge 
orchestrator leads to a lower task failure rate (on average 
6.8% for edge/cloud-NB and 1.3% for edge/cloud-UB). This 
is a crucial aspect to be considered since in many contexts 
having a high number of failed tasks can compromise the 
usability of the IoT application. Also for this metric, the

7



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

EO-UB EO-NB
Orchestration policy

0

20

40

60

80

100

VM
 U

til
iza

tio
n 

Ed
ge

/C
lo

ud
 (%

)

Edge
Cloud

FIGURE 3. Average VM utilization on both cloud and edge with the two orchestration policies for application scenario 1.

we analyze in detail the percentage of VM utilization for
the two edge/cloud configurations, we can get more details
about the behavior of the edge orchestrator. In particular,
Figure 3 shows the percentage of VM utilization on both
cloud and edge when considering 12.5𝑘 vehicles. In this case,
the utilization-based policy results in a higher utilization of
the edge resources (73% compared to 49% of cloud), while
the network-based policy produces a higher utilization of
cloud resources (57% compared to 12% of edge).

It is worth noting that a task can fail for one of three
reasons: VM capacity, low network bandwidth or due to
mobility. In particular, if the utilization of a VM is too high,
it may reject incoming tasks. Similarly, if too many vehicles
connect to the same edge server, the network may become
congested and tasks may fail. Finally, a task may fail due
to the vehicle moving from one cell to another, according to
the Nomadic Mobility Model. As an example, if we analyze
the percentage of failed tasks in the cloud-only configuration,
we find out that only the 0.02% fails due to low computation
capacity, as the cloud has enough computational resources,
while almost all failed tasks are due to network congestion.
On the other hand, the edge/cloud-NB is able to balance data
traffic between cloud and edge, avoiding sending traffic over
the WAN when it is congested.

Overall, the edge/cloud-UB and edge/cloud-NB showed
the best results, outperforming the conventional cloud- or
edge-only architectures. Compared to the edge-only archi-
tecture, the use of the edge orchestrator leads to a drastic
reduction in processing time, which ranges from 30% for
edge/cloud-UB to 87% for edge/cloud-NB. In addition, com-
pared to both cloud- and edge-only architectures, it permits to
reduce the number of failed tasks (up to 38% for edge/cloud-
UB and 40% for edge/cloud-NB) and the VM utilization (up
to 29% for edge/cloud-UB and 38% for edge/cloud-NB).

2) Application scenarios 2 and 3: location-based advertising
for car drivers and PoIs recommendation for tourists
In this section we present the main results obtained by
simulating application scenarios 2 and 3, which model the
problem of location-based advertising for car drivers and
points of interest recommendation for tourists. For the sake

of brevity, we have not considered a variable number of IoT
objects (i.e., vehicles and people), but only the one closest to
the real one. In particular, we considered 100𝑘 IoT objects for
both scenarios, which is about the number of cars and tourists
that move around the city of Rome every day [54].

Figure 4 reports the performance metrics for each of the
four configurations, i.e., cloud-only, edge-only, edge/cloud-
UB and edge/cloud-NB. Specifically, Figures 4(a), 4(b), 4(c)
and 4(d) report the average processing time, percentage of
failed tasks, network delay and VM utilization, respectively.

In both simulated scenarios, the edge/cloud-NB configu-
ration shows a better processing time than both edge-only
and edge/cloud-UB (up to 81% and 76% lower respectively).
It should be noted that the computational resources of the
cloud allow for a lower processing time. However, as for
application scenario 1, the cloud-only configuration is af-
fected by a high percentage of failed tasks and high network
delay. Indeed, leveraging both edge and cloud resources, as
long as the network is not congested and the WAN delay is
negligible, reduces the time required to complete a task.

Concerning failed tasks, the edge/cloud configurations
obtain very low failure rates (less than 4%). Particularly,
Figure 5 details the percentage of failed tasks due to network
congestion, VM capacity and mobility for both configu-
rations. In these two scenarios, mobility from one cell to
another is the main cause of task failure. However, especially
in application scenario 2, an important part of the tasks fails
due to a lack of resources at the edge layer.

Regarding network delay, the simulation results did not
reveal significant differences between the two orchestration
policies in the edge-cloud continuum, while the cloud-only
configuration is heavily affected by data transfer from the
edge layer.

Finally, regarding VM utilization, the edge/cloud-NB and
edge/cloud-UB showed a lower percentage than the cloud-
and edge-only configurations, reducing the risk of saturating
computational resources and allowing for better management
of the incoming workload. In particular, the average VM
utilization of the edge/cloud-NB is up to 22% and 48% lower
than the edge/cloud-UB for the two simulated scenarios.
Overall, the edge/cloud-NB configuration performed better

8



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

Scenario 2 Scenario 3
Scenario

0

10

20

30

40

50

Av
er

ag
e 

pr
oc

es
sin

g 
tim

e 
(s

)

Cloud-only
Edge-only
EO-UB
EO-NB

(a) Processing time.

Scenario 2 Scenario 3
Scenario

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f f
ai

le
d 

ta
sk

s (
%

)

Cloud-only
Edge-only
EO-UB
EO-NB

(b) Failed tasks.

Scenario 2 Scenario 3
Scenario

0.0

0.2

0.4

0.6

0.8

Av
er

ag
e 

ne
tw

or
k 

de
la

y 
(s

)

Cloud-only
Edge-only
EO-UB
EO-NB

(c) Network delay.

Scenario 2 Scenario 3
Scenario

0

20

40

60

80

100

Av
er

ag
e 

VM
 u

til
iza

tio
n 

(%
)

Cloud-only
Edge-only
EO-UB
EO-NB

(d) VM utilization.

FIGURE 4. Performance results for the different configurations (cloud-only, edge-only, edge/cloud-UB and edge/cloud-NB) for application scenarios 2 and 3.

Network VM Capacity Mobility
Motivation

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f f
ai

le
d 

ta
sk

s (
%

)

EO-UB
EO-NB

(a) Application scenario 2.

Network VM Capacity Mobility
Motivation

0.0

0.2

0.4

0.6

0.8

Pe
rc

en
ta

ge
 o

f f
ai

le
d 

ta
sk

s (
%

)

EO-UB
EO-NB

(b) Application scenario 3.

FIGURE 5. Percentage of failed tasks due to network congestion, VM capacity and mobility for application scenarios 2 and 3.

than the edge/cloud-UB configuration, reducing the process-
ing time by 76%, the number of failed tasks by 3%, and the
VM utilization by 27% on average.

V. CONCLUSION AND FUTURE WORK

cloud architectures for supporting three urban mobility sce-
narios (i.e., next location prediction, location-based adver-
tising, and of points of interest recommendation), in which
machine learning algorithms are used to analyze large sets
of geotagged data generated during the movements of IoT
objects (e.g., taxis, cars, smartphones).

Several experiments have been carried out for assessing
the benefits of the edge-cloud continuum over the traditional
cloud- or edge-only architectures. In particular, we exploited
a simulation-based approach for designing and testing IoT

With the pervasive diffusion of IoT devices, the edge-cloud 
continuum has been proposed to combine the advantages of 
edge computing in processing data closer to where they are 
generated with those of the cloud in supporting compute-
intensive tasks. In this paper, we explored the use of edge-

9



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

applications by using an edge-cloud simulator and two or-
chestration policies, based on network (edge/cloud-NB) and
computational resources (edge/cloud-UB) utilization. The
achieved results demonstrated that the edge-cloud continuum
architecture, coupled with the defined orchestration policies,
outperforms traditional cloud- or edge-only architectures,
obtaining a significant reduction in processing time, task
failure rate, and resource utilization.

Future research efforts will be devoted to developing ad-
vanced orchestration policies that can exploit machine and
deep reinforcement learning to improve task scheduling in
the edge-cloud continuum. Such policies can be further tested
using emulators instead of simulators to evaluate how soft-
ware interacts with the underlying hardware. Furthermore,
in ever-growing urban areas with ever-increasing numbers
of IoT devices, it will also be necessary to think about
how algorithms can scale efficiently on edge-cloud archi-
tectures. Hence, future work should evaluate how machine
learning paradigms such as federated learning can overcome
the limitations of centralized solutions in large-scale IoT
environments.

DATA AND CODE AVAILABILITY STATEMENT
In order to reproduce the experiments reported in the pa-
per, the open-source version of EdgeCloudSim is avail-
able on https://github.com/CagataySonmez/EdgeCloudSim,
while all the parameters required to run the simulations are
reported in the paper.

ACKNOWLEDGMENT
We acknowledge financial support from “National Centre for
HPC, Big Data and Quantum Computing”, CN00000013 -
CUP H23C22000360005, and from “PNRR MUR project
PE0000013-FAIR” - CUP H23C22000860006.

A. REFERENCES
REFERENCES
[1] Loris Belcastro, Riccardo Cantini, Fabrizio Marozzo, Alessio Orsino,

Domenico Talia, and Paolo Trunfio. Programming big data analysis:
Principles and solutions. Journal of Big Data, 9(4), 2022.

[2] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview on
edge computing research. IEEE access, 8:85714–85728, 2020.

[3] Lanfang Sun, Xin Jiang, Huixia Ren, and Yi Guo. Edge-cloud computing
and artificial intelligence in internet of medical things: Architecture,
technology and application. IEEE Access, 8:101079–101092, 2020.

[4] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif
Ahmed. Edge computing: A survey. Future Generation Computer
Systems, 97:219–235, 2019.

[5] PJ Escamilla-Ambrosio, A Rodríguez-Mota, E Aguirre-Anaya, R Acosta-
Bermejo, and M Salinas-Rosales. Distributing computing in the internet
of things: cloud, fog and edge computing overview. In NEO 2016: Results
of the Numerical and Evolutionary Optimization Workshop NEO 2016
and the NEO Cities 2016 Workshop held on September 20-24, 2016 in
Tlalnepantla, Mexico, pages 87–115. Springer, 2018.

[6] Benazir Neha, Sanjaya Kumar Panda, Pradip Kumar Sahu, Kshira Sagar
Sahoo, and Amir H Gandomi. A systematic review on osmotic computing.
ACM Transactions on Internet of Things, 3(2):1–30, 2022.

[7] Nabeela Awan, Ahmad Ali, Fazlullah Khan, Muhammad Zakarya, Ryan
Alturki, Mahwish Kundi, Mohammad Dahman Alshehri, and Muhammad
Haleem. Modeling dynamic spatio-temporal correlations for urban traffic
flows prediction. IEEE Access, 9:26502–26511, 2021.

[8] Wei Yu, Fan Liang, Xiaofei He, William Grant Hatcher, Chao Lu, Jie Lin,
and Xinyu Yang. A survey on the edge computing for the internet of things.
IEEE Access, 6:6900–6919, 2018.

[9] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. Urban computing:
concepts, methodologies, and applications. ACM Transactions on Intelli-
gent Systems and Technology (TIST), 5(3):1–55, 2014.

[10] Sara Paiva, Mohd Abdul Ahad, Gautami Tripathi, Noushaba Feroz, and
Gabriella Casalino. Enabling technologies for urban smart mobility:
Recent trends, opportunities and challenges. Sensors, 21(6):2143, 2021.

[11] Kenneth Li-Minn Ang, Jasmine Kah Phooi Seng, Ericmoore Ngharamike,
and Gerald K Ijemaru. Emerging technologies for smart cities’ transporta-
tion: Geo-information, data analytics and machine learning approaches.
ISPRS International Journal of Geo-Information, 11(2):85, 2022.

[12] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca,
Edmundo Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig
Lee, and Omer Rana. The internet of things, fog and cloud continuum:
Integration and challenges. Internet of Things, 3:134–155, 2018.

[13] Xavi Masip-Bruin, Eva Marin-Tordera, Admela Jukan, and Guang-Jie
Ren. Managing resources continuity from the edge to the cloud: Architec-
ture and performance. Future Generation Computer Systems, 79:777–785,
2018.

[14] Bo Wang, Changhai Wang, Wanwei Huang, Ying Song, and Xiaoyun Qin.
A survey and taxonomy on task offloading for edge-cloud computing.
IEEE Access, 8:186080–186101, 2020.

[15] Congfeng Jiang, Xiaolan Cheng, Honghao Gao, Xin Zhou, and Jian Wan.
Toward computation offloading in edge computing: A survey. IEEE
Access, 7:131543–131558, 2019.

[16] Bin Cao, Long Zhang, Yun Li, Daquan Feng, and Wei Cao. Intelligent
offloading in multi-access edge computing: A state-of-the-art review and
framework. IEEE Communications Magazine, 57(3):56–62, 2019.

[17] Mohsen Marjani, Fariza Nasaruddin, Abdullah Gani, Ahmad Karim,
Ibrahim Abaker Targio Hashem, Aisha Siddiqa, and Ibrar Yaqoob. Big iot
data analytics: architecture, opportunities, and open research challenges.
ieee access, 5:5247–5261, 2017.

[18] Fabrizio Marozzo, Alessio Orsino, Domenico Talia, and Paolo Trunfio.
Edge computing solutions for distributed machine learning. In 2022 IEEE
Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf
on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big
Data Computing, Intl Conf on Cyber Science and Technology Congress
(DASC/PiCom/CBDCom/CyberSciTech), pages 1–8. IEEE, 2022.

[19] Ana Isabel Torre-Bastida, Javier Del Ser, Ibai Laña, Maitena Ilardia,
Miren Nekane Bilbao, and Sergio Campos-Cordobés. Big data for
transportation and mobility: recent advances, trends and challenges. IET
Intelligent Transport Systems, 12(8):742–755, 2018.

[20] Maria Salama, Yehia Elkhatib, and Gordon Blair. Iotnetsim: A modelling
and simulation platform for end-to-end iot services and networking. In
Proceedings of the 12th IEEE/ACM International Conference on Utility
and Cloud Computing, pages 251–261, 2019.

[21] Gabriele D’Angelo, Stefano Ferretti, and Vittorio Ghini. Simulation of the
internet of things. In 2016 International Conference on High Performance
Computing & Simulation (HPCS), pages 1–8. IEEE, 2016.

[22] Gabor Kecskemeti, Giuliano Casale, Devki Nandan Jha, Justin Lyon, and
Rajiv Ranjan. Modelling and simulation challenges in internet of things.
IEEE Cloud Computing, 4(1):62–69, 2017.

[23] Luis Eduardo Lima, Bruno Yuji Lino Kimura, and Valério Rosset. Exper-
imental environments for the internet of things: A review. IEEE Sensors
Journal, 19(9):3203–3211, 2019.

[24] Harshit Gupta, Amir Vahid Dastjerdi, Soumya K Ghosh, and Rajkumar
Buyya. ifogsim: A toolkit for modeling and simulation of resource
management techniques in the internet of things, edge and fog computing
environments. Software: Practice and Experience, 47(9):1275–1296,
2017.

[25] Xuezhi Zeng, Saurabh Kumar Garg, Peter Strazdins, Prem Prakash Jayara-
man, Dimitrios Georgakopoulos, and Rajiv Ranjan. Iotsim: A simulator
for analysing iot applications. Journal of Systems Architecture, 72:93–
107, 2017.

[26] Cagatay Sonmez, Atay Ozgovde, and Cem Ersoy. Edgecloudsim: An en-
vironment for performance evaluation of edge computing systems. Trans-
actions on Emerging Telecommunications Technologies, 29(11):e3493,
2018.

[27] Mluleki Sinqadu and Zelalem Sintayehu Shibeshi. Performance evalua-
tion of a traffic surveillance application using ifogsim. In International
Conference on Wireless Intelligent and Distributed Environment for Com-
munication, pages 51–64. Springer, 2020.

10

https://github.com/CagataySonmez/EdgeCloudSim


Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

[28] Fatin Hamadah Rahman, Thien Wan Au, SH Shah Newaz, and Wida Su-
santy Haji Suhaili. A performance study of high-end fog and fog cluster in
ifogsim. In Computational Intelligence in Information Systems: Proceed-
ings of the Computational Intelligence in Information Systems Conference
(CIIS 2018) 3, pages 87–96. Springer, 2019.

[29] Alessandro Barbieri, Fabrizio Marozzo, and Claudio Savaglio. Iot plat-
forms and services configuration through parameter sweep: a simulation-
based approach. In 2021 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 1803–1808, 17-20 October 2021.

[30] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan Seskar, and Francesco
Bronzino. Scalability and performance evaluation of edge cloud systems
for latency constrained applications. In 2018 IEEE/ACM Symposium on
Edge Computing (SEC), pages 286–299. IEEE, 2018.

[31] Jing Yuan, Yu Zheng, Liuhang Zhang, XIng Xie, and Guangzhong Sun.
Where to find my next passenger. In Proceedings of the 13th International
Conference on Ubiquitous Computing, UbiComp ’11, pages 109–118,
New York, NY, USA, 2011. ACM.

[32] Alberto Rossi, Gianni Barlacchi, Monica Bianchini, and Bruno Lepri.
Modelling taxi drivers’ behaviour for the next destination prediction.
IEEE Transactions on Intelligent Transportation Systems, 21(7):2980–
2989, 2019.

[33] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti.
Wherenext: a location predictor on trajectory pattern mining. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 637–646, 2009.

[34] A. Altomare, E. Cesario, C. Comito, F. Marozzo, and D. Talia. Trajectory
pattern mining for urban computing in the cloud. IEEE Transactions on
Parallel and Distributed Systems, 28(2):586–599, 2017.

[35] Punit Rathore, Dheeraj Kumar, Sutharshan Rajasegarar, Marimuthu
Palaniswami, and James C Bezdek. A scalable framework for trajectory
prediction. IEEE Transactions on Intelligent Transportation Systems,
20(10):3860–3874, 2019.

[36] Hao Lin, Guannan Liu, Fengzhi Li, and Yuan Zuo. Where to go? predicting
next location in iot environment. Frontiers of Computer Science, 15(1):1–
13, 2021.

[37] Christine Bauer and Christine Strauss. Location-based advertising on
mobile devices. Management review quarterly, 66(3):159–194, 2016.

[38] Dominik Molitor, Philipp Reichhart, and Martin Spann. Location-based
advertising and contextual mobile targeting. 2016.

[39] Weimin Zheng, Mengling Li, Zhibin Lin, and Yangyu Zhang. Leveraging
tourist trajectory data for effective destination planning and management:
A new heuristic approach. Tourism Management, 89:104437, 2022.

[40] Loris Belcastro, Fabrizio Marozzo, and Emanuele Perrella. Automatic
detection of user trajectories from social media posts. Expert Systems
with Applications, 186:115733, 2021.

[41] Dmitry Korzun, Ekaterina Balandina, Alexey Kashevnik, Sergey Balandin,
and Fabio Viola. Ambient Intelligence Services in IoT Environments:
Emerging Research and Opportunities: Emerging Research and Opportu-
nities. IGI Global, 2019.

[42] E. Cesario, F. Marozzo, D. Talia, and P. Trunfio. Sma4td: A social media
analysis methodology for trajectory discovery in large-scale events. Online
Social Networks and Media, 3-4:49–62, 2017.

[43] Sergei Mikhailov and Alexey Kashevnik. Car tourist trajectory prediction
based on bidirectional lstm neural network. Electronics, 10(12):1390,
2021.

[44] L. Belcastro, F. Marozzo, D. Talia, and P. Trunfio. Parsoda: high-level
parallel programming for social data mining. Social Network Analysis
and Mining, 9(1), 2019.

[45] Dimitrios Michael Manias and Abdallah Shami. Making a case for
federated learning in the internet of vehicles and intelligent transportation
systems. IEEE Network, 35(3):88–94, 2021.

[46] Venkatraman Balasubramanian, Safa Otoum, and Martin Reisslein. Venet:
hybrid stacked autoencoder learning for cooperative edge intelligence
in iov. IEEE Transactions on Intelligent Transportation Systems,
23(9):16643–16653, 2022.

[47] Xiaokang Zhou, Wei Liang, Jinhua She, Zheng Yan, I Kevin, and Kai
Wang. Two-layer federated learning with heterogeneous model aggrega-
tion for 6g supported internet of vehicles. IEEE Transactions on Vehicular
Technology, 70(6):5308–5317, 2021.

[48] Niloofar Khanghahi and Reza Ravanmehr. Cloud computing performance
evaluation: issues and challenges. Comput, 5(1):29–41, 2013.

[49] V Krishna Reddy, B Thirumala Rao, and LSS Reddy. Research issues in
cloud computing. Global Journal of Computer Science and Technology,
2011.

[50] Daniel Rosendo, Alexandru Costan, Patrick Valduriez, and Gabriel Anto-
niu. Distributed intelligence on the edge-to-cloud continuum: A systematic
literature review. Journal of Parallel and Distributed Computing, 2022.

[51] M. K. Mohan Murthy, H. A. Sanjay, and Jumnal Anand. Threshold based
auto scaling of virtual machines in cloud environment. In Ching-Hsien
Hsu, Xuanhua Shi, and Valentina Salapura, editors, Network and Parallel
Computing, pages 247–256, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[52] Best practices for Autoscale - Microsoft Azure.
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autosc-
ale-best-practices. Accessed March 2023.

[53] Amazon EC2 Auto Scaling FAQs. https://aws.amazon.com/ec2/autoscaling
/faqs/. Accessed March 2023.

[54] Taxis, cars and tourists in Rome. https://www.agenzia.roma.it/ and
https://www.comune.roma.it/. Accessed March 2023.

[55] Driving patterns in Rome. https://www.tomtom.com/traffic-index/rome-
traffic/. Accessed March 2023.

[56] Mianbo Huang, Guoru Zhao, Lei Wang, and Feng Yang. A pervasive
simplified method for human movement pattern assessing. In 2010 IEEE
16th International Conference on Parallel and Distributed Systems, pages
625–628, 2010.

LORIS BELCASTRO is a research fellow of
computer engineering at the University of Cal-
abria, Italy. He received a Ph.D. in Information and
Communication Engineering at the University of
Calabria. In 2012 he held a scholarship at the In-
stitute of High-Performance Computing and Net-
working of the Italian National Research Council
(ICAR-CNR). His research interests include cloud
computing, social media and Big Data analysis,
distributed knowledge discovery, and data mining.

FABRIZIO MAROZZO is an assistant professor
of computer engineering at the University of Cal-
abria. He received a Ph.D. in Systems and Com-
puter Engineering at the University of Calabria.
In 2011-2012 he visited the Barcelona SuperCom-
puting Center for a research internship with the
Grid Computer Research group in Computer Sci-
ences department. He is a member of the editorial
boards of several journals including IEEE Access,
IEEE Transactions on Big Data, Journal of Big

Data and SN Computer Science. His research focuses on big data analysis,
social media analysis, parallel and distributed computing, cloud and edge
computing, and machine learning.

ALESSIO ORSINO is a PhD student in Infor-
mation and Communication Technologies at the
University of Calabria, Italy. His research interests
include big data analysis, parallel and distributed
computing, cloud and edge computing, and ma-
chine learning.

11



Belcastro et al.: Edge-cloud continuum solutions for urban mobility prediction and planning

DOMENICO TALIA is a professor of computer
engineering at the University of Calabria and an
honorary professor at Noida University. He is a
member of the editorial boards of Computer, Fu-
ture Generation Computer Systems, IEEE Trans-
actions on Parallel and Distributed Systems, ACM
Computing Surveys, the Journal of Cloud Com-
puting—Advances, Systems and Applications, the
International Journal of Next-Generation Comput-
ing. His research interests include parallel and

distributed data mining algorithms, cloud computing, machine learning, Big
Data, peer-to-peer systems, and parallel programming models.

PAOLO TRUNFIO is an associate professor of
computer engineering at the University of Cal-
abria. In 2007 he was a visiting researcher at the
Swedish Institute of Computer Science (SICS) in
Stockholm. In 2001-2002 he was a research col-
laborator at the Institute of Systems and Computer
Science of the Italian National Research Council
(ISI-CNR). He is in the editorial board of Future
Generation Computer Systems, IEEE Transactions
on Cloud Computing, and Journal of Big Data. His

research interests include cloud computing, social media analysis, service-
oriented architectures, distributed knowledge discovery, and peer-to-peer
systems.

12


	Introduction
	Related work
	Application scenarios
	Machine learning solutions for large urban areas

	System architecture
	Experimental evaluation
	Performance evaluation
	Application scenario 1: next location prediction for taxis
	Application scenarios 2 and 3: location-based advertising for car drivers and PoIs recommendation for tourists


	Conclusion and future work
	References

	REFERENCES
	Loris Belcastro
	Fabrizio Marozzo
	Alessio Orsino
	Domenico Talia
	Paolo Trunfio


