
A Novel Data-Centric Programming Model for
Large-Scale Parallel Systems

Domenico Talia1�?, Paolo Trunfio1, Fabrizio Marozzo1, Loris Belcastro1, Javier
Garcia-Blas2, David del Rio2, Philippe Couvée3, Gael Goret3, Lionel Vincent3,

Alberto Fernández-Pena4, Daniel Mart́ın de Blas4, Mirko Nardi5, Teresa
Pizzuti5, Adrian Spătaru6, and Marek Justyna7

1 University of Calabria, Rende, Italy
2 University Carlos III of Madrid, Madrid, Spain

3 Atos BDS R&D Data Management, France
4 Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain

5 INTEGRIS, Rome, Italy
6 Institute e-Austria Timişoara, Timişoara, Romania

7 PSNC, Poznan, Poland

Abstract. This paper presents the main features and the programming
constructs of the DCEx programming model designed for the imple-
mentation of data-centric large-scale parallel applications on Exascale
computing platforms. To support scalable parallelism, the DCEx pro-
gramming model employs private data structures and limits the amount
of shared data among parallel threads. The basic idea of DCEx is struc-
turing programs into data-parallel blocks to be managed by a large
number of parallel threads. Parallel blocks are the units of shared- and
distributed-memory parallel computation, communication, and migration
in the memory/storage hierarchy. Threads execute close to data using
near-data synchronization according to the PGAS model. A use case is
also discussed showing the DCEx features for Exascale programming.

Keywords: Large-scale parallelism, Exascale systems, Data-centric applications.

1 Introduction

High-level parallel programming models assist designers accessing and exploiting
high-performance computing (HPC) resources abstracted from physical enti-
ties such as storage, memory, and cores. Their main goal is facilitating the
programming task, increasing programmer productivity, achieving scalability,
and improving software portability. Exascale systems refers to highly parallel
computing systems capable of at least one exaFLOPS. Therefore, their imple-
mentation represents a big research and technology challenge. The design and
development of Exascale systems is currently under investigation with the goal of

? Corresponding author: talia@dimes.unical.it

In: Euro-Par 2019 Workshops, Gottingen 2019. August 2019.

building by 2020 high-performance computers composed of a very large number
of multi-core processors expected to deliver a performance of 1018 operations
per second. Programming paradigms traditionally used in HPC systems (e.g.,
MPI, OpenMP, OpenCL, Map-Reduce, and HPF) are not sufficient/appropriate
for programming software designed to run on systems composed of a very large
set of computing elements [1]. To reach Exascale size, it is required to define
new programming models and languages that combine abstraction with both
scalability and performance. Hybrid models (shared/distributed memory) and
communication mechanisms based on locality and grouping are currently investi-
gated as promising approaches. Parallel applications running on Exascale systems
will require to control millions of threads running on a very large set of cores.
Such applications will need to avoid or limit synchronization, use less communi-
cation and remote memory, and handle with software and hardware faults that
could occur. Nowadays, no available programming languages provide solutions
to these issues, specially when data-intensive applications are targeted. In this
scenario, the EU funded Horizon 2020 project ASPIDE is studying models for
extreme data processing on Exascale systems, starting from the idea that parallel
programming paradigms must be conceived in a data-driven style especially for
supporting for Big Data analysis on HPC systems.

This paper introduces the main features and the programming constructs of
the DCEx programming model designed in the ASPIDE project. DCEx is based
upon data-aware basic operations for data-intensive applications supporting the
scalable use of a massive number of processing elements. The DCEx model uses
private data structures and limits the amount of shared data among parallel
threads. The basic idea of DCEx is structuring programs into data-parallel blocks,
which are the units of shared- and distributed-memory parallel computation,
communication, and migration in the memory/storage hierarchy. Computation
threads execute close to data, using near-data synchronization based on the
Partitioned Global Address Space (PGAS) model, which assumes the memory is
partitioned into a global shared address space and a portion that is local to each
process [3]. In the DCEx model, three main types of parallelism are exploited:
data parallelism, task parallelism, and Single Program Multiple Data (SPMD)
parallelism. A prototype API based on that model will be implemented.

The rest of the paper is structured as follows. Section 2 presents principles and
features of the data model used in DCEx. The data block concept is presented
and data access and management operations are discussed. Section 3 introduces
the principles and the kinds of parallelism exploited in DCEx. Section 4 presents
a use case designed using the programming mechanisms of DCEx. Finally, Section
5 outlines related parallel models and languages recently proposed for scalable
applications on Exascale systems.

2 The DCEx Data Model

The role of data management and processing is central in the DCEx programming
model. The data model used in the DCEx is based on the data parallel block

(DPB) abstraction. DPBs are the units of shared- and distributed-memory
parallel computation, communication, and migration. Blocks and their message
queues are mapped onto processes and placed in memory/storage by the ASPIDE
runtime. Decomposing a problem in terms of block-parallelism (instead of process-
parallelism) enables migrating blocks during the program execution between
different locations in the hardware. This is the main idea that lets us integrate
in- and out-of-core programming in the same model and change modes without
modifying the source code.

A DPB is used for managing a data element in the main memory of one or
multiple computing nodes. In particular, a DPB d can be composed of multiple
partitions:

d = [part 0][part 1][part 2][part 3]...[part n-1]

where each partition is assigned to a specific computing node.
Notation d[i] refers to the i-th partition of DPB d. However, when a DPB is

simply referred by its name (e.g., d) in a computing node (e.g., the k-th node), it
is intended as a reference to the locally available partition (e.g. d[k]).

A DPB can be created using the data.get operation, which loads into main
memory some existing data from secondary storage. This operation is specified
by the following syntax:

d = data.get(source, [format], [part|repl], ...) at [Cnode|Carea];

where:

– d: is the DPB created to manage in main memory the data element read
from secondary storage;

– source: specifies the location of data in secondary storage (e.g., an URL);
– format: is an optional parameter specifying the format of data;
– part|repl: is an optional parameter, which should be specified only if the

optional Carea directive is included (see below). If part is used, d must be
partitioned across all the computing nodes in Carea. If repl is used, d must
be replicated in all the computing nodes of the Carea;

– the ellipsis indicate further parameters to be defined;
– Cnode|Carea: is an optional directive to specify how d should be mapped on

a single computing node or on an area of computing nodes. In particular, if a
Cnode is specified, d is loaded in the main memory of that specific computing
node; if a Carea is specified, d is partitioned (if the part flag is used) or
replicated (if the repl flag is used) in the main memory of the computing
nodes included in that area.

In addition to data.get, it is also possible to use the data.declare operation,
which declares a DPB that will come into existence in the future, as a result of a
task execution. Here is an example of DPB declaration:

d = data.declare();

The use of data.declare in association with task operations allows to store
the output of a task.

A DPB can be written in secondary storage using the data.set operation,
which is defined as follows:

data.set(d, dest, [format]);

where:

– d: is the DPB to be stored in secondary storage;
– dest: specifies where of data must be written in secondary storage (e.g., an

URL);
– format: is an optional parameter specifying the format of data.

3 The DCEx Parallelism Model

In the DCEx model, data are the fundamental artifact and they are processed
in parallel. In particular, DCEx exploits three main types of parallelism for
managing the data parallel blocks: data parallelism, data-driven task parallelism,
and SPMD parallelism.

To simplify the development of applications in heterogeneous distributed
memory environments, large-scale data- and task-parallelism techniques can be
developed on top of the data-parallel block abstractions divided into partitions.
Different partitions are placed on different cores/nodes where tasks will work in
parallel on data partitions. This approach allows computing nodes to process in
parallel the data partitions at each core/node using a set of statements/library
calls that hide the complexity of the underlying operations. Data dependency
in this scenario limits scalability, thus it should be avoided or limited to a local
scale.

Some proposals for Exascale programming are based on the adaptation
of traditional parallel programming languages and on hybrid solutions. This
incremental approach is conservative and often results in very complex codes
that may limit the scalability of programs on many thousands or millions of
cores. Approaches based on a partitioned global address space (PGAS) memory
model appear to be more suited to meeting the Exascale challenge [5]. PGAS is a
parallel programming model that assumes a global memory address space that is
logically partitioned. A portion of the address space is local to each task, thread,
or processing element. In PGAS the partitions of the shared memory space can
have an affinity for a particular task, in this way data locality is implemented.
For these reasons PGAS approaches have been analyzed and adopted in the
DCEx model for partitioning of the address space using locality to limit data
access overhead.

3.1 Basic Features

As mentioned before, the DCEx model for managing a very large amount of paral-
lelism exploits three main types of parallelism: Data parallelism, task parallelism,
and SPMD parallelism. Those forms of parallelism are integrated with PGAS
features taking into account computing areas and other data and computing
locality features.

Data parallelism is achieved when the same code is executed in parallel
on different data blocks. In exploiting data parallelism, no communication is

needed, therefore this type of parallelism allows for the independent execution
of code processing in parallel different partitions of data without suffering of
communication or synchronization overhead.

Task parallelism is exploited when different tasks that compose an application
run in parallel. The task parallelism in DCEx is data driven since data depen-
dencies are used to decide when tasks can be spawn in parallel. As input data
of a task are ready its code can be executed. Such parallelism can be defined
in two manners: i) explicit, when a programmer defines dependencies among
tasks through explicit instructions; ii) implicit, when the system analyses the
input/output of tasks to understand dependencies among them.

SPMD parallelism is achieved when a set of tasks execute in parallel the
same code on different partitions of a data set (in our case parallel data blocks);
however, differently from data parallelism, processes cooperate to exchange partial
results during execution. Communication occurs among the processors when data
must be exchanged between tasks that compose an SPMD computation. Tasks
may execute different statements by taking different branches in the program
and it is occasionally necessary for processors to synchronize, however processors
do not have to operate in locksteps as in SIMD computations.

In DCEx, these three basic forms of parallelism can be combined to express
complex parallel applications. This can be done by programming Exascale appli-
cations in a Directed Acyclic Graph (DAG) style that corresponds to workflow
programming, where a parallel program is designed as a graph of tasks. As data-
intensive scientific computing systems become more widespread, it is necessary
to simplify the development, deployment, and execution of complex data analysis
applications. The workflow model is a general and widely used approach for de-
signing and executing data-intensive applications over high performance systems
or distributed computing infrastructures. Data-intensive workflows consist of
interdependent data processing tasks, often connected in a DAG style, which
communicate through intermediate storage abstractions. This paradigm in the
DCEx model can be exploited to program applications on massively parallel
systems like Exascale platforms.

The combination of the three basic types of parallelism allows developers to
express other parallel execution mechanisms such as pipeline parallelism, which is
obtained when data is processed in parallel at different stages. Pipeline parallelism
is in particular appropriate for processing data streams as their stages manage
the flow of data in parallel [6]. As mentioned before, the types of parallelism
discussed here are combined in DCEx with the features of the PGAS model that
support the definition of several execution contexts based on separate address
spaces. For any given task, this allows for the exploitation of memory affinity
and data locality that provides programmers with a clear way to distinguish
between private and shared memory blocks, and determine the association to
processing nodes of shared data locations [7]. In fact, in the PGAS model, the
computing nodes have an attached local memory space and portions of this local
storage can be declared private by the programming model, making them not
visible to other nodes. A portion of each node’s storage can be also shared with

others nodes. Each shared memory location has an affinity, which is a computing
node on which the location is local, with the effect that data access rate is higher
for code running on that node. Therefore, through data affinity mechanisms a
programmer can implement parallel applications taking into account local data
access and communication overhead facilitating high performance and scalability.

3.2 Programming Constructs

This section introduces the main programming concepts and constructs designed
in the DCEx model. The description is focused on the two main components of
the model: i) computing nodes and areas that identify single processing elements
or regions of processors of an Exascale machine where to store data and run
tasks; ii) tasks and task pools that represent the units of parallelism.

Computing Nodes and Computing Areas The DCEx model defines two
basic constructs to refer to computing nodes and computing areas:

– Cnode representing a single computing node, and
– Carea representing a region (or area) including a set of computing nodes.

In general, Cnodes and Careas are used to implement data and task locality
by specifying a mapping between data loading operations and (the main memory
of) computing nodes, and task execution operations and (the processors of)
computing nodes.

A Cnode variable may be used to specify in a data loading operation the
computing node that should be used to store (in its main memory) a given data
element read from secondary storage. It can be used also in a task execution
operation to specify the computing node on which a task should be executed.

A Carea variable may be used to specify in a data loading operation the set
of computing nodes that should be used to store (in their main memory) a given
data element read from secondary storage, by partitioning data on all the nodes.
In a task execution operation a Carea is used to specify the computing nodes on
which a pool of tasks should be executed. A Cnode is declared as follows:

node = Cnode;

where node is a variable used to refer to the computing node.
Through this declaration, the runtime chooses which computing node will be
assigned to variable node. Alternatively, it may be specified by annotations to
help the runtime in choosing the computing node, e.g.:

node = Cnode({hardware annotation parameters})

A Carea can be defined as an array of computing nodes. For instance, the
example below defines nodes as an array of 1000 computing nodes:

nodes1 = Carea(1000);

Similarly, the following examples defines a two-dimensional array of 100x100
computing nodes:

nodes2 = Carea(100,100);

Referring to the last example, the following notation:
nodes2[10][50]

identifies the computing node at row 10 and column 50 in the nodes Carea.
It is also possible to create a Carea as a view of a larger Carea:

nodes3 = Carea(nodes2,10,10);

which extracts a 10x10 matrix of computing nodes from from the Carea

defined by nodes2.

Tasks and Task Pools In DCEx, tasks are the basic elements for implementing
concurrent activities. To manage the parallel execution of multiple tasks, a task
data dependency graph is generated at runtime. Each time a new task is executed,
its data dependencies are matched against those of the other tasks. If a data
dependency is found, the task becomes a successor of the corresponding tasks.
Tasks are scheduled for execution as soon as all their predecessors in the graph
have produced data they need as input. The programming model allows to express
parallelism using two concepts: task and task pool.

A task can be defined according to the following syntax:
t = Task(f_name,f_param_1,...,f_param_n) [at Cnode|Carea] [on failure ignore

|retry|...];

where:

– t: is a numeric identifier to the task being created;
– f name: is the name of the function to be executed;
– f param i: the i-th parameter required by the function identified by f name;
– at Cnode|Carea: is an optional directive that allows to specify on which

given computing node the task should be executed (if a Cnode is specified),
or to execute the task on any computing node from a set of computing nodes
(if a Carea is specified).

– on failure: is an optional directive that allows to specify the action (for
instance, ignore or retry with it) to be performed in case of task failure.

According to the basic assumptions about concurrent task execution men-
tioned above, the Task keyword allows to concurrently execute a method in the
future, as soon as its data dependencies are resolved (i.e., its input data are ready
to be used). Moreover, the at directive that specifies the execution of a task on a
given Cnode is intended as request/suggestion to runtime that can be satisfied
or not, depending on available hardware resources, their status and load, and
the runtime execution optimization strategy.

As an example, let assume we defined the following function:
partitioner(in:dataset, out:trainset, out:testset);

that takes as input a dataset and returns (by reference) a trainset and a testset
extracted from the dataset. The following code shows how that function may be
executed:

dsURL = ‘‘some url’’; trainURL = ‘‘some url’’; testURL ‘‘some url’’;
node = Cnode; ds = data.get(dsURL) at node;
train = data.declare(); test = data.declare();

t = Task(partitioner, ds, train, test);
data.set(train, trainURL); data.set(test, testURL);

Tasks can be used in a for loop to exploit data-driven task parallelism. For
example, a set of tasks can be executed in parallel in such a way:

N = 10; vec = [];
for (i=0; i<N; i++) {
if (cond)
vec[i] = Task(f1, f1_par_1, ..., f1_par_n);

else
vec[i] = Task(f2, f2_par_1, ..., f2_par_n);

}

In this code example we assume functions f1 and f2 have been already defined.
To implement SPMD parallelism in DCEx, the Task Pool abstraction is

defined to represent a set of tasks. In fact, tasks in a pool are activated to execute
the same function that implements the algorithm executed by the Task Pool
in an SPMD parallel style. The basic syntax for declaring a pool of tasks is as
follows:

tp = Task_Pool([size]);

where:

– tp: is an identifier of the task pool being defined, it can be also used with an
index to identify a single task of the pool; and

– size: is an optional parameter specifying the number of tasks in the pool.

The statement above declares a task pool but does not spawn its execution.
Each task in the pool must be activated explicitly using a for loop as in the
following example:

N = 10; nodes = Carea(N);
for (i=0; i<N; i++) {
f_param_1 = ...; f_param_n = ...;
tp[i] = Task(f_name, f_param_1, ..., f_param_n) at nodes[i];

}

If there are no dependencies among the tasks initialized in the loop, they execute
concurrently. On the other hand, if a task works on some data that is not yet
available, it waits until that data becomes available, according to the execution
model outlined before. On a Task Pool tp some operations such as the following
listed here can be defined:

– size(tp) to access the number of tasks in a pool.
– structure(tp) to know how the tasks in a pool are structured (e.g., in a

vector, a two-dimensional matrix, a tree).
– zone(tp) to know in which Carea the tasks of a pool are mapped.

4 Use Case

To show through a real data-intensive application how the DCEx constructs
can be used, in the following is described a trajectory data analysis application
coded in DCEx. The workflow shown in Figure 1 represents the main steps of
the applications (some of them are optional):

A. Crawling : multiple crawlers are instantiated and run in parallel for gathering
data from social media. If data have already been downloaded and stored in
files, a specific crawler (FileCrawler) is used to load the data.

B. Filtering : filtering functions are run in parallel to verify if social media items
meet or not some conditions.

C. Automatic keywords extraction and data grouping : the keywords that identify
the places of interests are extracted; these keywords will be used to group
social media items according to the places they refer to.

D. RoIs extraction: a data parallel clustering algorithm is used to extract Regions-
of-Interest (RoIs) from social media data grouped by keywords [2]. RoIs
represent a way to partition the space into meaningful areas; they are the
boundaries of points-of-interest (e.g., square of a city).

E. Trajectory mining : This step is executed to discover behaviour and mobility
patterns of people by analyzing geotagged social media items. Highly paral-
lel versions of the FP-Growth (frequent itemset analysis) and Prefix-Span
(sequential pattern mining) algorithms are used here.

Social media

items
Configuration

Trajectories

{;}

Crawling Filtering
Filtered social

media items

RoIs

extraction
RoIs

Keywords extr.

& data grouping

Grouped social

media items

Trajectory

mining

Fig. 1. Workflow of the urban computing use-case.

Listing 1.1 shows the DCEx pseudo-code for the trajectory data analysis use
case introduced above. Initially the dataset “FullFlickrData.json” is loaded (line
2), a Carea of 16,000 nodes is defined (lines 3-4), then the dataset is split into
16,000 partitions and mapped onto the computing nodes (line 5). After that,
filtering tasks are executed in parallel on the partitions to filter out Flickr posts
that are not geotagged or do not refer to the city of Rome (lines 6-12). Filtering
data is processed in parallel to extract keywords in each cell (lines 13-19). Then,
such keywords are aggregated to find the top keywords in the area (lines 20-30).
Afterward, filtering data have been used again and aggregated based on top
keywords (lines 31-39). Finally, the RoI extraction (lines 40-48) and trajectory
mining tasks (49-51) are executed concurrently.

Listing 1.1. DCEx code for the urban computing use-case.
1 //Crawling
2 source="/home/UNICAL/FullFlickrData.json";
3 numNodes = 16000;
4 nodes = Carea(numNodes);
5 dd = data.get(source, FILE, part) at nodes;

6 //Filtering

7 filterTasks = Task_Pool(nodes.size);
8 ddfilt = []; f_param_0 = "IsGeotagged"; f_param_1 = "IsInRome";
9 for(i=0; i<nodes.size; i++){

10 ddfilt[i] = data.declare();
11 filterTasks[i] = Task(filteringFunc, dd[i], ddfilt[i], f_param_0, f_param_1) at nodes[i];
12 }

13 //Keywords extraction
14 keywordsInCellTasks = Task_Pool(nodes.size);
15 keywordsInCellParts = []; cell_width = "500m";
16 for(i=0; i<nodes.size; i++){
17 keywordsInCellParts[i] = data.declare();
18 keywordsInCellTasks[i] = Task(findKeywordsInCell, ddfilt[i], keywordsInCellParts[i],

cell_width) at nodes[i];
19 }
20 keywordsInCell = groupByKey(keywordsInCellParts);
21 numCells = keywordsInCell.size;
22 topKeywordsInCellTasks = Task_Pool(numCells);
23 nodes = Carea(numCells);
24 topKeywordsInCell = []; numTopKeywords = 5;
25 for(j=0; j<numCells; j++){
26 topKeywordsInCell[j] = data.declare();
27 topKeywordsInCellTasks[j] = Task(findTopKeywords, keywordsInCell[j], topKeywordsInCell[j],

numTopKeywords) at nodes[j];
28 }
29 topKeywords = data.declare();
30 aggregateKeysTask = Task(aggregateKeywords, topKeywordsInCell, topKeywords);

31 //Data grouping
32 splitDataPerKeywordsTasks = Task_Pool(numNodes);
33 nodes = Carea(numNodes);
34 dataPerKeywordsParts=[];
35 for(i=0; i<numNodes; i++){
36 dataPerKeywordsParts[i] = data.declare();
37 splitDataPerKeywordsTasks[i] = Task(assignDataToKeywords, ddfilt[i], dataPerKeywordsParts[i

], topKeywords) at nodes[i]);
38 }
39 dataPerKeywords = groupByKey(dataPerKeywordsParts);

40 //RoIs extraction
41 numRoIs = dataPerKeywords.size;
42 roiTasks = Task_Pool(numRoIs);
43 nodes = Carea(numRoIs);
44 rois=[]; eps = 50; minPts=150; splits = 32;
45 for(k=0; k<numRoIs; k++){
46 rois[k] = data.declare();
47 roiTasks[k] = Task(findRoI, dataPerKeywords[k], rois[k], eps, minPts, splits) at nodes[i];
48 }

49 //Trajectory mining
50 trajectories = data.declare();
51 trajectoryTask = Task(trajectoryMining, ddfilt, trajectories, rois);

5 Related Work

This section discusses a few parallel programming models and languages that
have been proposed for the implementation of scalable applications on Exascale
machines [9]. The approach and the main features of those models and languages
are briefly discussed. To manage programming issues of data-intensive applica-
tions, different scalable programming models have been proposed [4]. Several
parallel programming models, languages and libraries are currently under develop-
ment for providing high-level programming interfaces and tools for implementing
high-performance applications on future Exascale computers. Here we introduce
the most significant proposals and outline their main features.

The programming models for Exascale systems can be classified according to
four categories: distributed memory, shared memory, partitioned memory, and
hybrid models. Since Exascale systems can be composed of millions of processing
nodes using large distributed memory, message passing programming systems,
such as MPI, are candidate tools for programming applications for such class
of systems. However, traditional MPI all-to-all communication does not scale
well in Exascale environments. Hence to solve this issue new MPI releases (like
MPI+X) have been proposed to support neighbor collectives for providing sparse
”all-to-some” communication patterns that limit the data exchange on limited
regions of processors [5]. Other distributed-memory languages for Exascale are
Legion8 and Charm++9. On the other side, the shared-memory paradigm offers
a simple parallel programming model although it does not provide mechanisms
to explicitly map and control data distribution and it includes non-scalable
synchronization operations that are making very challenging its implementation
on massively parallel systems.

As a trade-off between distributed and shared memory organizations, PGAS
model [8] has been designed for implementing a global memory address space
that is logically partitioned and portions of it are local to single processes. The
main goal of the PGAS model is to limit data exchange and isolate failures in
very large-scale systems. DASH10 offers distributed data structures and parallel
standard template library algorithms via a PGAS approach. A variant of the
PGAS model, Asynchronous PGAS (APGAS) [7] that has been adopted by
some programming languages, such as X1011 and Chapel12, supports both local
and remote asynchronous task creation. Differently for the PGAS model, the
APGAS model does not require that all processes run on similar hardware and
supports dynamically spawning of multiple tasks. In fact, multiple threads be
active simultaneously in a place, using either local or remote data. In addition, it
does not require that all the places in a computation must be homogeneous [10].
PGAS-based languages proposed recently are X10, Chapel and UPC13. They
share some concepts with DCEx, although they are not specifically designed
for data-centric applications. In fact, in exploiting the PGAS approach, DCEx
integrates PGAS with local communication mechanisms and data parallel blocks.

6 Conclusions

Traditional parallel programming paradigms are not appropriate for program-
ming scalable software designed to run on systems composed of a very large set
of computing nodes. Therefore, to reach Exascale size it is required to define
new programming models, languages and APIs that combine abstraction with

8 https://legion.stanford.edu/
9 https://charmplusplus.org/

10 https://www.dash-project.org/
11 https://x10-lang.org/
12 https://chapel-lang.org/
13 https://upc-lang.org/

scalability and performance. Hybrid models (shared/distributed memory) and
locality-based communication mechanisms are currently investigated as promising
approaches. The main goal of the ASPIDE project is the design and development
of a new Exascale programming model for extreme data applications. The de-
signed DCEx programming model includes data parallel blocks and data-driven
parallelism for the implementation of scalable algorithms and applications on
top of Exascale computing systems with a special emphasis on the support of
massive data analysis applications. We presented here the language features and
a use case. The implementation of the DCEx language is an ongoing activity.

Acknowledgments

This work has been partially funded by the ASPIDE Project funded by the
European Union’s Horizon 2020 Research and Innovation Programme under
grant agreement No 801091.

References

1. Belcastro, L., Marozzo, F., Talia, D.: Programming models and systems for big
data analysis. International Journal of Parallel, Emergent and Distributed Systems
0(0), 1–21 (2018)

2. Belcastro, L., Marozzo, F., Talia, D., Trunfio, P.: G-roi: Automatic region-of-interest
detection driven by geotagged social media data. ACM Transactions on Knowledge
Discovery from Data 12(3), 27:1–27:22 (January 2018)

3. Culler, D.E., Dusseau, A., Goldstein, S.C., Krishnamurthy, A., Lumetta, S., von
Eicken, T., Yelick, K.: Parallel programming in split-c. In: Proceedings of the 1993
ACM/IEEE Conference on Supercomputing. pp. 262–273 (Nov 1993)

4. Diaz, J., Munoz-Caro, C., Nino, A.: A survey of parallel programming models and
tools in the multi and many-core era. IEEE Transactions on parallel and distributed
systems 23(8), 1369–1386 (2012)

5. Gropp, W., Snir, M.: Programming for exascale computers. Computing in Science
& Engineering 15(6), 27–35 (2013)

6. del Rio Astorga, D., Dolz, M.F., Fernández, J., Garćıa, J.D.: A generic parallel
pattern interface for stream and data processing. Concurrency and Computation:
Practice and Experience 29(24) (2017)

7. Saraswat, V., Almasi, G., Bikshandi, G., Cascaval, C., Cunningham, D., Grove,
D., Kodali, S., Peshansky, I., Tardieu, O.: The asynchronous partitioned global
address space model. In: The 1st Workshop on Advances in Message Passing. pp.
1–8 (2010)

8. Stitt, T.: An introduction to the partitioned global address space programming
model. CNX. org (2010)

9. Talia, D.: A view of programming scalable data analysis: from clouds to exascale.
Journal of Cloud Computing 8(1), 4–20 (2019)

10. Tardieu, O., Herta, B., Cunningham, D., Grove, D., Kambadur, P., Saraswat,
V., Shinnar, A., Takeuchi, M., Vaziri, M.: X10 and apgas at petascale. In: ACM
SIGPLAN Notices. vol. 49, pp. 53–66. ACM (2014)

	A Novel Data-Centric Programming Model for Large-Scale Parallel Systems

