
1

Description of the Self-Chord P2P Application
Agostino Forestiero, Carlo Mastroianni

ICAR-CNR, Rende(CS), Italy
{forestiero,mastroianni}@icar.cnr.it

Abstract—This paper presents the implementation of the “Self-Chord”
P2P system. Self-Chord inherits the ability of Chord-like structured
systems for the construction and maintenance of an overlay of peers, but
features enhanced functionalities deriving from ant-inspired algorithms,
such as autonomy behavior, self-organization and capacity to adapt to
a changing environment. Self-Chord has three main advantages with
respect to classical structured P2P systems, especially in the context of
Grid and Cloud Computing: (i) it is possible execute range queries effi-
ciently; (ii) the load balance among peers is improved; (iii) maintenance
load is reduced because resources are spontaneously redistributed when
peers disconnect or reconnect to the systems, or when resources are
added/modified. In this paper, we summarize the main functionalities
of the Self-Chord application, and illustrate the configuration and
parameter settings, with the help of an example.

Index Terms—Bio-inspired systems, multi-agent systems, peer-to-peer,
self-organization.

I. INTRODUCTION

This paper presents and describes the implementation of Self-
Chord. Self-Chord is a P2P system, previously introduced in [1] and
[2] – and published on http://self-chord.icar.cnr.it
– which inherits from Chord the ability to construct and maintain
a structured ring of peers, but features enhanced functionalities
achieved through the activity of ant-inspired mobile agents.

As opposed to Chord [3], Self-Chord decouples the naming of
resources and peers, resulting in two sets of keys/indices that can have
different cardinalities. Keys can be assigned to resources depending
on the requirements of every specific application domain and on
the desired granularity of resource categorization, with also the
possibility to give them a semantic meaning. Moreover, Self-Chord
does not place resource keys to specified hosts, as Chord does:
this feature is actually unnecessary and limits the system flexibility.
Conversely, Self-Chord focuses on the real objective, which is the
reordering of keys over the ring, and their fair distribution to the
peers.

The technique adopted in Self-Chord is based on statistical oper-
ations of mobile agents whose behavior is inspired by ant colonies
[4]. Ants hop from peer to peer, pick/drop resource keys, and sort
them on the underlying P2P structure. Sorting of keys ensures their
fast discovery. Moreover, the keys of similar resources are assigned
to the same or neighbor peers, which enables the efficient execution
of range queries.

This kind of approach is inherited from recent proposals that aim
to use bio-inspired algorithms and swarm intelligence techniques to
enhance the self-organizing properties of distributed systems [5], [6],
in particular of P2P networks.

After summarizing the key functionalities of Self-Chord, by means
of a graphical example, this paper presents the Self-Chord application,
developed at the ICAR-CNR institute.

II. KEY POINTS OF SELF-CHORD

Self-Chord uses the ring-shaped overlay of Chord, the forefather
of structured P2P systems, to establish P2P interconnections, but
distributes resource keys among peers using the operations of ant-
inspired mobile agents. The principle of the mechanism is illustrated

in Figure 1. In this example, keys are assigned integer values in
the range [0..63], and the key space is toroidal, so that key 0 is
the successor of key 63. Each peer computes its centroid as the key
value that minimizes the sum of the distances between itself and
the keys stored in the local area. In the example, an ant arrives at
the peer with centroid C=24, and picks key 55, because its value is
dissimilar to the centroid. Actually, the pick operation is subject to a
Bernoulli trial, whose success probability is inversely proportional to
the distance between key and centroid. The agent, carrying the picked
key, exploits the long distance links of the underlying Chord structure,
hops to a region of the ring where peers are supposed to have centroid
values close to the key, and then tries to drop the key in this new
region. Notice that these operations assume that keys and centroids
are already sorted in the ring. The power of the ant algorithm is that,
by making this assumption, the keys will actually be ordered, even
starting from a completely disordered network. In stable condition,
the sorting of keys guarantees their logarithmic discovery. The base
principles for this behavior are the self-organizing nature and the
positive feedback mechanism of ant algorithms.

Figure 2 shows a snapshot of Self-Chord in a stable condition, in
which both keys and centroid are ordered. In this sample scenario
with 16 peers, peer indexes are defined over 7 bits, while values of
resource keys are between 0 and 63. At the interior of the ring, the
figure specifies the indexes of the peers, whereas at the exterior it
reports, for every peer, the keys stored by the peer (only the first
three keys are shown for simplicity) and the peer centroid c. It can
be noted that both the values of centroids and peer indexes are sorted
in clockwise direction, but they are not related to one another. Indeed,
different approaches are used to sort them: the peer indexes are sorted
by the Chord management operations, whereas the resource keys are
sorted by the self-organizing operations of the Self-Chord agents.

Fig. 1. Example of Self-Chord operation. A mobile agent arrives at a peer
with centroid C=24, picks key 55, and then hops to a region of the ring where
peers are supposed to have centroids close to 55.

Self-Chord features the following benefits with respect to Chord:
(i) In Self-Chord, peer indexes and resource keys are defined

independently and there is no obligation to assign a key to a well
specified peer. This feature enables the definition of “classes” of
resources; a class being defined as a set of resources that share
common characteristics, and are mapped to the same key value by



2

Fig. 2. Sample sorting of resource keys in the peers of Self-Chord. For each
peer, its index, a number of stored keys and the centroid are reported.

a hash function. A user can issue “class” queries, i.e., explore the
network to find a number of resources belonging to the same class
and then select the most appropriate for his/her purpose.

(ii) Structured systems like Chord can produce imbalance problems
depending on the location of peers and the statistical distribution
of the values of resource keys. In Self-Chord, the keys are fairly
distributed over the peers, irrespective of the location of peers and
the distribution of key values, thus fostering a better balancing of
storage responsibilities.

(iii) In Chord, appropriate operations are necessary when a peer
joins the ring or when new resources are published: these resources
must be immediately assigned to the peers whose indexes match
the resource keys. These operations are not necessary in Self-Chord,
because the mobile agents are always active and will spontaneously
reorganize the keys. This assures scalability (keys are continuously
reordered as the network grows) and robustness with respect to
environmental changes.

III. THE SELF-CHORD APPLICATION

The Self-Chord software was developed by the Distributed Sys-
tems Group of ICAR-CNR. The software, downloadable from
http://self-chord.icar.cnr.it, provides an advanced
graphical utility to let the user publish the resource metadata and
search resources over the P2P network by name or by key. The current
version of the Self-Chord software (both prototype and simulator)
can be downloaded and used under the GNU licence (http://self-
chord.icar.cnr.it). The available Self-Chord prototype does not need
installation procedures, but it is sufficient to download and unzip
the package, execute the file compile.bat and then run the file
run.bat. The following software is required:

• Java 2 Standard Edition 5.0;
• log4j. (An Apache package included in the zip file);

A. Parameter Setting

The basic parameters of the Self-Chord software can be set in the
file selfchord.properties. They are:

mode This parameter indicates the operation mode of agents. If the
value is ”log”, the mode is logarithmic and the agents move the keys
through the peer finger tables. If the parameter is ”linear”, the mode
is linear, and the agents move the keys across adjacent peers. The

Fig. 3. The GUI Welcome Panel of Self-Chord.

logarithmic is the default mode and guarantees a faster reordering of
keys. The linear mode is slower but assures a better load balancing.

kt and kl These are the parameters used in the take and leave
probability functions (see [1] and [2]). They must be set to numerical
values between 0 and 1.

range of keys This is the number of classes in which resources
are categorized. Each resource is assigned a key with value between
0 and rangeofkeys− 1 by a hash function.

sleep time (ms) This is the time that an agent waits before moving
to the next peer. The velocity of reordering can be scaled through
this parameter.

p gen This is the probability that a new peer generates an agent.
The default is 1. The number of agents can be tuned through this
parameter.

B. Executing Self-Chord

To run the Self-Chord software a double click on the file run.bat,
included in downloaded zip file, is sufficient. Figure 3 shows the
welcome panel of the prototype.

The main Self-Chord Window, shown in Figure 4, allows the user
to manage the local peer, publish resources locally and search for
remote resources. The Connection Information box can be
used to create a new Self-Chord network or to join an existing
overlay. This peer will be the contact node for the second peer. Each
subsequent peer can use any existing peer as contact node. The TCP
port can be chosen by the user to match the configuration of the
local firewall. By choosing appropriate ports, it is possible to create
multiple peers on the same host. This gives the possibility of testing a
Self-Chord network with many peers by using just one or few hosts.
To join the network, a new peer must specify the contact information
(IP address and port) of any peer already connected to the network,
its own contact information, and finally click the Join button. The
first peer of the network must specify its IP address and TCP port
and click the Create button.

The Peer Information box specifies the URL, the ID and the
centroid of the current peer and the IDs of the two adjacent peers.

The Insert Resources box is used to insert the name of a
new resource that must be published by this peer. The resource key
is calculated by a hash function and shown in the same panel.

The Resource box shows information about the resource keys
stored in the local peer. The content of this box is continuously
updated by the agents that execute take and leave operations to
reorder the keys on the network.



3

Fig. 4. The main Self-Chord Window.

The Search Resources box is used to specify a resource to
discover on the network. The target resource can be specified by name
or by key. The URL field specifies the address of the peer that stores
the discovered key, whereas the Owner field indicates the address of
the peer that stores the actual resource. The number of steps that was
necessary to discover the resource key is also indicated. Thanks to
the key sorting, it is logarithmic with respect to the number of peers
connected to the network.

REFERENCES

[1] A. Forestiero, C. Mastroianni, and M. Meo, “Self-Chord: a Bio-Inspired
Algorithm for Structured P2P Systems,” in Proc. of the 9th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid
2009), Shanghai, China, May 2009.

[2] A. Forestiero, E. Leonardi, C. Mastroianni, and M. Meo, “Self-Chord: a
Bio-Inspired P2P Framework for Self-Organizing Distributed Systems,”
IEEE/ACM Transactions on Networking, vol. 18, no. 5, pp. 1651–1664,
October 2010.

[3] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of the Conference on Applications, technologies, architectures,
and protocols for computer communications SIGCOMM’01, San Diego,
CA, USA, 2001.

[4] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm intelligence: from
natural to artificial systems. New York, NY, USA: Oxford University
Press, 1999.

[5] D. C. Erdil, M. J. Lewis, and N. Abu-Ghazaleh, “An adaptive approach
to information dissemination in self-organizing grids,” in Proc. of the In-
ternational Conference on Autonomic and Autonomous Systems ICAS’06,
Silicon Valley, CA, USA, July 2005.

[6] S. Y. Ko, I. Gupta, and Y. Jo, “A new class of nature-inspired algo-
rithms for self-adaptive peer-to-peer computing,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 3, no. 3, August 2008.


