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Abstract MapReduce is a programming model widely used in Cloud computing
environments for processing large data sets in a highly parallel way. MapReduce
implementations are based on a master-slave model. The failure of a slave is man-
aged by re-assigning its task to another slave, while master failures are not managed
by current MapReduce implementations as designers consider failures unlikely in
reliable Cloud systems. On the contrary, node failures - including master failures -
are likely to happen in dynamic Cloud scenarios, where computing nodes may join
and leave the network at an unpredictable rate. Therefore, providing effective mech-
anisms to manage master failures is fundamental to exploit the MapReduce model
in the implementation of data-intensive applications in those dynamic Cloud envi-
ronments where current MapReduce implementations could be unreliable. The goal
of our work is extending the master-slave architecture of current MapReduce im-
plementations to make it more suitable for dynamic Cloud scenarios. In particular,
in this chapter we present a P2P-MapReduce framework that exploits a Peer-to-
Peer (P2P) model to manage intermittent nodes participation, master failures and
MapReduce job recovery in a decentralized but effective way.
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1 Introduction

Cloud computing is gaining increasing interest both in science and industry for its
promise to deliver service-oriented remote access to hardware and software facilities
in a highly reliable and transparent way. A key point for the effective implementation
of large-scale Cloud systems is the availability of programming models that support
a wide range of applications and system scenarios. One of the most successful pro-
gramming models currently adopted for the implementation of data-intensive Cloud
applications is MapReduce [1].

MapReduce defines a framework for processing large data sets in a highly par-
allel way by exploiting computing facilities available in a large cluster or through
a Cloud system. In MapReduce, users specify the computation in terms of a map
function that processes a key/value pair to generate a list of intermediate key/value
pairs, and a reduce function that merges all intermediate values associated with the
same intermediate key.

MapReduce implementations (e.g., Google’s MapReduce [2] and Apache
Hadoop [3]) are based on a master-slave model. A job is submitted by a user node to
a master node that selects idle workers and assigns each one a map or a reduce task.
When all map and reduce tasks have been completed, the master node returns the
result to the user node. The failure of a worker is managed by re-executing its task
on another worker, while current MapReduce implementations do not handle with
master failures as designers consider failures unlikely in large clusters or in reliable
Cloud environments.

On the contrary, node failures - including master failures - can occur in large
clusters and are likely to happen in dynamic Cloud environments like an Inter-
cloud, a Cloud of clouds, where computing nodes may join and leave the system at
an unpredictable rate. Therefore, providing effective mechanisms to manage mas-
ter failures is fundamental to exploit the MapReduce model in the implementation
of data-intensive applications in large dynamic Cloud environments where current
MapReduce implementations could be unreliable. The goal of our work is studying
how the master-slave architecture of current MapReduce implementations can be
improved to make it more suitable for dynamic Cloud scenarios like Interclouds.

In this chapter we present a P2P-MapReduce framework that exploits a Peer-to-
Peer (P2P) model to manage intermittent nodes participation, master failures and
MapReduce job recovery in a decentralized but effective way. An early version of
this work, presenting a preliminary architecture of the P2P-MapReduce framework,
has been presented in [4]. This chapter extends the previous work by describing an
implementation of the P2P-MapReduce framework and a preliminary performance
evaluation.

The remainder of this chapter is organized as follows. Section 2 provides a
background on the MapReduce programming model. Section 3 describes the P2P-
MapReduce architecture, its current implementation, and preliminary evaluation of
its performance. Finally, Section 4 concludes the chapter.
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2 MapReduce

As mentioned before, MapReduce applications are based on a master-slave model.
This section briefly describes the various operations that are performed by a generic
application to transform input data into output data according to that model.

Users define a map and a reduce function [1]. The map function processes a (key,
value) pair and returns a list of intermediate (key, value) pairs:

map (k1,v1)→ list(k2,v2).

The reduce function merges all intermediate values having the same intermediate
key:

reduce (k2, list(v2))→ list(v2).

The whole transformation process can be described through the following steps
(see Fig. 1):
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Fig. 1 Execution phases in a generic MapReduce application

1. A master process receives a “job configuration” describing the MapReduce job
to be executed. The job configuration specifies, among other information, the lo-
cation of the input data, which normally is a directory in a distributed file system.

2. According to the job configuration, the master starts a number of mapper and
reducer processes on different machines. At the same time, it starts a process that
reads the input data from its location, partitions that data into a set of splits, and
distributes those splits to the various mappers.
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3. After receiving its piece of data, each mapper process executes the map func-
tion (provided as part of the job configuration) to generate a list of intermediate
key/value pairs. Those pairs are then grouped on the basis of their keys.

4. All pairs with the same keys are sent to the same reducer process. Hence, each
reducer process executes the reduce function (defined by the job configuration)
which, starting from all the intermediate pairs with the same key, generates a
single pair containing that key and the aggregate values.

5. The results generated by each reducer process are then collected and delivered to
a location specified by the job configuration, so as to form the final output data.

Besides the original MapReduce implementation by Google [2], several other
MapReduce implementations have been realized within other systems, including
Hadoop [3], GridGain [5], Skynet [6], MapSharp [7] and Disco [8]. Another system
sharing most of the design principles of MapReduce is Sector/Sphere [9], which has
been designed to support distributed data storage and processing over large Cloud
systems. Sector is a high-performance distributed file system; Sphere is a parallel
data processing engine used to process Sector data files. Ref. [10] describes a dis-
tributed data mining application developed using such system.

Several applications of the MapReduce paradigm have been demonstrated.
Ref. [11] discusses some examples of interesting applications that can be expressed
as MapReduce computations, including: performing a distributed grep; counting
URL access frequency; building a reverse Web-link graph; building a term-vector
per host; building inverted indexes, performing a distributed sort. Ref. [3] mentions
many significant types of applications that have been (or are being) implemented by
exploiting the MapReduce model, including: machine learning and data mining, log
file analysis, financial analysis, scientific simulation, image retrieval and processing,
blog crawling, machine translation, language modelling, and bioinformatics.

3 P2P-MapReduce

The objective of the P2P-MapReduce framework is two-fold: i) handling master
failures by dynamically replicating the job state on a set of backup masters; ii)
supporting MapReduce applications over dynamic networks composed by nodes
that join and leave the system at unpredictable rates.

To achieve these goals, P2P-MapReduce exploits the P2P paradigm by defining
an architecture in which each node can act either as master or slave. The role as-
signed to a given node depends on the current characteristics of that node, and so
it can change dynamically over time. Thus, at each time, a limited set of nodes is
assigned the master role, while the others are assigned the slave role.

Moreover, each master node can act as backup node for other master nodes. A
user node can submit the job to one of the master nodes, which will manage it as
usual in MapReduce. That master will dynamically replicate the entire job state (i.e.,
the assignments of tasks to nodes, the locations of intermediate results, etc.) on its
backup nodes. In case those backup nodes detect the failure of the master, they will
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elect a new master among them that will manage the job computation using its local
replica of the job state.

The remainder of this section describes the architecture of the P2P-MapReduce
framework, its current implementation, and a preliminary evaluation of its perfor-
mance.

3.1 Architecture

The P2P-MapReduce architecture includes three basic roles, shown in Fig. 2: user
(U), master (M) and slave (S). Master nodes and slave nodes form two logical
P2P networks called M-net and S-net, respectively. As mentioned above, comput-
ing nodes are dynamically assigned the master or slave role, hence M-net and S-Net
change their composition over time. The mechanisms used for maintaining this in-
frastructure are discussed in Section 3.2.

U

S1

S2

S5S3

S4 …

M-net

S-net

M2

M3M1

M4
…

Fig. 2 Basic architecture of a P2P-MapReduce network

In the following we describe, through an example, how a master failure is handled
in the P2P-MapReduce architecture. We assume the initial configuration represented
in Fig. 2, where U is the user node that submits a MapReduce job, nodes M are the
masters and nodes S are the slaves.

The following steps are performed to submit the job and to recover from a master
failure (see Fig. 3):

1. U queries M-net to get the list of the available masters, each one characterized by
a workload index that measures how busy the node is. U orders the list by ascend-
ing values of workload index and takes the first element as primary master. In this
example, the chosen primary master is M1; thus, U submits the MapReduce job
to M1.

2. M1 chooses k masters for the backup role. In this example, assuming that k = 2,
M1 chooses M2 and M3 for this role. Thus, M1 notifies M2 and M3 that they will
act as backup nodes for the current job (in Fig. 3, the apex “B” to nodes M2
and M3 indicates the backup function). This implies that whenever the job state
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Fig. 3 Steps performed to submit a job and to recover from a master failure

changes, M1 backups it on M2 and M3, which in turn will periodically check
whether M1 is alive.

3. M1 queries S-net to get the list of the available slaves, choosing (part of) them to
execute a map or a reduce task. As for the masters, the choice of the slave nodes
to use is done on the basis of a workload index. In this example, nodes S1, S3 and
S4 are selected as slaves. The tasks are started on the slave nodes and managed
as usual in MapReduce.

4. The primary master M1 fails. Backup masters M2 and M3 detect the failure of M1
and start a distributed procedure to elect a new primary master among them.

5. The new primary master (M3) is elected by choosing the backup node with the
lowest workload index. M2 continues to play the backup function and, to keep k
backup masters active, another backup node (M4, in this example) is chosen by
M3. Then, M3 proceeds to manage the MapReduce job using its local replica of
the job state.

6. As soon as the MapReduce job is completed, M3 returns the result to U .
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It is worth noticing that the master failure and the subsequent recovery procedure
are transparent to the user. It should also be noted that a master node may play at
the same time the role of primary master for one job and that of backup master for
another job.

3.2 Implementation

We implemented a prototype of the P2P-MapReduce framework using the JXTA
framework [12]. JXTA provides a set of XML-based protocols that allow comput-
ers and other devices to communicate and collaborate in a P2P fashion. In JXTA
there are two main types of peers: rendezvous and edge. The rendezvous peers act
as routers in a network, forwarding the discovery requests submitted by edge peers
to locate the resources of interest. Peers sharing a common set of interests are or-
ganized into a peer group. To send messages to each other, JXTA peers use asyn-
chronous communication mechanisms called pipes. All resources (peers, services,
etc.) are described by advertisements that are published within the peer group for
resource discovery purposes.

In the following we briefly describe how the JXTA components are used in the
P2P-MapReduce system to implement basic mechanisms for resource discovery,
network maintenance, job submission and failure recovery. Then we describe the
state diagram that steers the behavior of a generic node and the software modules
provided by each node in a P2P-MapReduce network.

3.2.1 Basic mechanisms

Resource discovery

All master and slave nodes in the P2P-MapReduce system belong to a single
JXTA peer group called MapReduceGroup. Most of these nodes are edge peers,
but some of them also act as rendezvous peers, in a way that is transparent to the
users. Each node exposes its features by publishing an advertisement containing
basic information such as its Role and WorkloadIndex.

An edge peer publishes its advertisement in a local cache and sends some keys
identifying that advertisement to a rendezvous peer. The rendezvous peer uses those
keys to index the advertisement in a distributed hash table called Shared Resource
Distributed Index (SRDI), that is managed by all the rendezvous peers of MapRe-
duceGroup. Queries for a given type of resource (e.g., master nodes) are submitted
to the JXTA Discovery Services that uses SRDI to locate all the resources of that
type without flooding the entire network.

Note that M-net and S-net, represented in Fig. 2, are “logical” networks in the
sense that queries to M-net (or S-net) are actually submitted to the whole MapRe-
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duceGroup but restricted to nodes having the attribute Role set to "Master" (or
"Slave") using the SRDI mechanisms.

Network maintenance

Network maintenance is carried out cooperatively by all nodes on the basis of
their role. The maintenance task of each slave node is to check periodically the
existence of at least one master in the network. In case no masters are found, the
slave promotes itself to the master role. In this way, the first node joining the network
always assumes the master role. The same happens to the last node remaining into
the network.

The maintenance task of master nodes is to ensure the existence of a given
percentage p of masters on the total number of nodes. This task is performed
periodically by one master only (referred to as coordinator), which is elected for
this purpose among all masters using a variation of the “bully” election algorithm.
The coordinator has the power of changing slaves into masters, and viceversa.
During a maintenance operation, the coordinator queries all nodes and orders them
by ascending values of workload index: the first p percent of nodes must assume
(or maintain) the master role, while the others will become or remain slaves. Nodes
that have to change their role are notified by the coordinator in order to update their
status.

Job submission and failure recovery

To describe the JXTA mechanisms used for job submission and master failure
recovery, we take the six-point example presented in Section 3.1 as reference:

1. The user node invokes the Discovery Service to obtain the advertisements of the
master nodes published in MapReduceGroup. Based on the WorkloadIndex,
it chooses the primary master for its job. Then, it opens a bidirectional pipe
(called PrimaryPipe) to the primary master and submits the job configuration.

2. The primary master invokes the Discovery Service to choose its backup masters
and opens a multicast pipe (BackupPipe) to the backup masters. The Backup-
Pipe has two goals: replicating job state information to the backup nodes and
allowing backup nodes to detect a primary master failure in case the BackupPipe
connection times out.

3. The primary master invokes the Discovery Service to select the slave nodes to use
for the job. Slave nodes are filtered on the basis of WorkloadIndex attribute.
The primary master opens a bidirectional pipe (SlavePipe) to each slave and starts
a map or a reduce task on it.

4. The backup masters detect a primary master failure (i.e., a timeout on the Back-
upPipe connection) and start a procedure to elect the new primary master (to this
end, they connect each other with a temporary pipe and exchange information
about their current WorkloadIndex).

5. The backup master with the lowest WorkloadIndex is elected as the new
primary master. This new primary master binds the pipes previously associated
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to the old primary master (PrimaryPipe, BackupPipe and SlavePipes), chooses
(and connect to) a substitute backup master, and then continues to manage the
MapReduce job using its replica of the job state.

6. The primary master returns the result of the MapReduce job to the user node
through the PrimaryPipe.

The primary master detects the failure of a slave by getting a timeout to the
associated SlavePipe connection. If this event occurs, a new slave is selected and
the failed map or reduce task is assigned to it.

3.2.2 State diagram and software modules

The behavior of a generic node is modelled as a state diagram that defines the dif-
ferent states that a node can assume, and all the events that determine the transitions
from a state to another one. Fig. 4 shows such state diagram modelled using the
UML State Diagram formalism.

NODE

SLAVE

<<MacroState>>

IDLE

CHECK_MASTER_EXISTENCE

MASTER

PRIMARY

NOT_BACKUP BACKUP

ELECTING_COORDINATOR

WAITING_COORDINATOR

COORDINATOR

ACTIVE

�
MANAGEMENT �
[RECOVERY]

[COORDINATION]

taskAssigned

taskCompleted

<<timeout>>

[exists a 
Master Node]

becomeMaster

becomeSlave

[not exists a 
Master Node]

NOT_COORDINATOR

NOT_PRIMARY

Fig. 4 UML State Diagram describing the behavior of a generic node in the P2P-MapReduce
framework

The state diagram includes two macro-states, SLAVE and MASTER, which de-
scribes the two roles that can be assumed by each node. The SLAVE state has
three states, IDLE, CHECK MASTER EXISTENCE and ACTIVE, which represent
respectively: a slave waiting for task assignment; a slave checking the existence of
a master; a slave executing a given task.
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The MASTER state is modelled with three parallel macro-states, which represent
the different roles a master can perform concurrently: possibly acting as a primary
master for one or more jobs (MANAGEMENT); possibly acting as a backup master for
one or more jobs (RECOVERY); coordinating the network for maintenance purposes
(COORDINATION).

The MANAGEMENT macro-state contains two states: NOT PRIMARY, which rep-
resents a master node currently not acting as a primary master for any job, and
PRIMARY, which, in contrast, represents a master node currently managing at least
one job as a primary master.

Similarly, the RECOVERY macro-state includes two states: NOT BACKUP (the
node is not managing any job as backup master) and BACKUP (at least one job is
currently being backed up on this node).

Finally, the COORDINATION macro-state includes four states:
NOT COORDINATOR (the node is not acting as coordinator), COORDINATOR
(the node is acting as coordinator), WAITING COORDINATOR and
ELECTING COORDINATOR for nodes currently participating to the election
of the new coordinator, as mentioned in Section 3.2.1.

The combination of the concurrent states [NOT PRIMARY, NOT BACKUP,
NOT COORDINATOR] represents the abstract state MASTER.IDLE. The transition
from master to slave role is allowed only to masters in the MASTER.IDLE state that
receive a becomeSlave message from the coordinator. Similarly, the transition from
slave to master role is allowed to slaves that receive a becomeMaster and are not in
ACTIVE state.

Finally, we briefly describe the software modules inside each node and how those
modules interact each other in a P2P-MapReduce network (see Fig. 5).

(JXTA)
Discovery
Service

Listener

Net Utility

Node FSM

s t u b s

Fig. 5 Software modules inside each node and interactions among nodes in P2P-MapReduce

The Node FSM implements the logic of the finite state machine described in
Fig. 4, steering the behavior of the node in response to local events or messages
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coming from remote nodes (e.g., tasks assignments, discovery requests, etc.). The
Listener is a component that receives messages from other nodes and passes them
to the Node FSM for processing. The Net Utility allows outgoing messages to be
sent to remote nodes; a specific stub is used for each remote service to be invoked.
Additionally, each node interacts with the JXTA Discovery Service for publishing
its features and for querying the system (e.g., when looking for idle slave nodes).

3.3 Evaluation

We carried out a preliminary set of experiments to evaluate the behavior of the
P2P-MapReduce framework compared to a centralized implementation of MapRe-
duce, in presence of dynamic nodes participation. The experimental results demon-
strate that using a P2P approach it is possible to extend the MapReduce architectural
model making it suitable for highly dynamic Cloud environments where failure must
be managed to avoid a critical loss of computing resources and time.

The evaluation has been carried out by implementing a simulator of the system in
which each node is represented by an independent thread. Each thread executes the
algorithms specified by the state diagram in Fig.4, and communicates with the other
threads by invoking local routines having the same interface of the JXTA pipes. Our
simulation analyzes the system in steady state, that is when M-net and S-net are
formed and the desired ratio between number of masters and slaves is reached.

The network includes 1000 nodes. To simulate a dynamic nodes participation
a joining rate RJ and a leaving rate RL are defined. On average, every 1/RJ sec-
onds one node joins the network, while every 1/RL another node abruptly leaves
the network so as to simulate an event of failure (or a disconnection). In our sim-
ulation RJ = RL in order to keep the total number of nodes and the master/slave
ratio approximatively constant during the whole simulation. In particular, we con-
sidered the following values for RJ and RL: 0.05, 0.1 and 0.2, which correspond to
the join/failure of one node (out of 1000 nodes) every 20, 10 and 5 seconds, respec-
tively.

Every 120 seconds (mean value) a user entity submits one job to the system. The
average sequential duration of a job is 20 hours that are distributed, on average, to
100 nodes. On the basis of the actual number of slaves, the system determines the
amount of time each slave will be busy to complete its task. Every node, other than
managing a job or a task, executes the network maintenance operations described
above (election of the coordinator, choice of backup masters, and so on).

The main task performed by the simulator is evaluating the number of jobs failed
versus the total number of nodes submitted to the system. For the purpose of our
simulations, a “failed” job is a job that does not complete its execution, i.e., does
not return a result to the submitting user. The failure of a job is always caused by a
not-managed failure of the master responsible for that job. The failure of a slave, on
the contrary, never causes a failure of the whole job because its task is re-assigned
to another slave.
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The system has been evaluated in two scenarios: i) centralized, where there is
only one primary master and there are not backup masters; ii) P2P, where there are
10 masters and each job is managed by one master which periodically replicates the
job state on one backup master. Fig. 6 presents the percentage of completed jobs in
centralized and P2P scenarios after the submission of 100 jobs.
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Fig. 6 Percentage of completed jobs in centralized and P2P scenarios for a leaving rate ranging
from 0.05 to 0.2

As expected, in the centralized scenario the number of failed jobs increases as the
leaving rate increases. In contrast, The P2P-MapReduce scenario is able to complete
all the jobs for all the considered leaving rates, even if we used just one backup per
job. It is worth noticing that when a backup master becomes primary master as
a consequence of a failure, it chooses another backup in its place to maintain the
desired level of reliability.

The percentages in Fig. 6 can be translated into lost CPU hours, by multiplying
the average job duration to the average number of failed jobs. In the centralized
scenario, the absolute number of failed jobs is 4, 15 and 22 for leaving rates equal
to 0.05, 0.1 and 0.2, respectively. Hence, with an average sequential duration of 20
hours per job, the total number of lost computing hours equals, in the worst case, to
80, 300 and 440 hours.

We can further estimate the amount of resources involved in a typical MapReduce
job by taking the statistics about a large set of MapReduce jobs run at Google,
presented in [1]. On March 2006, the average completion time per job has been 874
seconds, using 268 slaves on average. Assuming that each machine is fully assigned
to one job, the overall machine time is 874× 268 seconds (about 65 hours). On
September 2007, the average job completion time has been 395 seconds using 394
machines, with an overall machine time of 43 hours.

From the statistics reported above, and from the results generated by our exper-
iments, we see that a master failure causes loss of dozens CPU hours for a typical
MapReduce job. Moreover, when the number of available machines per user is lim-
ited (as in a typical Cloud systems where resources are shared among thousands
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of users), a master failure produces also a significant loss of time, since the job
completion time increases as the number of machines decreases.

4 Conclusions

Providing effective mechanisms to manage master failures, job recovery and inter-
mittent nodes participation is fundamental to exploit the MapReduce model in the
implementation of data-intensive applications in dynamic Cloud environments or
in Cloud of clouds scenarios where current MapReduce implementations could be
unreliable.

The P2P-MapReduce model presented in this chapter exploits a P2P model to
perform job state replication, manage master failures and allow intermittent nodes
participation in a decentralized but effective way. Using a P2P approach, we ex-
tended the MapReduce architectural model making it suitable for highly dynamic
environments where failure must be managed to avoid a critical loss of computing
resources and time.
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