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Abstract—Researchers and leading IT companies are increas-
ingly proposing hybrid cloud/edge solutions, which allow to move
part of the workload from the cloud to the edge nodes, by
reducing the network traffic and energy consumption, but also
getting low latency responses near to real time. This paper
proposes a novel hybrid cloud/edge architecture for efficiently
extracting Regions-of-Interest (RoI) in a large scale urban com-
puting environment, where a huge amount of geotagged data
are generated and collected through users’s mobile devices. The
proposal is organized in two parts: (i) a modeling part that
defines the hybrid cloud/edge architecture capable of managing
a large number of devices; (ii) a simulation part in which
different design choices are evaluated to improve the performance
of RoI mining algorithms in terms of processing time, network
delay, task failure and computing resource utilization. Several
experiments have been carried out to evaluate the performance of
the proposed architecture starting from different configurations
and orchestration policies. The achieved results showed that
the proposed hybrid cloud/edge architecture, with the use of
two novel orchestration policies (network- and utilization-based),
permits to improve the exploitation of resources, also granting
low network latency and task failure rate in comparison with
other standard scenarios (only-edge or only-cloud).

Index Terms—IoT platforms, Cloud/Edge architecture, Mod-
eling and Simulation, Orchestration policies, RoI mining

I. INTRODUCTION

In the last years the ability to produce and gather data
has increased exponentially. Huge amounts of digital data are
generated by and collected from a plethora of Internet of
Things (IoT) devices, such as sensors, cams, in-vehicle info-
tainment and wearable devices [1], [2]. Such data, after being
appropriately collected, cleaned and analyzed, are extremely
useful in many fields of application such as security, trade
and monitoring. As an example, geotagged data generated by
mobile devices can be used to find the Regions-of-Interest
(RoIs), i.e., the most visited regions by users. The analysis
of RoIs is highly valuable in many scenarios, e.g.: tourism
agencies and municipalities can discover the most visited
touristic places and the time of year when such places are
visited; transport operators can discover the places and routes
where is it more likely to serve passengers and crowed areas
where more transport facilities need to be allocated [3].

Nowadays, existing IoT platforms used for processing data
from IoT devices are highly centralized and rely on cloud
solutions for data collection, integration and analysis. The
data management and processing approach in the cloud can be

ineffective in terms of network traffic management, response
time and power consumption. For example, in many medical
and security applications, it is essential to offer low-latency
services, as the delay caused by the transfer of data from
an application to the cloud (and vice versa) can cause strong
disservices and even loss of life. For this reason, researchers
and large companies have proposed in recent years the use of
IoT solutions, which allows to process data closer to where
they are generated, in order to reduce network traffic and
energy consumption and also getting low latency responses
near to real time.

Even the analysis of data generated by devices in IoT
platforms requires novel technologies for processing and an-
alyzing large volumes of data in order to extract hidden
information [4]. Advanced machine learning and data mining
algorithms are continuously used for this purpose, i.e., they are
able to discover patterns, correlations and trends that occur
in the collected data [5]. However, in the IoT environment
such algorithms are often performed on devices with limited
resources in terms of memory, computing power, energy and
bandwidth [6]. For this reason, it is necessary to find a
good compromise between the performance of the algorithms
(e.g., accuracy) and the amount of resources needed for their
execution.

In addition, due to the large scale, heterogeneity and com-
plexity of IoT systems and networks, designing and testing IoT
services are still open issues. Prototyping using a large number
of hardware nodes could be very expensive and inflexible,
and bench-marking and setting up real experiments could be
very challenging [7]. For these reasons, the Modeling and
Simulation approach (M&S) results to be a powerful and
flexible tool for reproducing and testing IoT systems and
networks. More in details, M&S allows to effectively analyze
and evaluate different design alternatives by avoiding risks,
costs and fails associated with extensive field experimentation.
This opportunity becomes crucial, when complete and actual
tests are too expensive to be performed in terms of cost,
time, and computational resources [8], [9]. To improve the
performance of large-scale simulations, specific approaches
and models for collaborative simulation execution on hybrid
systems, such as CPU+GPU, have been proposed [10], [11].

In this work, we propose a novel IoT architecture for
efficiently extracting Regions-of-Interest (RoIs) in a large



scale urban computing environment, where a huge amount
of geotagged data are generated and collected through users’
mobile devices. There are two main contributions in the paper.
Firstly, we defined a hybrid cloud/edge architecture capable of
managing a large number of devices connected to it. In this
way there is the possibility to configure how the workload
will be distributed between the cloud and edge nodes, in
order to optimize the performance of the application. Secondly,
we evaluated through a simulation approach the different
design choices for improving the performance of RoI mining
algorithms in terms of processing time, network delay, task
failure and computing resource utilization. To this end, two
orchestration policies have been defined (network-based and
utilization-based) for managing large amount of data to be
processed.

Several experiments have been carried out to evaluate the
performance of the proposed architecture starting from dif-
ferent configurations and orchestration policies. In particular,
to test a high number of possible configurations, the Edge-
CloudSim simulator [12] has been used. The simulation results
showed that the proposed hybrid cloud/edge architecture with
the use of two orchestration policies (network- and utilization-
based) permits to improve resources utilization, also granting
low network latency and task failure rate in comparison with
other traditional scenarios (only-edge or only-cloud). Although
the cloud-only scenario obtained a good performance in pro-
cessing time, it produces a high percentage of failed tasks (e.g.,
60% using 800 devices). Also, compared to the edge-only
scenario, the proposed hybrid approach lead to a reduction
in processing time and task failure rate up to 60% and 81%,
respectively. Thus in general, the results obtained confirm that
the proposed solution is effective for this type of problem
even as the number of connected devices and the number
of computing nodes increase. Compared to the state of the
art, this turns out to be one of the first works that addresses
the RoI mining problem in the IoT field, by proposing a
hybrid cloud/edge architecture and evaluating its performance
compared to standard solutions.

The structure of the paper is as follows. Section II provides
some definitions and the problem statement. Section III dis-
cusses related work. Section IV describes the proposed hybrid
cloud/edge architecture. Section V presents a case study and a
performance evaluation by using the two orchestration policies
introduces above. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT

With the widespread use of mobile devices and location-
based services, everyday people share information about the
places they visit, often indicating the exact coordinates of such
places. As an example, millions of users share on social media
platforms posts about their activities, also including images,
videos, and information about the places they visit. Such posts
are often geotagged, which means they contains the spatial
coordinates (latitude/longitude) of the place where they was
created. Thus, geotagged data gathered from social media can

be used to discover Places-of-Interest(PoIs) that have attracted
many visitors.

A Place-of-Interest (PoI) is a location that someone finds
useful or interesting, such as tourist attractions (e.g., squares
or museums) or business locations (e.g., shopping malls). In
this study, the terms Place-of-Interest and Point-of-Interest are
considered similar, and thus are used interchangeably in the
paper.

Since information on a PoI is generally limited to an address
or GPS coordinates, it is hard to match users’ trajectories with
PoIs. For this reason, it is useful to define Region-of-Interest
(RoI) representing the boundaries of the PoI’s area [13].
RoIs can be defined as “spatial extents in geographical space
where at least a certain number of user trajectories pass
through” [14]. Thus, RoIs represent an useful abstraction for
partitioning the space into meaningful areas and, correspond-
ingly, to associate a label to a place. In literature, RoIs are also
named as regions of attraction or frequent (dense) regions [15].
Therefore, the RoI detection process represents a key step
for aggregating and comparing trajectories, which must be
addressed before carrying out the trajectory extraction process.
A trajectory is a sequence of spatial regions followed by a
user, and consequently a frequent trajectory is a sequence of
spatial regions that emerge as frequently visited by users [16].
Such frequent trajectories can be obtained through advanced
techniques that are called trajectory data mining [17].

A geotagged item can be associated to a PoI P if its text or
tags refer to P . For example, geotagged items that have been
created in the area of the Colosseum in Rome usually contain
keywords such as “Colosseum”, “Coliseum” or “Coliseo”. By
grouping all the items that refer to a PoI and applying a
clustering algorithm, a suitable RoI for the Colosseum can
be obtained. Most existing clustering techniques have high
computational complexity and they have scalability issues
[18]. To deal with these issues, many research efforts are
focusing on the definition of distributed clustering approaches,
where many computing nodes combine their effort to solve a
large problem [19].

After extracting the RoIs, the user’s trajectories are trans-
formed from sequences of coordinates (usually coming from
GPS sensors) into sequences of RoIs. Then, a trajectory
mining algorithm can be used to discover frequent patterns
in user movements. RoI and trajectory mining algorithms
are widely used in different domains (e.g., urban planning,
disaster prevention, trade area analysis, store rollout planning,
transportation and tourism) for analyzing and discovering
users’ mobility patterns [20].

The next section reviews the existing literature contributions
dealing with both the use of IoT-based architecture and the
modern M&S techniques to evaluate system performance.

III. RELATED WORK

With the increasing popularity of IoT technologies, several
novel research projects have been carried out for obtaining
valuable insight from large data generated by IoT devices.
Big data analytics in IoT requires technologies and tools that



can transform large amounts of structured, unstructured, or
semi-structured data into more understandable data ready to
be analyzed. Advanced machine learning and data mining al-
gorithms are used to discover patterns, trends, and correlations
over a variety of time horizons in the data [4], [5]; however,
these tasks are executed by devices characterized by limited
resources, such as memory, processing, bandwidth and energy
[6]. Thus, it is necessary to find the right compromises between
performance (e.g., accuracy) and amount of resources required
for computation. Below is a series of research papers that
propose data mining/machine learning solutions in IoT area.

There are many surveys produced in this area. For example,
[21] covered supervised and unsupervised learning algorithms
in the ioT area, and outlined several applications including pat-
tern recognition, anomaly detection, computer vision, speech
processing.

[22] examined the applicability of eight data mining/-
machine learning algorithms for IoT data. These include,
among others, the deep learning artificial neural networks
(DLANNs), which build a feed forward multi-layer artificial
neural network (ANN) for modelling high-level data abstrac-
tions. The achieved results on real IoT datasets show that
decision tree algorithms have better accuracy, are memory
efficient and have relatively higher processing speeds, while
ANNs and DLANNs can provide highly accurate results but
are computationally expensive.

[23] highlights how the current security and privacy solu-
tions of IoT platforms suffer from a series of problems related
to the dynamic nature of networks. The paper highlights how
some of the gaps in current IoT platform solutions can be
overcome by using advanced machine learning algorithms.
Machine learning techniques can be used to enable the IoT
devices to adapt to their dynamic environment, by supporting
self-organizing operation and also optimize the overall system
performance by learning and processing statistical information
from the environment.

[21] covered supervised and unsupervised learning al-
gorithms in the IoT area, and outlined several applications
including pattern recognition, anomaly detection, computer
vision, speech processing.

For a correct evaluation of machine learning algorithms,
realistic tests are needed on an IoT infrastructure consisting of
a large number of entities/devices connected to each other and
running different types of software. Designing and validating
IoT infrastructures is still a complex issue due to the even-
increasing complexity and technological improvement that
makes them difficult to study and evaluate. M&S plays an
essential role in managing this complexity since it allows to
imitate the structure and behaviour of a complex system during
its lifecycle [24]–[26].

[27] introduced main issues on the simulation of IoT infras-
tructure, and discussed a new combination of M&S techniques
to enhance scalability and permit the real-time execution of
massively populated IoT environments (e.g., large-scale smart
cities).

[28] presented an overview of the challenges that arise

when testing large IoT applications at the system level. To
overcome these challenges, the author proposed a hybrid
simulation-based testing technique that allows to evaluate IoT
infrastructure by orchestrating a real-time interaction between
real-life and virtual local IoT entities so as to detect emergent
behaviors.

Concerning the tools and software, there are many simula-
tors that have been proposed in recent years in the IoT field
[29]. Among them, EdgeCloudSim [12] is a CloudSim exten-
sion [30] that provides a modular architecture for supporting
a variety of crucial functionalities such as network modeling
specific to WLAN and WAN, device mobility model, realistic
and tunable load generator.

Although IoT technologies have been successfully used in
many urban computing scenarios, its adoption in large-scale
RoI and trajectory mining applications requires to address
fundamental issues, such as those involving the definition
of scalable architectures capable to effective deal with the
high amount of data produced by users. Existing techniques
for finding RoIs are based on three main approaches: pre-
defined shapes, density-based clustering, grid-based aggrega-
tion and hybrid approaches [19]. According to predefined
shapes approach, shapes like circles and rectangles are used
to represent RoIs. For example, [31] used circular RoIs to
extract popular touristic routes from Flickr. In density-based
clustering approach, RoIs are obtained by clustering a set of
geographical locations. For instance, [32] used DBSCAN to
discover tourist attraction areas from social media posts. For
Grid-based aggregation approach the area under analysis is
discretized in a regular grid and extracts RoIs by aggregating
the grid cells. For example, [14] divide an area into grid
cells and count the trajectories passing through each cell.
Grid cells whose counters are above a certain threshold are
expanded to form rectangular shaped RoIs. Hybrid approaches
combine some aspects of the approaches mentioned above. As
an example, G-RoI [3] exploits the indications contained in
social media items (e.g. tweets, posts, photos or videos with
geospatial information) to discover the RoI of a PoI with a
high accuracy.

IV. SYSTEM ARCHITECTURE

Although cloud computing provides high computing re-
sources, even dynamically allocable, it should be noted that
centralizing the collection of data, and their processing, in a
single network node could lead to performance issues [33],
[34]. To overcome these issues, the proposed cloud/edge
architecture takes full advantage of the capabilities offered by
edge and cloud computing to efficiently manage the volume
of data produced in an urban area. Thanks to its horizontal
scalability, the defined system architecture allows to manage a
variable and growing number of connected devices (i.e., more
devices, more resources). Moreover, it enables to perform
distributed computation on edge devices, which is moved to
cloud-only when needed. In such a way, it is possible to
improve computation time, limit network congestion (user data



are processed locally to the edge device without having to
transfer it to Cloud), and reduce the number of failed tasks.

As shown in Figure 1, the proposed architecture is com-
posed of three layers.

Edge Server

User User

User

User User

User

User User

User

Cell 1 Cell 2 Cell 3AP AP AP

Edge Orchestrator
WAN

Edge Server Edge Server

Cloud Layer

Edge Layer

IoT Layer

Fig. 1. The proposed IoT architecture.

The IoT Layer includes the mobile devices that are ex-
ploited by users to share contents during their movements.
In particular, users visit PoIs that are located in a set of areas,
which defines a partitioning of the whole urban area under
analysis. The device collects user data together with additional
information gathered by using the embedded components (e.g.,
the GPS coordinates and cell ID) and send information for
processing and storage.

The Edge Layer represents the edge infrastructure that
consists of different type of edge devices (e.g., Arduino and
Raspberry Pi), which provide the infrastructure for collecting
the raw data generated by users. The Edge Layer processes
user data as long as computing resources are sufficient. When
resources are no longer sufficient, tweets are forwarded to the
cloud for further processing through the Edge Orchestrator
(EO). The EO component is the decision maker of the system,
which uses the status information of the edge servers to decide
how and where to handle incoming user requests and, if
necessary, to offload them to other edge servers or Cloud.
EO is a component that allows to simulate different policies
and evaluate their effectiveness. EO can implement various
policies, which take into account various performance metrics,
such as the network congestion level, the status and load
level of edge nodes and Cloud. In some cases, EO can also
adopt machine learning algorithms or heuristics to solve the
problem of optimally allocating data and tasks to the available
computing resources (see, e.g., [35], [36]).

The Cloud layer represents a large set of computing re-
sources that can be dynamically provisioned and released,
where the tasks can be offloaded to be performed on behalf
of the edge servers. From a client perspective, the cloud
is an abstraction for remote, infinitely scalable provisioning
of computation and storage resources, which have emerged

as effective computing platforms to face the challenge of
processing Big Data repositories in limited time, as well as
to provide effective and efficient data analysis environments
to both researchers and companies(see, [37]).

Thanks to the presence of the EO, the proposed architecture
is able to support different resource allocation policies, in order
to efficiently manage RoI mining applications. Specifically, in
support of this architecture, two new orchestration policies
have been defined, Network Based (EO-NB) and Utilization
Based (EO-UB), capable of efficiently and effectively manag-
ing the geolocated data produced by users through the use of
mobile devices. Such orchestration policies permit to improve
the usage of computing resources (e.g., lower VM utilization),
also reducing network latency and task failure rate.

V. EXPERIMENTAL EVALUATION

To evaluate the performance of the proposed architecture,
a RoI mining application has been defined. In particular, it
consists of two tasks:

• Text Processing, which consists in processing the user
data in order to verify the presence of geolocation or
textual information able to determine the spatial coordi-
nates (latitude/longitude) of the place where the datum
was created.

• RoI Detection, which consists in applying a clustering
algorithm to extract a polygon representing the area of the
Regions-of-Interest (RoIs). From a computational point of
view, this task is very onerous, as the time complexity of
the RoI detection algorithm may be O(n2) or higher [3].
In many cases, using a parallel and distributed clustering
approach leads to a significant reduction in computation
time.

The two tasks are generated according to a Poisson distri-
bution with a classic active/idle task generation pattern.

It is worth noting that the IoT layer is composed of users’
mobile devices, which do not perform any computation, but
operate as data sources for the generation of geotagged items
containing information about the places visited by users.
For these reason, in the rest of this section, distributing the
computation on two layers, i.e. edge and cloud, is considered.

The architecture combines cloud and edge through two
orchestration policies, i.e., Network Based (EO-NB) and Uti-
lization Based (EO-UB). The former exploits the network
status to decide where incoming data must be processed;
the latter policy plans executions based on the utilization of
computing node (virtual machines - VMs). It should be noted
that the proposed architecture is generic and does not place
any constraints on the policy to be used. The EO can be easily
extended to support more complex policies for allocating tasks
to computing nodes, e.g., based on Artificial Intelligence (AI)
algorithms [35]. Algorithm 1 shows the pseudo code of the
orchestration procedure.

In the performed experiments, the IoT architecture defined
in Figure 1 has been composed of one cloud server and
20 edge servers (one for each cell of the urban area). In
addition, a variable number of mobile devices, ranging from



Algorithm 1 Edge Orchestrator
1: Initializing of Simulation Manager – SimManager.
2: Initializing EO and applications.
3: procedure DEVICE TO OFFLOAD(task, τ1, τ2)
4: deviceID ← null
5: policy ← EdgeOrchestrator.getPolicy()
6: if policy == NetworkBased then
7: wanDelay ← SimManager.getCurrentWanDelay()
8: if wanDelay ≥ τ1 then
9: deviceID ← CLOUD ID

10: else
11: deviceID ← getAvailabeEdgeDeviceId()
12: end if
13: else . Utilization Based policy
14: utilization← SimManager.getAvgEdgeUtilization()
15: if utilization ≥ τ2 then
16: deviceID ← CLOUD ID
17: else
18: deviceID ← getAvailabeEdgeDeviceId()
19: end if
20: end if
21: return deviceID
22: end procedure

200 to 800, has been considered. Table I reports the main
simulation parameters along with the values that were used
for configuring the simulator.

Figure 2 reports the performance of the proposed IoT archi-
tecture as the number of mobile devices varies. In particular,
Figures 2(a) and 2(b) report the average processing time and
average percentage of failed tasks, respectively. A task can fail
due to lack of VM resources or low network bandwidth. In
particular, if the VM utilization is too high, new tasks may
fail since they are not be accepted by any VM. Similarly, if
too many clients connect to the same node, some tasks may
be interrupted or fail due to network congestion. Concerning
both processing time and percentage of failed tasks, the edge-
only scenario obtained the worst results, since the performance
degrades significantly as the number of devices increases. Al-
though the cloud-only scenario obtained an average reduction
of 76% in processing time, this result is mainly due to the
high percentage of failed tasks.

Compared to the edge-only scenario, the two orchestration
policies defined within the the proposed IoT architecture lead
to a good reduction in processing time (38% for EO-UB to
60% for EO-NB), also minimizing the number of failed tasks
(81% for EO-UB to 66% for EO-NB).

Figure 2(d) shows the average VM utilization for the dif-
ferent scenarios. Reducing VM utilization is a very important
aspect to optimize large-scale applications that involve large
computing resources. As an example, the capability of modern
computing devices to adapt the CPU frequency (and therefore
the energy consumption) to the workload allow to obtain
significant benefits in terms of cost and energy consumption
reduction. Furthermore, reducing the risk of saturating compu-
tational resources permits to handle any unexpected workload
peaks that may occur.

As reported in Figure 2(d), EO-UB and EO-NB were able

to efficiently balance the load between the two layers of the
IoT architecture (edge and cloud). As an example, considering
800 mobile devices, the orchestration policies permit to obtain
a VM utilization that is on average 13% and 19% lower than
edge- and cloud-only scenarios, respectively.

Figure 2(e) provides a detailed view of the performance
comparison between the two orchestration policies on edge
and cloud, respectively.

Figure 2(e) presents a detailed view of the distribution of the
VM utilization between the edge and cloud layers, when using
the orchestration policies. When a small number of devices are
used (e.g., less than 600), the orchestration policies tend to
favor the allocation of tasks on the Edge, up to the saturation
of either computational or network resources. Beyond certain
thresholds (see Algorithm 1, τ1 and τ2), the tasks are moved to
the cloud for computation, so as to limit failure due to lack of
resources. Such a conservative approach also aims at limiting
the network delay (see Figure 2(b)), since data is transferred to
the cloud-only if necessary. Table II summarized the numerical
results obtained in our experiments.

In conclusion, the proposed architecture and orchestration
policies obtained better results than standard approach based
on Cloud, significantly improving processing times and per-
centage of failed tasks. Moreover, thanks to a more efficient
resource utilization, they ensure a better management of any
workload peaks generated by mobile devices in the urban area.

VI. CONCLUSIONS

In recent years the use of IoT infrastructures and solutions
enable the processing of data closer to where it is generated,
reducing the network traffic, but also task failures. Gener-
ally, IoT infrastructures are composed of many heterogeneous
components that are characterized by independent behaviors
and interact each other to pursuit common objectives. Under-
standing, studying and designing modern IoT infrastructures
are going to be a great challenge in the next years. In
this context, Modeling and Simulation (M&S) represents a
powerful analytical method that allows to reproduce layers
and behaviors of such infrastructures.

The paper presented an IoT architecture for efficiently ex-
tracting Regions-of-Interest (RoIs) in a large scale urban com-
puting environment. To effectively manage the huge amount
of data generated by users’s mobile devices, two orchestration
policies, i.e., Network Based (EO-NB) and Utilization Based
(EO-UB), have been defined.

To assess the effectiveness of the defined architecture, a
RoI mining application has been evaluated through simulation
by using the EdgeCloudSim simulator. The simulation results
showed that the architecture permits to improve resources
utilization, also granting low network latency and task failure
rate in comparison with other scenarios. As an example,
compared to the edge-only scenario, the two orchestration
policies lead to a reduction in processing time (from 38% to
60%) and task failure rate (from 66% to 81% ).

Future research efforts will be devoted to define novel and
more complex orchestration polices that exploit Artificial Intel-



TABLE I
EDGECLOUDSIM SIMULATION PARAMETERS

Parameter Description Value
Simulation time Duration of the simulation in seconds. 300s
Mobile devices Number of mobile devices used in the simulation scenarios. 200-800
Edge servers Number of edge servers. 20

Edge server processing speed Computing processor’s speed of edge servers in terms
of Million Instructions Per Second. 2441 MIPS

cloud processing speed Computing processor’s speed of cloud in terms
of Million Instructions Per Second. 89600 MIPS

Text Processing Task
Poisson interarrival Mean interarrival time between two tasks. 3
Active period The active period of the task. 300s
Idle period The idle period of the task. 10s
Upload data size Mean input file sizes to upload. 20 KB
Download data size Mean output file sizes to download. 2 KB
Task length Mean number of instructions to execute the emerging task. 2000 MIPS
RoI Detection Task
Poisson interarrival Mean interarrival time between two tasks. 120
Active period The active period of the task. 300s
Idle period The idle period of the task. 10s
Upload data size Mean input file sizes to upload. 2500KB
Download data size Mean output file sizes to download. 200KB
Task length Mean number of instructions to execute the task. 150000 MIPS

TABLE II
SIMULATION RESULTS USING DIFFERENT SCENARIOS AND ORCHESTRATION POLICIES

Metric Number of
Devices

Only
Edge

Only
Cloud

Two layers with EO
Utilization Based

Two layers with EO
Network Based

Average Processing
Time (sec)

200 0.99 0.06 1.03 0.38
400 1.32 0.42 0.75 0.51
600 1.82 0.54 0.68 0.77
800 1.91 0.55 0.77 0.91

Average Failed
Tasks (%)

200 0.047 0.22 0.05 0.01
400 32.54 23.27 0.04 0.57
600 62.50 48.28 6.85 13.35
800 73.52 60.19 27.03 32.24

Average Network
Delay (ms)

200 2.93 15.46 3.13 8.65
400 2.87 14.23 6.97 7.08
600 3.03 14.28 10.00 6.34
800 3.05 15.03 9.24 6.02

Average VM
Utilization (%)

(Edge/Cloud) (Edge/Cloud)

200 49.17 16.41 48.23/0 16.84/6.86
400 89.93 84.12 73.98/6.98 47.33/20.32
600 94.61 91.11 76.27/66.95 82.55/51.76
800 98.16 94.80 77.75/87.54 90.56/75.29

ligence (AI), Machine Learning (ML), and Fuzzy approaches
for improving task allocation.
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