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Abstract. Every day millions of people use social media and produce
huge amount of digital data that can be effectively exploited to extract
valuable information concerning human dynamics and behaviors. Such
data, commonly referred as Big Data, contains valuable information
about user activities, interests, and behaviors, which makes it intrinsically
suited to a very large set of applications. For getting valuable information
and knowledge from such data in a reasonable time, novel frameworks
and data analysis approaches have been developed. This paper aims at
presenting some recent Cloud-based frameworks and methodologies for
Big Data processing that can be used for developing and executing several
data analysis applications, including trajectory mining and sentiment
analysis. The paper is organized in two main parts. The first part focuses
on tools for developing and executing scalable data analysis applications
on Cloud. The second part presents data analysis methodologies for
extracting knowledge from large datasets.

Keywords: cloud computing, big data analysis, sentiment analysis, tra-
jectory mining, social data analysis, sentiment analysis

1 Introduction

In the last years the ability to produce and gather data has increased exponentially.
In the Internet of Things’ era, huge amounts of digital data are generated by and
collected from several sources, such as sensors, mobile devices, web applications
and services. Moreover, with the widespread diffusion of mobile devices, every day
millions of people use social media and produce huge amount of digital data that
can be effectively exploited to extract valuable information concerning human
dynamics and behaviors. Such data, commonly referred as Big Data, contains
valuable information about user activities, interests, and behaviors, which makes
it intrinsically suited to a very large set of applications [6]. The huge amount
of data generated, the speed at which it is produced, and its heterogeneity in
terms of format, represent a challenge to the current storage, process and analysis
capabilities. Then to extract value from such kind of data, novel frameworks
and data analysis approaches have been developed for capturing and analyzing
complex and/or high velocity data.
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In this scenario, high performance computers, such as many and multi-
core systems, Clouds, and multi-clusters, paired with parallel and distributed
algorithms are commonly used by data analysts to tackle Big Data issues and get
valuable information and knowledge in a reasonable time. In particular, Cloud
computing systems provide large-scale computing infrastructures for complex
high-performance applications, such as those that use advanced data analytics
techniques for extracting useful information from large, complex datasets [29].
However, combining Big Data analytics techniques with scalable computing
systems will produce new insights in a shorter time. Although a few Cloud-based
analytics platforms are available today, current research work foresees that they
will become common within a few years.

This paper aims at presenting some recent Cloud-based frameworks and
methodologies for Big Data processing that can be used for developing and
executing several data analysis applications, including trajectory mining and
sentiment analysis. The paper is organized in two main parts. The first part
focuses on tools for developing and executing scalable data analysis applications
on Cloud. The second part presents data analysis methodologies for extracting
knowledge from large datasets.

In particular, the paper is organized as follows. Section 2 presents a Data
Mining Cloud Framework designed for developing and executing distributed data
analytics applications as workflows of services. In such environment data sets,
analysis tools, data mining algorithms and knowledge models are implemented as
single services that can be combined through a visual programming interface in
distributed workflows to be executed on Clouds. Section 3 describes a high-level
library for developing parallel data mining applications based on the extraction
of useful knowledge from large dataset gathered from social media. The library
aims at reducing the programming skills needed for implementing scalable social
data analysis applications.

Section 4 presents a Software-as-a-Service (SaaS) system that exploits Cloud
facilities to provide efficient services for analyzing large datasets. The system
allows users to import their data to the Cloud, extract knowledge models using
high performance data mining services, and exploit the inferred knowledge to
predict new data and behaviors. Section 5 describes SMA4TD, a methodology for
discovering behavior and mobility patterns of users attending large-scale public
events, by analyzing social media posts.

Section 6 presents novel Region-of-Intererest (RoI) mining technique that
exploits the indications contained in geotagged social media items (e.g. tweets,
posts, photos or videos with geospatial information) to discover RoIs with high
accuracy. Section 7 presents a methodology for discovering the polarization of
social media users during election events characterized by the competition of
political factions. The methodology uses an automatic incremental procedure
based on neural networks for analyzing the posts published by social media users.

Finally, Section 8 concludes the paper.
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2 Data Mining Cloud Framework (DMCF)

The Data Mining Cloud Framework (DMCF) [24] is a software system for
designing and executing data analysis workflows on Clouds. DMCF supports
a large variety of data analysis processes, including single-task applications,
parameter sweeping applications [23], and workflow-based applications. A Web-
based user interface allows users to compose their applications and to submit
them for execution to a Cloud platform, according to a Software-as-a-Service
approach.

The DMCF’s architecture has been designed to be implemented on different
Cloud systems, so as to take advantage of main cloud computing features, such
as elasticity of resources provisioning. In DMCF, at least one Virtual Web Server
runs continuously in the Cloud, as it serves as user front-end. In addition, users
specify the minimum and maximum number of Virtual Compute Servers, which
are in charge of executing the data mining tasks. The DMCF can exploit the
auto-scaling features that allows dynamic spinning up or shutting down Virtual
Compute Servers, based on the number of tasks ready for execution in the
DMCF’s Task Queue. Since storage is managed by the Cloud platform, the
number of storage servers is transparent to the user.

2.1 Workflow formalisms

The DMCF allows creating data mining and knowledge discovery applications
using workflow formalisms. Workflows may encompass all the steps of discovery
based on the execution of complex algorithms and the access and analysis of
scientific data. In data-driven discovery processes, knowledge discovery workflows
can produce results that can confirm real experiments or provide insights that
cannot be achieved in laboratories. In particular, DMCF allows to program
workflow applications using two languages:

1. VL4Cloud (Visual Language for Cloud), a visual programming language that
lets users develop applications by programming the workflow components
graphically [26].

2. JS4Cloud (JavaScript for Cloud), a scripting language for programming data
analysis workflows based on JavaScript [25].

Both languages use two key programming abstractions:

1. Data elements denote input files or storage elements (e.g., a dataset to be
analyzed) or output files or stored elements (e.g., a data mining model).

2. Tool elements denote algorithms, software tools or service performing any
kind of operation that can be applied to a data element (data mining, filtering,
partitioning, etc.).

In particular, three different types of Tools can be used in a DCMF workflow:

1. A Batch Tool is used to execute an algorithm or a software tool on a Virtual
Compute Server without user interaction. All input parameters are passed as
command-line arguments.
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2. A Web Service Tool is used to insert into a workflow a Web service invocation.
3. A MapReduce Tool is used to insert into a workflow the execution of a

MapReduce algorithm or application running on a cluster of virtual servers [7].

For each Tool in a workflow, a Tool descriptor includes a reference to its
executable, the required libraries, and the list of input and output parameters.
Each parameter is characterized by name, description, type, and can be manda-
tory or optional.As an example, a MapReduce Tool descriptor is composed by
two groups of parameters: generic parameters, which are parameters used by
the MapReduce runtime, and applications parameters, which are parameters
associated to specific MapReduce applications. In the following, we list a few
examples of generic parameters:

– mapreduce.job.reduces: the number of reduce tasks per job;
– mapreduce.job.maps: the number of map tasks per job;
– mapreduce.input.fileinputformat.split.minsize: the minimum size of chunk

that map input should be split into;

Another common element is the task concept, which represents the unit
of parallelism in our model. A task is a Tool, invoked in the workflow, which
is intended to run in parallel with other tasks on a set of Cloud resources.
According to this approach, VL4Cloud and JS4Cloud implement a data-driven
task parallelism. This means that, as soon as a task does not depend on any other
task in the same workflow, the runtime asynchronously spawns it to the first
available virtual machine. A task Tj does not depend on a task Ti belonging to
the same workflow (with i 6= j), if Tj during its execution does not read any data
element created by Ti.

In VL4Cloud, workflows are directed acyclic graphs whose nodes represent
data and tools elements. The nodes can be connected with each other through
direct edges, establishing specific dependency relationships among them. When
an edge is being created between two nodes, a label is automatically attached to
it representing the type of relationship between the two nodes. Data and Tool
nodes can be added to the workflow singularly or in array form. A data array is
an ordered collection of input/output data elements, while a tool array represents
multiple instances of the same tool.

In early versions, DMCF has exploited the default storage provided by public
cloud infrastructures for any I/O operations. This implies that DMCF’s I/O
performance was limited by the performance of the storage provided by cloud
providers. In work [27] it was proposed to use the Hercules system within DMCF
for storing temporary data generated by workflow-based applications. Hercules is
a highly scalable, in-memory, distributed storage system [18]. In a later work [22],
we also used a data-aware scheduling runtime that exploits data locality during the
execution of workflows. An experimental evaluation was carried out to evaluate
the advantages of these strategies and to demonstrate the effectiveness of the
solution. Using the proposed data-aware strategy and Hercules as a temporary
storage service, I/O overhead was reduced by 55% compared to standard Azure
storage-based execution, leading to a 20% reduction in total execution of the
workflow.
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2.2 Workflow examples

Figure 1 shows an example of data analysis workflow developed using the visual
workflow formalism of DMCF.

Fig. 1: Example of data analysis application designed using VL4Cloud.

In JS4Cloud, workflows are defined with a JavaScript code that interacts with
Data and Tool elements through three functions:

1. Data Access, for accessing a Data element stored in the Cloud;
2. Data Definition, to define a new Data element that will be created at runtime

as a result of a Tool execution;
3. Tool Execution, to invoke the execution of a Tool available in the Cloud.

Once the JS4Cloud workflow code has been submitted, an interpreter trans-
lates the workflow into a set of concurrent tasks by analysing the existing
dependencies in the code. The main benefits of JS4Cloud are:

1. it extends the well-known JavaScript language while using only its basic
functions (arrays, functions, loops);

2. it implements both a data-driven task parallelism that automatically spawns
ready-to-run tasks to the Cloud resources, and data parallelism through an
array-based formalism;

3. these two types of parallelism are exploited implicitly so that workflows can
be programmed in a totally sequential way, which frees users from duties like
work partitioning, synchronization and communication.

Figure 2 shows the script-based workflow version of the visual workflow shown
in Figure 1. In this example, parallelism is exploited in the for loop at line 7,
where up to 16 instances of the J48 classifier are executed in parallel on 16
different partitions of the training sets, and in the for loop at line 10, where up
to 16 instances of the Predictor tool are executed in parallel to classify the test
set using 16 different classification models.

Figure 2 shows a snapshot of the parallel classification workflow taken during
its execution in the DMCF’s user interface. Beside each code line number, a
colored circle indicates the status of execution. This feature allows user to monitor
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Fig. 2: Example of data analysis application designed using JS4Cloud.

the status of the workflow execution. Green circles at lines 3 and 5 indicate that
the two partitioners have completed their execution; the blue circle at line 8
indicates that J48 tasks are still running; the orange circles at lines 11 and 13
indicate that the corresponding tasks are waiting to be executed.

2.3 Workflow study cases

DMCF has been used to implement several Big Data analytics applications,
including a workflow for discovering patterns and rules from trajectory data [2].
Figure 3 shows the VL4Cloud workflow that define the steps of such application.
Experimental evaluation has been carried out on GPS datasets tracing the
movement of taxies in the urban area of Beijing. The results showed that, due to
the high complexity and large volumes of data involved in the application scenario,
the trajectory pattern mining process takes advantage from the scalable execution
environment offered by DMCF in terms of both execution time, speed-up and
scale-up.

Fig. 3: Trajectories workflow composed and executed in the Data Mining Cloud
Framework (DMCF).

DMCF has also been used to implement a Cloud-based computing infras-
tructure for the analysis of SNP microarray data [1]. It was possible to define a
software tool (Cloud4SNP) for the parallel preprocessing and statistical analy-
sis of pharmacogenomics SNP microarray data. Experimental evaluation shows
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efficient execution times and very good scalability. Moreover, the system imple-
mentation shows how the exploitation of a Cloud platform allows researchers and
professionals to face in an elastic way the requirements of small as well as very
large pharmacogenomics studies.

DMCF also supports data classification workflows that include MapReduce
computations. As an example, in [8] DMCF has been used to implement a
MapReduce data analysis application for predicting flight delays. Every year
approximately 20% of airline flights are delayed or canceled mainly due to
bad weather, carrier equipment, or technical airport problems. The goal of this
application is to implement a predictor of the arrival delay of scheduled flights due
to weather conditions. To run the workflow, we used a Hadoop cluster composed
of 1 head node and 8 worker nodes, over the cloud servers used by the DMCF
environment. With this setting, the turnaround time decreased from about 7 h
using 2 workers, to about 1.7 h using 8 workers, with a speedup that is very close
to linear values.

3 Parallel Social Data Analysis (ParSoDA)

Several developers and researches are working on the design and implementation
of tools and algorithms for extracting useful information from data gathered
from social media. In most cases the amount of data to be analyzed is so big
that high-performance computers, such as many and multi-core systems, Clouds,
and multi-clusters, paired with parallel and distributed algorithms, are used by
data analysts to reduce response time to a reasonable value [9]. Several research
projects consider not only the data analysis task, but also procedures including
other data processing tasks needed for building social data applications. In
particular, these projects aim at helping scientists to implement all the steps that
compose social data mining applications without the need to implement common
operations from scratch.

ParSoDA (Parallel Social Data Analytics) [12] is a Java library that includes
algorithms widely used to process and analyze data gathered from social media
with the goal of extracting different kinds of information (e.g., user mobility, user
sentiments, topic trends, and frequency). ParSoDA defines a general structure
for a social data analysis application that is formed by the following steps:

– Data acquisition: during this step, it is possible to run multiple crawlers
in parallel; the collected social media items are stored on a distributed file
system (HDFS [28]).

– Data filtering : this step filters the social media items according to a set of
filtering functions.

– Data mapping : this step transforms the information contained in each social
media item by applying a set of map functions.

– Data partitioning : during this step, data is partitioned into shards by a
primary key and then sorted by a secondary key.

– Data reduction: this step aggregates all the data contained in a shard according
to the provided reduce function.
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– Data analysis: this step analyzes data using a given data analysis function
to extract the knowledge of interest.

– Data visualization: at this final step, a visualization function is applied on
the data analysis results to present them in the desired format.

For each of these steps, ParSoDA provides a predefined set of functions. For
example, for the data acquisition step, ParSoDA provides crawling functions
for gathering data from some of the most popular social media platforms (e.g.,
Twitter and Flickr), while for the data filtering step, ParSoDA provides functions
for filtering geotagged items based on their position, time of publication, and
contained keywords. Users are free to extend this set of functions with their owns.

3.1 Reference architecture and execution flow

Figure 4 presents the reference architecture and execution flow of a ParSoDA
application that runs on the Hadoop [30] or Spark [31] framework. In such
way, it is possible to implement several parallel and distributed data mining
applications with high scalability. As shown in Figure 4(a), user applications can
utilize ParSoDA and other libraries (e.g., Mahout3, MLlib4). Applications can be
executed on Hadoop or Spark, using YARN as resource manager and HDFS as
distributed storage system. Figure 4(b) provides details on how applications are
executed on a Hadoop or a Spark cluster. The cluster is formed by one or more
master nodes, and multiple worker nodes. Once a user application is submitted to
the cluster, its steps are executed according to their order (i.e., data acquisition,
data filtering, etc.).

On a Hadoop cluster, some steps are inherently MapReduce-based, namely:
data filtering, data mapping, data partitioning and data reduction. This means that
all the functions used to perform these steps are executed within a MapReduce
job that runs on a set of worker nodes. In particular, the data filtering and data
mapping steps are wrapped within Hadoop Map tasks; the data partitioning step
corresponds to Hadoop Split and Sort tasks; the data reduction step is executed
as a Hadoop Reduce task. The remaining steps (data acquisition, data analysis,
and data visualization) are not necessarily MapReduce-based. This means that
the functions associated with these steps could be executed in parallel on multiple
worker nodes, or alternatively they could be executed locally by the master
node(s). The latter case does not imply that execution is sequential, because a
master node can make use of some other parallel runtime (e.g., MPI).

On a Spark cluster, the main steps are executed within two Spark stages that
run on a set of worker nodes. A stage is a set of independent tasks executing
functions that do not need to perform data shuffling (e.g., transformation and
action functions). Specifically: data filtering and mapping are executed within the
first stage (Stage 0 ), while data partitioning and reduction are executed within
the second stage (Stage 1 ). Concerning the remaining steps (data acquisition,

3 https://mahout.apache.org/
4 https://spark.apache.org/mllib/
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Fig. 4: Reference architecture and execution flow.

data analysis, and data visualization), the same considerations made for Hadoop
apply to Spark.

3.2 Usability and scalability evaluation

Writing a parallel data analysis application from scratch usually requires deep
programming skills and the writing of many lines of code. In fact, designing and
implementing such kind of applications pose a number of challenges to developers
such as parallelization of complex algorithms, reduction of communication costs,
and optimization of memory usage. As demonstrated in [13], using ParSoDA leads
to a drastic reduction of lines of code. In particular, ParSoDA allows programmers
to save hundred lines of code in the main (as the programmer needs to specify
only the functions to be used and their parameters), in the data acquisition
and data partition steps (where built-in functionalities are exploited), as well
as in the data filtering, mapping, and reduction steps (where the programmer
needs only to define the function logic). For the data analysis and visualization
steps, we used the same code to invoke external libraries, which does not lead
to a gain in terms of lines of code. However, for these steps, ParSoDA ensures
many advantages in terms of usability. In fact, in the application main defined
through ParSoDA, all the MapReduce jobs created for the different steps, such
as the ones in the analysis and visualization steps, are automatically chained.
This means that the output of a job is automatically used as input to the next
step. In contrast, without ParSoDA, programmers need to manually control the
execution flow among different jobs.

The scalability of ParSoDA has been evaluated by running the data analysis
applications on a private cloud infrastructure with 300 cores and 1.2 TB of
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RAM. In the experiments, the Spark version of ParSoDA has been used, since,
as demonstrated in [10], it resulted to be faster than the Hadoop version of the
library.

4 Nubytics

Nubytics [16] is a system that exploits Cloud facilities to provide scalable services
for analyzing large datasets. The system allows users to import their data to the
Cloud, extract knowledge models using high performance data mining services,
and use the inferred knowledge to predict new data. Nubytics provides data
classification and regression services that can be used in a variety of scientific and
business applications. Scalability is ensured by a parallel computing approach
that fully exploits the resources available on the Cloud. In addition, Nubytics is
provided in accordance with the Software-as-a-Service (SaaS) model. This means
that no installation is required on the user’s machine: the Nubytics interface is
offered by a web browser, so it can be run from most devices, including desktop
PCs, laptops, and tablets. This is a key feature for users who need ubiquitous
and seamless access to scalable data analysis services, without needing to cope
with the installation and system management issues of traditional analytics tools.

Nubytics differs from general purpose data analysis frameworks like Azure
ML, Hadoop and Sparks, or data-oriented workflow management systems like
ClowdFlows and DMCF, as it provides specialized services for data classification
and prediction. These services are provided by a Web interface that allows
data analysts to focus on the data analysis process without worrying on low
level programming details. This approach is similar to that adopted by BigML.
However, Nubytics also focuses on scalability, by implementing an ad hoc parallel
computing approach that fully exploits the distributed resources of a Cloud
computing platform.

4.1 Architecture

The Nubytics architecture includes storage and compute components. The storage
components are:

– Data Folder that contains data sources and the results of data analysis, and
Tool Folder that contains algorithms for data analysis and prediction.

– Data Table, Tool Table and Task Table that contain metadata information
associated with data, tools, and tasks.

– Task Queue that contains the tasks to be executed.

The compute components are:

– Virtual Compute Servers that execute the data analysis tasks.
– Virtual Web Servers that host the system front end, i.e., the Nubytics web

interface.
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The architecture manages submission and execution of data analysis tasks by
the following steps:

1. Using the services provided by the front end, the user can configure and
submit the desired data analysis task (e.g., training a classification model
from a dataset).

2. Exploiting a data parallel approach, the system models the task as a set of
parallel sub-tasks that are inserted into the Task Queue for processing.

3. Each idle Virtual Compute Server picks a sub-task from the Task Queue and
concurrently starts its execution.

4. Each Virtual Compute Server gets the part of data assigned to it from the
Data Folder where the original dataset is stored.

5. After sub-task completion, each Virtual Compute Server puts the result on
the Data Folder.

6. The front end notifies the user as soon as the task has completed, and allows
her/him to access the results.

4.2 Services

The Nubytics front end is divided into three sections - Datasets, Tasks and Models
- corresponding to the three groups of services provided by the system: dataset
management, task management and model management.

The datasets of a user are stored in a Cloud storage space associated to the
user’s account. The Datasets section provides several data management services,
including: importing (uploading) a dataset from the user’s terminal; exporting
(downloading) a dataset to the user’s terminal; listing and searching the available
datasets; modifying the metadata of a dataset; creating a copy, deleting, or
restoring a dataset.

The Tasks section provide services for configuring, submitting and managing
data analysis tasks. Two classes of tasks can be submitted: training tasks and
prediction tasks.

A training task takes as input a dataset and produces a classification or
regression model from it. The goal of classification is to derive a model that
classifies the instances of a dataset into one or more classes. Using a classification
model, we can predict the membership of a new data instance to a given class
from a set of predefined classes. The goal of regression is to build a model that
associates a numerical value to the instances of a dataset. Therefore, a regression
model can be used to forecast a quantitative value starting from the field values
of a new data instance.

The configuration of a training task is made by selecting the input dataset,
the class field (which is categorical in case of classification and numerical in case
of regression), and the predictive fields that must be considered for the analysis
(they can be all - or a subset of - the original dataset fields). A parallel computing
approach is used to speedup the execution of training tasks. This is done using
a data parallel approach that divides the original task in sub-tasks, assigns a
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sub-task to a different virtual compute server on the Cloud, and joins the partial
results computed by multiple servers into a single model.

A prediction task takes two input elements: a model generated by a training
task, and a new dataset whose instances must be classified or regressed. As a
result, the new dataset will include a new field containing the predicted class
label (in case of classification) or numerical value (in case of regression) of each
tuple. Also in this case, parallelism is exploited by performing the prediction task
in parallel on multiple Cloud servers.

Multiple tasks can be submitted to the system, and the user can monitor
the status of each one through a task management interface, as shown by the
screenshot in Figure 5. For each task, the interface shows the task type (prediction
or training), some information about execution (start, end, and elapsed time),
and the current status. Additional details on a task can be seen by selecting the
corresponding row. For instance, the figure shows Input Dataset and Output
Model of the second task, which is a Training task.

Fig. 5: Screenshot of the Tasks section.

5 SMA4TD

SMA4TD (Social Media Analysis for Trajectory Discovery) [17] is a methodology
aimed at discovering behavior rules, correlations and mobility patterns of visitors
attending large-scale events, trough the analysis of a large number of social media
posts. In particular, the main goals of the methodology are as follows.

1. Discovery of most visited places and most attended events. We analyze the
collected data to discover the places that have been most visited by users,
and the events that have been most attended by visitors during the observed
period.
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2. Discovery of most frequent sets of visited places and most frequent sets of
attended events. We extract the sets of places that are most frequently visited
together by users, and the events that have been most attended by visitors
during the observed period.

3. Discovery of most frequent mobility patterns among places and most frequent
sequences of attended events. We analyze the collected data to discover
mobility behaviors among the places, and to extract useful knowledge (i.e.
patterns, rules and regularities) about the attended events.

4. Discovery of the origin and destination of visitors. We study the mobility
flows of people attending the events, evaluating which countries visitors came
from and which countries they moved after the events. In some cases, this
information can give some insights about the touristic impact on the local
territory.

The methodology is composed of seven steps: i) identification of the set of
events; ii) identification of places-of-interests where the events take place; iii)
collection of geotagged items related to events and pre-processing; iv) identifica-
tion of users who published at least one of the geotagged items; v) pre-processing
and creation of the input dataset; vi) data analysis and trajectory mining; and
vii) results visualization.

5.1 Steps 1-2: Definition of events and places-of-interest

The first two steps aim at defining the events E and the corresponding places-of-
interest P. Specifically, during step 1, each event is described by the id of the
place-of-interest (PoI) where it is located, starting/ending time of the event, and
other optional data (e.g., free/paid event, type of event, etc.). Step 2 is aimed
at defining the geographical boundaries of the PoIs in P. This can be done in
two ways: i) manually defining the boundaries of the PoIs (e.g., as polygons on
a map); ii) automatically, using external services (e.g., cadastral maps [19]), or
public web services providing the geographical boundaries of a place given its
name (e.g., OpenStreetMap5).

5.2 Steps 3-4-5: Collection and pre-processing of geotagged items,
identification of users and creation of the input dataset

The goal of step 3 is to collect all the geotagged items G posted during each event
ei ∈ E from the place pi where ei was held. Data collection is done by using the
publicly available APIs provided by most social media platforms. The G dataset
is pre-processed in order to clean, select and transform data to make it suitable
for analysis. In particular, we first clean the collected data by removing all items
with unreliable positions (e.g., items with coordinates that have been manually
set by users or applications). Then, we proceed by selecting only the geotagged
items posted by users who actually attended an event, by removing replies and

5 https://www.openstreetmap.org/
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favorites posted by other users. Finally, we transform data by keeping one item
per user per event, because we are interested to know only if a user attended an
event or not. The identification of users is the goal of step 4. This is done by
extracting the set U of distinct users who published at least one geotagged item
in G.

Step 5 creates the input datasets D = {d1, d2, ...}, where di is a tuple <
ui, {ei1, ei2, ..., eik}, optF ields > in which eij is the jth event attended by user
ui, and optF ields are optional descriptive fields (e.g., nationality, interests).

5.3 Step 6-7: Data mining and results visualization

After having built the input dataset D, it is analyzed for discovering behaviour
and mobility patterns of users attending the large-scale event under investigation.
Specifically, we perform both associative and sequential analysis, as described in
the following.

Associative analysis is exploited with the goal of discovering (inside data)
the item values that occur together with a high frequency. The mechanisms of
association allow identifying the conditions that tend to occur simultaneously, or
the patterns that repeat in certain conditions. Applied to dataset D, we perform
two associative mobility mining tasks: (i) frequent event sets discovery, aimed at
extracting the sets of events (places) that are most frequently attended (visited)
together by visitors during the whole observed large-scale event; and (ii) frequent
event rules extraction, devoted to discover frequent associative rules among the
events.

On the other hand, sequential analysis algorithms are intended to discover the
sequences of elements that occur most frequently in the data. Unlike associative
analysis, in sequential analysis are fundamental the time dimension and the
chronological order in which the values appear in the data. In our case, this type
of analysis is useful to discover the most frequent mobility patterns among the
places, and/or the most frequent sequences of attended events. Moreover, if the
observed period is extended to some days (or weeks) before/after the event time,
we can also discover the origin/destination (i.e., country, city) of visitors and
which countries visitors came from/move after the event (i.e., to infer touristic
insights).

Finally, results visualization is performed by the creation of info-graphics
aimed at presenting the results in a way that is easy to understand to the
general public, without providing complex statistical details that may be hard to
understand to the intended audience. The graphic project is grounded on some
of the most acknowledged and ever-working principles underpinning a ’good’
info-graphic piece.

5.4 Study cases: FIFA World Cup 2014 and EXPO 2015

In this section we present the results obtained by analyzing geotagged posts of
social media users attending the FIFA World Cup 2014 and EXPO 2015.
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FIFA World Cup 2014 During the FIFA World Cup 2014, we monitored the
Twitter users attending the 64 matches played during the football competition and
analyzed such data through the SMA4TD methodology to discover behaviors and
frequent movements of fans [14]. In this case study, the places-of-interest are the
stadiums in which the World Cup matches have been played. The corresponding
RoIs have been manually defined from a map as the smallest rectangles fully
containing the boundaries of each stadium. For each match, we considered only
the tweets posted from coordinates falling within the above defined RoIs during
the matches. Totally, the number of tweets that have been collected (from June
12 to July 13, 2014) amounted to about 526,000. We have made several analyzes
on user behavior. For example, we described how the number of people attending
the matches changed over time. To do that, we report in Figure 6 trends and
numbers (i) of Twitter users we tracked attending at the matches during the
World Cup, and (ii) of attendees officially published by the FIFA website6.
Specifically, Figure 6 shows a time plot of the collected attendance data, in which
the number of attendees is plotted versus the number of matches.
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Fig. 6: Number of attendees per match, comparing Twitter users and official
attendee numbers.

It clearly shows that there are several peaks of participation during the
competition, probably corresponding to some matches that have attracted more
attention with respect to other ones. Interestingly, in some cases Twitter data
peaks are equivalent to the official attendance ones. We also studied the partici-
pation of fans to the matches. The results show that 71.3% of the fans attended
a single match, 16% attended two matches, 6% attended three matches, and
only 6.7% attended four or more matches. We also studied the most frequent
paths of fans who attended two or three matches of the same team during the
group stage. For example, the most frequent 2-match-set was 〈Colombia-Greece,
Colombia-Cote d’Ivoire〉, followed by 〈Brazil-Mexico, Croatia-Mexico〉, and by
〈Argentina-Bosnia, Argentina-Iran〉, i.e., matches likely attended by fans of
Colombia, Mexico and Argentina. Looking at their nationality, spectators were
likely fans of Mexico, Brazil and Australia.

6 http://www.fifa.com/worldcup/archive/brazil2014
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EXPO 2015 For the second study case, the EXPO 2015, we monitored In-
stagram users who visited EXPO pavilions to discover mobility patterns inside
the exhibition area, correlations among visits to pavilions and the main flows
of origin/destination of visitors [15]. EXPO 20157 was a Universal Exposition
held under the theme “Feeding the Planet, Energy for Life”, which was hosted
in Milan, Italy, from May 1st to October 31st, 2015. Exhibitors were individual
countries, international organizations, civil society organizations and companies,
for a total of 188 exhibition spaces. Some of the exhibitors were hosted inside
individual (self-built) pavilions, while others were hosted inside shared pavilions.
For the sake of uniformity, in this paper we will use the term pavilion to indicate
both an individual pavilion and a distinct area (assigned to a given exhibitor)
of a shared pavilion. Cumulatively, about 22.2 million people visited the EXPO
area and its pavilions during the six months of the whole exposition, making it
the world-wide largest event of the year 2015. Visitors at EXPO used various
social network to share their experience with friends and followers.

The set of events E considered for this scenario is composed by the showcases
(each one organized by a country or organization/company) exhibited in the
exposition spaces (generally referred as pavilions in the following). Specifically,
let us consider E={e1, e2, ..., e188}, where each ei is described by the following
properties:

ei = 〈pi, [tbegini , tendi ]〉

where pi is the pavilion, tbegini is May 1st and tendi is October 31st.
The places-of-interest to be considered are the pavilions. Specifically, we

defined the PoI set P = {p1, p2, ..., p188}, where each pi is a pavilion that has
been used as exhibition area during the EXPO 2015. For each PoI, we drew its
corresponding RoI as a rectangle bounding the pavilion area.

Figure 7 shows a comparison between trends and numbers of the Instagram
visitors we tracked, and the official visitors published on the EXPO website8.
The observed period is August 1st - October 31st, but official numbers have
been published only for the period starting in August, thus the corresponding
curve has been traced only for the last three months. We used different scales
for Instagram visitor numbers and the EXPO visitor ones: on the right is the
scale of the formers, while on the left is the scale of the latter ones. In particular,
Figure 7(a) shows a time plot of the daily visits to EXPO. The trends are quite
evident: initially (May and June) the visitors are relatively few; then, they grow
significantly during the months of September and October. Moreover, there are
several peaks of attendance, corresponding to visits occurred during the week-end
days. By looking at the trends in the figure, it can be noted a strong correlation
(Pearson coefficient 0.7) between official visitor numbers and those obtained from
our analysis, which confirms the reliability of the results we obtained. Figure 7(b)
compares Instagram and official visitor numbers, aggregated by the week day
(Pearson correlation 0.94). The results clearly show that during the week-end

7 http://www.expo2015.org/
8 http://www.expo2015.org/
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days there is a peak of visits, with the highest number of people registered on
Saturdays.
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Fig. 7: Statistics about visitors, comparing Instagram users and official attendee
numbers.

6 RoI mining

Geotagged data gathered from social media can be used to discover interesting
locations visited by users called Places-of-Interest (PoIs). Since a PoI is generally
identified by the geographical coordinates of a single point, it is hard to match
it with user trajectories. Therefore, it is useful to define an area, called Region-
of-Interest (RoI ), to represent the boundaries of the PoI’s area. RoI mining
techniques are aimed at discovering Regions-of-Interest from PoIs and other data.

G-RoI [11] is a novel RoI mining technique that exploits the indications
contained in geotagged social media items (e.g. tweets, posts, photos or videos
with geospatial information) to discover the RoI of a PoI with a high accuracy.
Given a PoI p identified by a set of keywords, a geotagged item is associated to
p if its text or tags contain at least one of those keywords. Starting from the
coordinates of all the geotagged items associated to p, G-RoI calculates an initial
convex polygon enclosing all such coordinates, and then iteratively reduces the
area using a density-based criterion. Then, from all the convex polygons obtained
at each reduction step, G-RoI adopts an area-variation criterion to choose the
polygon representing the RoI for p.

Let a PoI P be identified by one or more keywords K = {k1, k2, ...}. Let
Gall be a set of geotagged items. Let G = {g0, g1, ...} be the subset of Gall,
obtained by applying a G-RoI preprocessing procedure that selects from Gall

only the geotagged items associated to P, i.e., the text or tags of each gi ∈ G
contains at least one keyword in K. Let C = {c0, c1, ...} be a set of coordinates,
where ci represents the coordinates of gi ∈ G. Thus, every ci ∈ C represents
the coordinates of a location from which a user has created a geotagged item
referring to P. Let cp0 be a convex polygon enclosing all the coordinates in C,
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obtained by running the convex hull algorithm [3] on C, described by a set of
vertices {v0, v1, ...}.

To find the RoI R for P, the G-RoI algorithm uses two main procedures:

– G-RoI reduction. Starting from cp0, it iteratively reduces the area of the
current convex polygon by deleting one of its vertex. A density-based criterion
is adopted to choose the next vertex to be deleted. The density of a polygon
is the ratio between the number of geotagged items enclosed by the polygon,
and its area. At each step, the procedure deletes the vertex that produces the
polygon with highest density, among all the possible polygons. The procedure
ends when it cannot further reduce the current polygon, and returns the set
of convex polygons CP = {cp0, ..., cpn} obtained after the n steps that have
been performed.

– G-RoI selection. It analyses the set of convex polygons CP returned by the
G-RoI reduction procedure, and selects the polygon representing RoI R for
PoI P. An area-variation criterion is adopted to choose R from CP . Given
CP , the procedure identifies two subsets: a first subset {cp0, ..., cpcut−1}
such that the area of any cpi is significantly larger than the area of cpi+1; a
second subset {cpcut, ..., cpn} such that the area of any cpi is not significantly
larger than the area of cpi+1. The procedure returns cpcut as RoI R. This
corresponds to choosing cpcut as the corner point of a discrete L-curve [20]
obtained by plotting the areas of all the convex polygons in CP on a Cartesian
plane, as detailed later in this section.

6.1 Methodolody

Without going into algorithmic details, which can be found at [11], we briefly
describe how the G-RoI reduction and selection procedures work through a real
example. Starting from a small sample of 200 geotagged items from different
social media, referring to the Colosseum in Rome and posted at a maximum
distance of 500m from it.

In their posts and photos, social media users identify the Colosseum with
different keywords, such as Coliseum, Coliseo, Colisée, and synonymous such
as Flavian Amphitheatre or Amphitheatrum Flavium. All the geotagged items
in our sample contain at least one of such keywords. From these posts, the 200
coordinates shown in Figure 8(a) have been extracted. Given the coordinates,
the G-RoI reduction procedure calculates the initial convex polygon cp0 (shown
Figure 8(b)), and then iteratively reduces the area. Figure 8(c) shows polygon cp1
obtained after the first step by deleting one of the vertices from cp0. The G-RoI
reduction procedures iterates until it cannot further reduce the current polygon.
The output of the procedure is the set of convex polygons CP = {cp0, cp1, ..., cpn}
obtained at each step.

The G-RoI selection procedure identifies the point pcut that is located at the
maximum distance (distmax) from the reference line joining the first point and
the last point under analysis (p0 and pn). If the set of points {pcut, ..., pn} follows
a linear trend, i.e., there is no point below a threshold line at distance th from
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(a) Collection of geotagged items.

(b) Initial convex poly-
gon cp0.

(c) Generating cp1 by
deleting one vertex
from cp0.

(d) G-RoI selection
from Colosseum’s
convex polygons.

Fig. 8: G-RoI reduction and selection on Colosseum’s geotagged items.

the reference line joining the points pcut and pn, then the procedure returns the
polygon corresponding to pcut as RoI R (see Figure 8(d)). Otherwise, the G-RoI
selection procedure iterates by finding a new cut-off point from the set of points
on the right of pcut.

We experimentally evaluated the accuracy of G-RoI in detecting the RoIs
associated to a set of PoIs. The analysis was carried out on 24 PoIs located in
the center of Rome (St. Peter’s Basilica, Colosseum, Circus Maximus, etc.) using
about 1.2 millions geotagged items published in Flickr from January 2006 to May
2016 in the areas under analysis. Specifically, we made several preliminary tests
to find parameter values that perform effectively in that scenario, taking into
account that the various PoIs are characterized by significant variability of shape,
area and density (number of Flickr photos divided by area). In particular, the
threshold th was set to 0.27. The experimental results showed also that G-RoI is
able to detect RoIs with high accuracy. Over a set of 24 PoIs in Rome, G-RoI
achieved a mean precision of 0.78, a mean recall of 0.82, and a mean F1 score of
0.77.
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7 Iterative Opinion Mining using Neural Networks

IOM-NN (Iterative Opinion Mining using Neural Networks) [5] is a new methodol-
ogy for estimating the polarization of public opinion on political events character-
ized by the competition of factions or parties. It can considered as an alternative
technique to traditional opinion polls, since it is able to capture the opinion
of a larger number of people more quickly and at a lower cost. In particular,
IOM-NN uses an automatic incremental procedure based on feed-forward neural
networks for analyzing the posts published by social media users. Starting from
a limited set of classification rules, created from a small subset of hashtags that
are notoriously in favor of specific factions, our methodology iteratively generates
new classification rules. A classification rule allows to determine if a post is in
favor of a faction based on the words/hashtags it contains. Then, such rules
are used to determine the polarization of social media users - who wrote posts
about the political event - towards a faction. As shown in Figure 9, the proposed
methodology consists of three main steps:

1. Collection of posts: posts are collected by using a set of keywords related to
the selected political event.

2. Classification of posts: the collected posts are then classified by using an
incremental procedure implemented through neural networks.

3. Polarization of users: the classified posts are analyzed for determining the
polarization of users towards a faction.

Collection
of	posts

Classi�ication
of	posts

Polarization
of	users

Keywords (K) Posts (P)

Factions (F)
Class. posts (C) Faction Score (S)

Class. users (U)

Fig. 9: Execution flow of IOM-NN.

Collection of posts A political event E is characterized by the rivalry of
different factions F = {f1, f2, ..., fn}. Examples of political events and relative
factions are: i) municipal election, in which a faction supports a mayor candidate;
ii) parliament election, in which a faction supports a party; iii) presidential
election, in which a faction supports a presidential candidate [21]. The posts are
collected by using the keywords that people commonly use to refer the political
event E on social media. Such keywords K can be divided in two groups:

- Kcontext, which contains generic keywords that can be associated to E without
referring to any specific faction in F .
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- K⊕
F = K⊕

f1 ∪ ...∪K⊕
fn, where K⊕

fi contains the keywords used for supporting
fi ∈ F (positive faction keywords).

The keywords in K are given as input to public APIs provided by social
media platforms, which permit to collect posts containing one or more keywords.

The collected posts are pre-processed before the analysis. The output of this
step is a collection of posts P . In particular, they are modified and filtered as
follows:

– The text of posts is normalized by transforming it to lowercase and replac-
ing accented characters with regular ones (e.g., IOVOTOSI or iovotośı →
iovotosi).

– Words are stemmed for allowing matches with declined forms (e.g., vote or
votes or voted → vot).

– Stop words are removed from text by using preset lists.
– All the posts written in a language different from the one(s) spoken in the

nation(s) hosting the considered political event are filtered out.

Classification of posts The input of the algorithm for the classification of
posts is composed of: the posts P generated in the previous step, the set of
positive faction keywords K⊕

F , the maximum number of iterations maxiters, the
minimum increment of the classified posts eps at each iteration, and a threshold
th. Instead, the output is a collection of posts C that have been classified in favor
of a faction.

As discussed in [4], the algorithm is divided in two parts. The fist part performs
the preliminary iteration (iteration 0). At this iteration, IOM-NN exploits the set
of positive faction keywords (K⊕

F ) for classifying a part of the posts. Specifically,
it classifies a post in favor of a faction if it contains only positive keywords for
such faction. In general, at the end of this iteration, only a small part of posts
are classified, since not all users use keywords in K⊕

F for declaring their support
to factions. The second part iteratively generates new classification rules for
classifying other posts. At each iteration, such rules are inferred by exploiting
the posts that have been classified at the previous iterations.

Polarization of users This algorithm is used for determining the polarization
of users. The input is composed of: a collection of classified posts C, a filtering
function filter with its parameters parf , and a polarization function polarize
with its parameters parp. The output is composed of a collection of classified
users U and a faction score (S) containing the polarization percentages for each
faction. As first step, the classified posts are aggregated by user to produce a
dictionary (CU ), which contains the list of classified posts Pu for each user u.
Two empty variables are initialized for storing the output. On each pair 〈u, Pu〉
of CU , the algorithm performs the following operations:

- It filters out all the pairs that do not match the criteria defined by the filter
function. For example, users who published a number of posts below a given
threshold are skipped.
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- Using the classified posts Pu, it computes vus a vector containing the score of
user u for each faction. The score vector is calculated by using the function
polarize.

- It adds the pair 〈u, vs〉 to U .

Then, the algorithm calculates the overall faction score S as the normalized
sum of the user vector scores 〈u, vus 〉. Finally, the output is returned.

7.1 Case study: the 2016 US presidential election

In this section we describe and analyze a case study: the 2016 US presidential
election, which was characterized by the rivalry between Hillary Clinton and
Donald Trump. The analysis has been performed on data collected for ten US
Swing States: Colorado, Florida, Iowa, Michigan, Ohio, New Hampshire, North
Carolina, Pennsylvania, Virginia, and Wisconsin. Overall about 2.5 million of
tweets, posted by 521,291 users, have been collected from October 10, 2016 to
November 7, 2016 (the day before the election). From such data we filtered out
all the tweets posted by users with a not defined location or with a location that
does not belong to any of the considered states. In particular, for each faction
fi we defined three set of keywords K⊕

fi, K�
fi and K#

fi that are respectively
positive, negative and neutral keywords for faction fi. For example, for the
Hillary Clinton faction K⊕

Clinton contains keywords used to clearly support her
party (e.g., #voteHillary), K�

Clinton contains keywords to speak negatively about
her (e.g., #neverhillary), K#

Clinton contains neutral keywords (e.g., clinton or
democrats). IOM-NN exploits only positive faction keywords (K⊕

fi
) for classifying

posts and then for determining the polarization of users.
For such study case, the filter and polarize functions have been configured

as follows. Specifically, a user u is considered only if he/she fulfills the following
criteria: i) u posted at least minPosts on the political event of interest; ii) it
exists a faction f for which u has published more than 2/3 of his/her posts. For
each user u, the polarize function returns a vector score as follows: the percentage
of posts written by u in favor of preferred faction f , 0 for the other factions.

Figure 10 shows how the user polarization algorithm works on some classified
posts. For each user, the posts if favor of Clinton and Trump are counted. Users
who fulfill the criteria of filter function are considered and added to the set of

<	u,Pu	> U S

1/3

u1 0 2 0 2/2

u2 3 0 3/3 0

u3 1 1

0 2/2u4 0 2

u5 0 0

2/3

Clinton Trump Clinton Trump

Clinton Trump

Fig. 10: Example of how the user polarization algorithm works.
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classified users U . Then U is combined and normalized to obtain the vector S
containing the overall polarization percentages.

As shown in Figure 11, IOM-NN is able to correctly identify the winning
candidate in 8 out of 10 cases, outperforming the opinion polls that correctly
classifies 6 out 10 states.

Real

IOM-NN

Opinion polls

North 
Carolina

New 
Hampshire

VirginiaIowa OhioFloridaColorado Pennsylvania WisconsinMichigan

Fig. 11: Comparison among the real winning candidate and that identified by
IOM-NN and opinions polls. The Democratic Donkey symbolizes the party of
Hillary Clinton, while the Republican Elephant that of Donald Trump.

8 Conclusions

In science and business, scientists and professionals analyze huge amounts of
data, commonly called Big Data, to extract information and knowledge useful for
making new discoveries or for supporting decision processes. This can be done
by exploiting Big Data analytics techniques and tools. In this scenario, Cloud
computing represents a compelling solution for Big Data analytics, allowing faster
data analysis, that means more timely results and then greater data value. This
paper presented some recent Cloud-based frameworks and methodologies for Big
Data processing that can be used for developing and executing different kind
of data analysis applications. In particular, in the first part of the paper we
presented some tools for developing and running Big Data application on Cloud
(i.e., DMCF, ParSoDA, and Nubytics). Instead, in the second part we present
some innovative methodologies for extracting useful information about mobility
behaviors (i.e., SMA4TD and G-RoI) and political sentiment of social media
users (i.e., IOM-NN).
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