
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/329396802

BitTorrentSW: A Sleep-and-Wake Approach to Reduce Energy Consumption in

BitTorrent Networks

Conference Paper · July 2018

DOI: 10.1109/HPCS.2018.00037

CITATION

1
READS

38

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Social data analysis View project

ASPIDE View project

Fabrizio Marozzo

Università della Calabria

60 PUBLICATIONS 483 CITATIONS

SEE PROFILE

Domenico Talia

Università della Calabria

407 PUBLICATIONS 5,113 CITATIONS

SEE PROFILE

All content following this page was uploaded by Domenico Talia on 28 February 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/329396802_BitTorrentSW_A_Sleep-and-Wake_Approach_to_Reduce_Energy_Consumption_in_BitTorrent_Networks?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/329396802_BitTorrentSW_A_Sleep-and-Wake_Approach_to_Reduce_Energy_Consumption_in_BitTorrent_Networks?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Social-data-analysis?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ASPIDE?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio_Marozzo?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio_Marozzo?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_della_Calabria?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Fabrizio_Marozzo?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universita_della_Calabria?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Domenico_Talia?enrichId=rgreq-aeaf0019e5bd945471a98ab32a3ec7dc-XXX&enrichSource=Y292ZXJQYWdlOzMyOTM5NjgwMjtBUzo3MzExOTk3NDM5ODc3MTVAMTU1MTM0MzAxMjQyMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

BitTorrentSW: A Sleep-and-Wake approach to
reduce energy consumption in BitTorrent networks

Fabrizio Marozzo, Francesco Marzano, Domenico Talia, Paolo Trunfio
DIMES Department

University of Calabria
Rende, Italy

Email: [fmarozzo, fmarzano, talia, trunfio]@dimes.unical.it

Abstract—File sharing over peer-to-peer networks has been one
of the most important Internet applications over the past twenty
years. Given the very large number of hosts involved in peer-to-
peer networks, reducing their aggregate energy consumption is
an important challenge to be faced. In this paper, we study how
the sleep-and-wake energy saving approach can be used to reduce
energy consumption in BitTorrent, one of the most popular file
sharing peer-to-peer networks. We introduce BitTorrentSW, a
sleep-and-wake approach for BitTorrent networks that allows
peers to cyclically switch between wake and sleep mode to
save energy while ensuring good file sharing performance. The
decision to get in sleep mode is taken independently by each
peer based on local information about the composition of the
peer-to-peer network. BitTorrentSW has been evaluated through
PeerSim using real BitTorrent traces. The simulation results show
that about 40% of energy is saved using BitTorrentSW, with only
an increase of 5% of the average time needed to complete a file
download compared to a standard BitTorrent network in which
all peers are always powered on.

Index Terms—Peer-to-peer, BitTorrent, File sharing, Energy
efficiency, Performance analysis

I. INTRODUCTION

As peer-to-peer networks gather and share large sets of
hosts, their aggregate energy consumption has become an
important challenge to be addressed. The importance of the
problem has led several researchers to propose solutions for
improving the energy efficiency of peer-to-peer networks.
Common approaches toward this goal include the use of proxies,
optimizing task allocation, message reduction, location-based
mechanisms, overlay structure optimization, and the “sleep-and-
wake” strategy [15]. The latter is one of the most important
approaches, relying on the fact that the energy consumption
of a peer-to-peer network can be significantly reduced if peers
periodically switch from “wake” mode (high-power) to “sleep”
mode (low-power). In fact, a main cause of energy waste in
a peer-to-peer network are peers powered on even when they
are not active.

In this paper, we study how the sleep-and-wake energy
saving approach can be used to reduce energy consumption
in BitTorrent, the most popular peer-to-peer networks for
transferring digital contents among users, accounting for more
than half of total file sharing bandwidth and 2.26% of global
Internet traffic during 2013 [12].

We introduce BitTorrentSW, a sleep-and-wake approach for
BitTorrent networks that allows peers to cyclically switch

between wake and sleep mode to save energy while ensuring
good file sharing performance. In BitTorrent, peers can be
seeders or leechers: the formers hold complete files and share
them; the latters are downloading the parts they need to
complete the file, and share the parts they already have. In
BitTorrentSW only the seeders can get in sleep mode. The
decision is taken autonomously by each seeder according to
the local information it owns about network composition: if
the percentage of seeders in the network exceeds a certain
threshold, the seeder can get in sleep mode for a period of
time.

A few other sleep-and-wake techniques have been pro-
posed to improve the energy efficiency of BitTorrent net-
works [4][8][13], but they differ from BitTorrentSW in three
main aspects: 1) all of them turn off any peer that is not
doing upload/download activities, while BitTorrentSW puts
in sleep mode only the seeders that are not doing upload
activities; 2) some of them modify the BitTorrent protocol
by introducing new messages, while BitTorrentSW does not
modify the BitTorrent protocol with the introduction of new
messages; 3) some of them assume that PCs are equipped
with a Wake-on-LAN connector that allows a peer to be re-
awakened with a message, while BitTorrentSW can be run on
any hardware as wake up is scheduled locally.

BitTorrentSW has been evaluated through PeerSim using
real BitTorrent traces. The simulation results show that about
40% of energy is saved using BitTorrentSW, with only an
increase of 5% of the average time needed to complete a file
download compared to a standard BitTorrent network in which
all peers are always powered on. This result is very positive
as it is significantly reduced the energy consumption with a
negligible increase in average download time.

The remainder of the paper is structured as follows. Section II
discusses related work. Section III presents the system model.
Section IV describes the BitTorrentSW algorithm. Section V
presents an evaluation of the energy-saving algorithm using
PeerSim. Finally, Section VI concludes the paper.

II. RELATED WORK

Malatras et al. [15] classified existing solutions for improving
the energy-efficient of peer-to-peer networks in six categories:

1) The proxying approach is based on the use by peers of
proxies to delegate some of their activities, such as file

downloading. Using proxies, peer-to-peer hosts do not
need to stay constantly online, this way reducing the
overall energy consumption. Examples of proxy-based
approaches are the system proposed by Anastasi et al. [2]
for reducing the energy consumption of hosts running the
BitTorrent application, and the system by Purushothaman
et al. [19] for Gnutella networks [20].

2) Task allocation optimization is based on the observation
that significant energy savings can be achieved in a peer-
to-peer network by carefully scheduling the allocation of
tasks to peers, i.e., deciding on which peer will satisfy
the request of another peer. One example is the work by
Enokido et al. [6][7], who proposed a model for peer-to-
peer data transfers in which computation time and power
consumption are minimized by optimizing the allocation
of file requests.

3) Message reduction aims at minimizing the number of
messages exchanged through the peer-to-peer network
with the goal of lowering processing and transmission
times, thus reducing energy consumption. One example of
energy-saving peer-to-peer system based on this approach
is the work by Kelenyi and Nurminen [11], who adopted
a selective message dropping mechanism for reducing
the number of messages exchanged in a Kademlia net-
work [17].

4) The location-based approach exploits positioning infor-
mation about nodes to make peer-to-peer overlays more
closely matching the underlying physical connections with
the goal of reducing multi-hop transmissions, and conse-
quently the overall energy consumption. This approach
is particularly effective in mobile peer-to-peer networks,
as proven by the research works proposed by Joseph et.
al [10], Park and Valduriez [18], and Tung and Lin [24].

5) Overlay structure optimization aims at improving the
energy efficiency of a peer-to-peer network by either con-
trolling its topology during construction or maintenance,
or introducing new layers to the overlay. An example
of the first type is the work by Leung and Kwok [14],
where topology control is used for improving the energy
efficiency of wireless file sharing peer-to-peer networks.
An example of the second type is the double-layered
system by Han et al. [9].

6) The sleep-and-wake approach aims at reducing the overall
energy consumption of a peer-to-peer network by letting
peers cyclically switch between normal and sleep state.
The critical point of this approach is deciding when peers
should be in normal or sleep state, in order to avoid
excessive degradation of system performance. Several
systems fall in this category, including the ones by Andrew
et al. [3], Sucevic et al. [22], Corigliano et al. [5] and
Trunfio [23].

In the following we briefly compare BitTorrentSW with the
main sleep-and-wake techniques used to improve the energy
efficiency of BitTorrent networks.

Blackburn and Christensen [4] proposed a BitTorrent ex-
tension called green BitTorrent. This solution tries to opti-
mize energy consumption through a sleep-and-wake approach
allowing peers to go into sleep mode when they are not
downloading/uploading chunks, but keeping the peers active
members of the network. The basic idea is similar to that used
in our approach with these main differences: i) green BitTorrent
turns off any peer that is not doing upload/download activities;
ii) it also modifies the BitTorrent protocol by introducing new
messages related to the awakening of the peers; iii) it finally
assumes that PCs are equipped with a Wake-on-LAN connector
which allows the peer to be re-awakened with a message. Our
approach puts in sleep mode only the seeders that are not doing
uploading activities, it does not modify the BitTorrent protocol
with the introduction of new messages, and can be run on any
hardware.

Lee et al. [13] proposed a solution based on the definition of
new states for the peers involved in the BitTorrent network. The
communication of information related to these new states is
achieved through specific hibernation and awakening messages.
In addition, the peers in standby mode are awakened via
the WoL (Wake on LAN) technology, re-establishing the
TCP connections. A main difference with our approach is
that the solution of Lee et al. uses custom messages for
communicating changes of status (e.g., a node that goes in
standby communicates to the tracker its status change). In our
approach, it is used a pure BitTorrent protocol that does not
create new types of messages to communicate with the tracker.
In addition, in Lee’s algorithm the leechers are also put in
standby mode, as opposed to what happens in our approach
where only the seeders can decide autonomously, based on
local information, whether to go into energy saving mode or
not.

Forshaw and Thomas [8] proposed an energy saving solution
for BitTorrent networks. Basically they consider a seed pool,
that is a group of servers waiting to share content to peers of the
network, which guarantees satisfactory levels of performance.
The number of seeders is elastic for adapting to the requests of
real-time services. The main difference with our solution is that
Forshaw and Thomas have modified the BitTorrent protocol
to allocate the upload bandwidth based on the combination
of download rates and energy efficiency. More specifically, a
seeder will send the file chunks to those peers that have a
higher power consumption so that they finish the download as
quickly as possible in order to reduce the energy consumption
of the entire network. Unlike our algorithm, therefore, the
implementation of Forshaw and Thomas is not compatible
with the legacy algorithm of BitTorrent as the conditions for
choosing the leechers to be served are different from the original
ones.

III. SYSTEM MODEL AND DESIGN PRINCIPLES

In BitTorrent, a file F is described by a torrent, i.e., a
descriptor containing file metadata (name, size, cryptographic
hash values for verifying its integrity) and the network locations
of one or more trackers (as defined below). Each file is split

L1

L2

L3

L4

L5

L6

S2

S3

S4

S5S1

L7

L8

T

Fig. 1. An example of BitTorrent network for a file F composed by a tracker T , a set of seeders (S1 . . . S5) and a set of lechers (L1 . . . L8).

into small pieces (with a size of 256 kB or 512 kB), called
chunks.

The BitTorrent architecture includes three basic roles:
• A tracker keeps track of where file chunks reside on peers,

and which peers are available. Trackers are not directly
involved in file transfers and do not have a copy of the
file.

• A seeder is a peer that holds the complete file (i.e., all
the chunks) and shares it.

• A leecher is a peer that does not hold all the file chunks;
it is downloading the remaining chunks and can share the
chunks it owns.

Figure 1 shows an example of BitTorrent network for a file
F . In this example, F is divided into six chunks. A set of
seeders, S1 . . . S5 own the complete file, and a set of leechers,
L1 . . . L8 are trying to complete the download of F . A tracker
T keeps track of the leechers that are downloading the file and
of which chunks are owned by the peers (leechers and seeders).
For example, L1 owns one chunk, L2 owns two chunks, L3

does not own any chunk, and so on.
The BitTorrentSW approach is based on the idea of keeping

in sleep mode a subset of the seeders that are not performing
upload activities (for example, seeders S2 and S5 in Figure 1).
To avoid the need for centralized coordination, the decision of
getting in sleep mode is taken autonomously by each seeder
according to the local information it owns about network
composition: if the percentage of seeders in the network exceeds
a certain threshold, the seeder can get in sleep mode for a
period of time. Details on the sleep-and-wake algorithm will
be provided in the next section.

IV. SLEEP-AND-WAKE ALGORITHM

Following the sleep-and-wake approach, it is assumed that
each seeder periodically switches from normal (or wake) mode
to sleep mode, and viceversa. When a seeder is in normal mode,

it is available for download requests and works at normal power
level (phigh). Conversely, a seeder in sleep mode is unavailable,
but it works at reduced power level (plow), thus consuming a
limited amount of energy. Figure 2 illustrates the relationship
between availability status of a seeder and its power mode.

Figure 3 shows the state diagram that describes the behavior
of a peer of a BitTorrentSW network. A newly created peer
that does not own the file becomes a Leecher. When it has
downloaded the whole file (or if it is the file owner) it becomes
a Seeder. The Seeder state is a macro-state composed by
two sub-states: Seeder.Active, which is a seeder running in
normal power; Seeder.Sleep, which is a seeder in sleep mode.
If a seeder is not performing any upload operation, it can
change from Seeder.Active to Seeder.Sleep. The decision is
made autonomously by each seeder according to the local
information that it has on the network: if the percentage of
seeders present in the network (currentSeedPerc) exceeds a
certain threshold (desideredPerc), the seeder can go sleeping for

normal

sleep

tavailtunavailtbegin

M
o
d
e

Time

available unavailable

Fig. 2. Relationship between availability status and power mode of a seeder.

a certain amount of time (sleepingTime). After sleepingTime,
the seeder will return to be active (Seeder.Active).

Figure 4 shows the BitTorrentSW power management
algorithm, which implements the strategy outlined above. A
peer cyclically executes the power management method (lines
1-15). If the peer is an active seeder and it is not performing any
upload operation (line 2), it calculates the current percentage
of seeders according to local information (line 3). This is done
by a localPercSeeders() function, which returns the percentage
of this seeder’s neighbors that possess all the file chunks (this
info is available to every BitTorrent node). Then, the seeder
calculates the difference between currentPercSeeder and the
desidered percentage of seeders desiredPerc (line 4). If such
difference is greater than zero, it means that there is an excess
of seeders in the network (line 5). In this case, the seeder
calculates a random number between 0 and currentPercSeeder
(line 6). If this random value is lower than difference (line 7),
the status of the seeder is changed to Seeder.Sleep (line 8) and
the seeder gets in sleep mode for a given sleepingTime (line
9). After the sleeping time, the seeder wakes up and returns
to be active (line 10). The cycle is repeated after checkTime
seconds (line 14).

// executed by every peer
Pi.power management()

1: while true do
2: if status = Seeder.Active and isNotUploading then
3: currentPercSeeder := localPercSeeders();
4: difference := currentPercSeeder - desiredPerc;
5: if difference > 0 then
6: random := randomNumber(0, currentPercSeeder);
7: if random < difference then
8: status := Seeder.Sleep;
9: go in sleep mode for sleepingTime seconds;

10: status := Seeder.Active;
11: end if
12: end if
13: end if
14: wait for checkTime seconds;
15: end while

Fig. 4. BitTorrentSW power management algorithm.

V. PERFORMANCE EVALUATION

The goal of this section is evaluating the amount of energy
saved by BitTorrentSW and the delay it causes to file retrieval.
To this end, we evaluate to main performance parameters:
the total energy consumed by the network over a period of
observation, Etot, and the average delay to complete the
download of a file, Davg . For comparison purpose, the values
of Etot and Davg will be measured in two different cases: i)
seeders can go in sleep mode by executing the BitTorrentSW;
ii) seeders execute the standard BitTorrentSW, thus remaining
always in normal mode.

A. Experimental methodology
An implementation of the BitTorrent protocol for PeerSim

has been used to carry out the performance evaluation. The
simulator works in three phases:

1) A BitTorrent network for sharing a file F composed of
Npeers peers is created; a percentage Pleechers of these
peers is selected to play the role of leechers, while the
remaining percentage Pseeders of peers is selected to act
as seeders.

2) To each seeder is assigned a complete copy of F , while
each leecher receives a random number of file chunks.
Given the size of F , Fsize, the number of file chunks
is Fsize/Csize, where Csize) = 256kB is the standard
chunk size in BitTorrent.

3) The simulation begins, with seeders performing server-side
activities (file uploads) and leechers performing both client-
side activities (file downloads) and server-side activities
(file uploads).

The simulator assumes that seeders are not used by other
applications, and therefore they can put in sleep mode taking
into account only their upload activities on file F . Each
simulation terminates when the clock reaches a value Tsim,
which represents the simulation length. At the end, the
performance parameters Etot and Davg are calculated by the
following equations:

Etot =

Tsim∑
t=1

Npeers∑
i=1

pi(t) · ∆t (1)

where ∆t is the time resolution of the simulator (10 seconds),
and pi(t) is the power consumed by the i-th host at time t,
which is equal to plow if the host is in sleep mode at time t,
phigh otherwise;

Davg =
1

Nleechers

Nleechers∑
i=1

tdown(i) − tstart(i) (2)

where Nleechers is the number of leechers, tstart(i) is the
instant of time when the i-th leecher started to download file
F , and tdown(i) is the instant of time when the download is
complete;

B. Simulation parameters

Table I reports the parameters used for the simulations. The
most relevant parameters are extracted from real BitTorrent
traces presented in [26] and [25].

The network has a number of peers Npeers equal to 1000, the
30% of which initially configured to play the role of seeders. To
simulate network dynamism, a joining rate Jrate and a leaving
rate Lrate have been defined. On average, every minute Jrate
leechers join the network (new peers interested in downloading
the file), while Lrate seeders leave the network (peers that leave
the network after obtaining the file). In our simulations Jrate
= Lrate to keep the total number of nodes approximatively
constant during each run, following the approach described
in [16]. Each run simulates a time horizon (Tsim) of 24 hours.
According with [21], the power consumed by a host in normal
mode, phigh, and that consumed in sleep mode, plow, are
assumed to be 150 and 5 W, respectively. The amounts of time
to switch from sleep to normal mode (Tsleep to normal) and

Fig. 3. State diagram of a BitTorrentSW peer.

TABLE I
SIMULATION PARAMETER

Parameter Description Values

Npeers Number of nodes in the network 1000
Pseeders Initial percentage of seeders 0.3
Pleechers Initial percentage of leechers 0.7

Jrate
Joining rate: avg. number of nodes that join
the network every minute (% on Npeers) 0.5

Lrate
Leaving rate: avg. number of nodes that leave
the network every minute (% on Npeers) 0.5

Tsim Simulation time 24 hours
phigh Power consumed by a node in normal mode 150 W
plow Power consumed by a node in sleep mode 5 W
Tsleep to normal Amount of time to switch from sleep to normal mode 4 s
Tnormal to sleep Amount of time to switch from normal to sleep mode 9 s
Tckeck Check time 60 s
Fsize Size of the shared file 1024 MB
Urate Upload rate 640 - 4096 Kb/s
Tsleep Sleeping time 10 - 40 min
Pdesidered Desired percentage of active seeders 10% - 50%

vice versa (Tnormal to sleep) are taken from [1]. The check
time (see line 14 of Figure 4), Tcheck, is equals to 60 seconds.
The size of the shared file, Fsize, is equal to 1024 MB. The
upload rate of each node, Urate, ranges between 640 and 4096
kbit/s. The sleeping time of seeders (see line 9 of Figure 4),
Tsleep, ranges between 10 and 40 minutes. Specifically, the
seeders with the highest upload rate (4096 kbit/s) use the
shortest sleeping time (10 minutes), while the seeders with the
lowest upload rate (640 kbit/s) use the longest sleeping time
(40 minutes). Finally, the desired percentage of active seeders,
see line 4 of Figure 4), Pdesired, varies from 10% to 50%.

C. Simulation results

Figure 5 compares the evolution of BitTorrentSW and BitTor-
rent networks under the same simulation parameters, except for
the the sleeping time which is null for the standard BitTorrent
network. Specifically, Figure 5(a) shows the number of leechers,
seeders, and sleeping seeders over time in BitTorrentSW using
Pdesired = 30%, while Figure 5(b) presents the same numbers
obtained in a standard BitTorrent network (in this case, the
number of sleeping seeders is 0).

Both Figure 5(a) and Figure 5(b) show that there are two
phases in the evolution of the network. In the first phase of the
simulation (approximatively, the first 10000 seconds), there is
a reduction in the number of seeders and an increase in the
number of leechers. This is because the frequency of incoming
nodes (leechers) is greater than the frequency at which leechers
are transformed into seeders. After this transitory phase, the
network reaches its steady state, with about 30% of peers
playing the role of leechers and 70% acting as seeders (either
sleeping or active). With BitTorrentSW (see Figure 5(a)), about
40% of peers are sleeping seeders, and therefore about 30%
of peers are active seeders, which corresponds to the desired
percentage of active seeders in the network (Pdesired = 30%).
With standard BitTorrent (see Figure 5(b)), the number of
sleeping seeders is zero all over the simulation.

Figure 6 shows the total energy consumed by the network
(Etot) and the average download time (Davg) of BitTorrentWS
vs. BitTorrent. In case of BitTorrentSW, three different values
of Pdesired are considered: 10%, 30% and 50%.

Figure 6(a) shows the total energy consumed by the network.
With standard BitTorrent (case indicated as noWS in the

 0

 200

 400

 600

 800

 1000

 0 20000 40000 60000 80000

N
u
m

b
e
r

o
f

Time (s)

leechers
seeders

sleeping seeders

(a) BitTorrentSW.

 0

 200

 400

 600

 800

 1000

 0 20000 40000 60000 80000

N
u
m

b
e
r

o
f

Time (s)

leechers
seeders

sleeping seeders

(b) BitTorrent.

Fig. 5. BitTorrentSW vs. BitTorrent: Number of leechers, seeders, and sleeping
seeders over time.

graph), the energy consumed is constant during the entire
simulation, because the seeders are always powered on. With
BitTorrentSW, after a first phase of about 10000 seconds (as
already commented for Figure 5), the energy consumption
decreases by using lower values of Pdesired. In fact, the
lower Pdesired, the higher the number of sleeping seeders,
and therefore the lower the total energy consumed by the
network. For instance, using Pdesired = 10%, about 40% of
energy is saved compared with standard BitTorrent.

Figure 6(b) shows the average download time. During the
first phase, the download time increases because there is a high
number of leechers and a low number of seeders. When the
network reaches its steady state, the average download time
decreases and remains constant until the end of the simulation.
The download time increases slightly passing from standard
BitTorrent (noWS case) to decreasing Pdesired values. For
example, with the most energy saving configuration (Pdesired =
10%), there is only an increase of 5% of the average download
time compared to a standard BitTorrent network in which all
peers are always powered on.

0

50k

100k

150k

200k

 0 20000 40000 60000 80000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

W
)

Time (s)

Pdesired= 10%
Pdesired= 30%
Pdesired= 50%

noSW

(a) Total energy consumed by the network.

 0

 1000

 2000

 3000

 4000

 5000

 0 20000 40000 60000 80000

A
v
g
.
d
o
n
w

lo
a
d
 t
im

e
(s

)

Time (s)

Pdesired= 10%
Pdesired= 30%
Pdesired= 50%

noSW

(b) Average download time.

Fig. 6. BitTorrentSW vs. BitTorrent (noSW case): Total energy consumed
and average download time.

In summary, the simulation results show that the BitTor-
rentSW approach is effective in reducing energy consumption
without significantly affecting download time.

VI. CONCLUSIONS

Reducing energy consumption in distributed systems is a
challenging task, as it involves design and optimization of
energy-aware algorithms, architectural models, and applications.
This is particularly true in large-scale peer-to-peer networks,
given the necessity of obtaining significant energy savings
without affecting the performance perceived by the final
users[23].

In this paper we focused on one of the most popular peer-
to-peer networks, by proposing BitTorrentSW, a sleep-and-
wake approach for BitTorrent networks that allows peers to
cyclically switch between wake and sleep mode to save energy
while ensuring good file sharing performance. In BitTorrentSW
each seeder autonomously decides if and when get in sleep
mode according to the local information it owns about network
composition: if the percentage of seeders in the network exceeds

a certain threshold, the seeder can get in sleep mode for a
period of time. Differently from other solutions in the literature,
BitTorrentSW does not modify the BitTorrent protocol with
the introduction of new messages.

BitTorrentSW has been evaluated through PeerSim using
real BitTorrent traces. The simulation results show that about
40% of energy is saved using BitTorrentSW, with only an
increase of 5% of the average time needed to complete a file
download compared to a standard BitTorrent network in which
all peers are always powered on. This result is very positive
as it is significantly reduced the energy consumption with a
negligible increase in average download time.

REFERENCES

[1] Yuvraj Agarwal, Steve Hodges, Ranveer Chandra, James Scott, Paramvir
Bahl, and Rajesh Gupta. Somniloquy: Augmenting network interfaces
to reduce pc energy usage. In NSDI, volume 9, pages 365–380, 2009.

[2] Giuseppe Anastasi, Ilaria Giannetti, and Andrea Passarella. A bittorrent
proxy for green internet file sharing: Design and experimental evaluation.
Computer Communications, 33(7):794–802, 2010.

[3] Lachlan LH Andrew, Andrew Sucevic, and Thuy TT Nguyen. Balancing
peer and server energy consumption in large peer-to-peer file distribution
systems. In Online Conference on Green Communications (GreenCom),
2011 IEEE, pages 76–81. IEEE, 2011.

[4] Jeremy Blackburn and Ken Christensen. A simulation study of a new
green bittorrent. In Communications Workshops, 2009. ICC Workshops
2009. IEEE International Conference on, pages 1–6. IEEE, 2009.

[5] Salvatore Corigliano and Paolo Trunfio. Exploiting sleep-and-wake
strategies in the gnutella network. In Proc. of the 15th Int. Conference
on Collaboration Technologies and Systems (CTS 2014), pages 406–412,
Minneapolis, USA, 19-23 May 2014. IEEE Computer Society Press.
ISBN 978-1-4799-5158-1.

[6] Tomoya Enokido, Ailixier Aikebaier, and Makoto Takizawa. A model
for reducing power consumption in peer-to-peer systems. IEEE Systems
Journal, 4(2):221–229, 2010.

[7] Tomoya Enokido, Kota Suzuki, Ailixier Aikebaier, and Makoto Takizawa.
Laxity based algorithm for reducing power consumption in distributed
systems. In Complex, Intelligent and Software Intensive Systems (CISIS),
2010 International Conference on, pages 321–328. IEEE, 2010.

[8] Matthew Forshaw and Nigel Thomas. A novel approach to energy
efficient content distribution with bittorrent. In European Workshop on
Performance Engineering, pages 188–196. Springer, 2012.

[9] Jung-Suk Han, Jin-Woo Song, Taek-Hun Kim, and Song-Bong Yang.
Double-layered mobile p2p systems using energy-efficient routing
schemes. In Telecommunication Networks and Applications Conference,
2008. ATNAC 2008. Australasian, pages 122–127. IEEE, 2008.

[10] Mary Suchitha Joseph, Mohan Kumar, Huaping Shen, and Sajal Das.
Energy efficient data retrieval and caching in mobile peer-to-peer
networks. In Pervasive Computing and Communications Workshops,
2005. PerCom 2005 Workshops. Third IEEE International Conference
on, pages 50–54. IEEE, 2005.

[11] Imre Kelényi and Jukka K Nurminen. Optimizing energy consumption of
mobile nodes in heterogeneous kademlia-based distributed hash tables. In
Next Generation Mobile Applications, Services and Technologies, 2008.
NGMAST’08. The Second International Conference on, pages 70–75.
IEEE, 2008.

[12] Jonathan F. Lee. Purchase, pirate, publicize: Private-network music
sharing and market album sales. Information Economics and Policy,
2018.

[13] Yong-Ju Lee, Jin-Hwan Jeong, Hag-Young Kim, and Cheol-Hoon Lee.
Energy-saving set-top box enhancement in bittorrent networks. In
Network Operations and Management Symposium (NOMS), 2010 IEEE,
pages 809–812. IEEE, 2010.

[14] Andrew Ka-Ho Leung and Yu-Kwong Kwok. On localized application-
driven topology control for energy-efficient wireless peer-to-peer file
sharing. IEEE Transactions on Mobile Computing, 7(1):66–80, 2008.

[15] A Malatras, F Peng, and B Hirsbrunner. Energy-efficient peer-to-
peer networking and overlays. Handbook of Green Information and
Communication Systems, Elsevier, pages 513–540, 2013.

[16] Fabrizio Marozzo, Domenico Talia, and Paolo Trunfio. P2p-mapreduce:
Parallel data processing in dynamic cloud environments. Journal of
Computer and System Sciences, 78(5):1382–1402, September 2012.

[17] Petar Maymounkov and David Mazieres. Kademlia: A peer-to-peer
information system based on the xor metric. In International Workshop
on Peer-to-Peer Systems, pages 53–65. Springer, 2002.

[18] Kwangjin Park and Patrick Valduriez. Energy efficient data access in
mobile p2p networks. IEEE Transactions on Knowledge and Data
Engineering, 23(11):1619–1634, 2011.

[19] Pradeep Purushothaman, Mukund Navada, Rajagopal Subramaniyan,
Casey Reardon, and Alan D George. Power-proxying on the nic: a
case study with the gnutella file-sharing protocol. In Local Computer
Networks, Proceedings 2006 31st IEEE Conference on, pages 519–520.
IEEE, 2006.

[20] Matei Ripeanu. Peer-to-peer architecture case study: Gnutella network.
In Peer-to-Peer Computing, 2001. Proceedings. First International
Conference on, pages 99–100. IEEE, 2001.

[21] Brian Setz, Faris Nizamic, Alexander Lazovik, and Marco Aiello. Power
management of personal computers based on user behaviour. In Smart
Cities and Green ICT Systems (SMARTGREENS), 2016 5th International
Conference on, pages 1–8. IEEE, 2016.

[22] Andrew Sucevic, Lachlan LH Andrew, and Thuy TT Nguyen. Powering
down for energy efficient peer-to-peer file distribution. ACM SIGMET-
RICS Performance Evaluation Review, 39(3):72–76, 2011.

[23] Paolo Trunfio. A two-layer model for improving the energy efficiency
of file sharing peer-to-peer networks. Concurrency and Computation:
Practice and Experience, 27(13):3166–3183, 10 September 2015.

[24] Yu-Chih Tung and Kate Ching-Ju Lin. Location-assisted energy-efficient
content search for mobile peer-to-peer networks. In Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2011 IEEE
International Conference on, pages 477–482. IEEE, 2011.

[25] Boxun Zhang, Alexandru Iosup, and Dick Epema. The peer-to-peer
trace archive: Design and comparative trace analysis. technical report
pds-2010-003. Technical Report PDS-2010-003, Delft University of
Technology Parallel and Distributed Systems Report Series.

[26] Boxun Zhang, Alexandru Iosup, Johan Pouwelse, and Dick Epema. The
peer-to-peer trace archive: design and comparative trace analysis. In
Proceedings of the ACM CoNEXT Student Workshop, page 21. ACM,
2010.

View publication statsView publication stats

https://www.researchgate.net/publication/329396802

	Introduction
	Related Work
	System model and design principles
	Sleep-and-wake algorithm
	Performance Evaluation
	Experimental methodology
	Simulation parameters
	Simulation results

	Conclusions
	References

